Skip to main content
Log in

Localization of grasp representations in humans by PET: 1. Observation versus execution

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Positron emission tomography (PET) was used to localize brain regions that are active during the observation of grasping movements. Normal, right-handed subjects were tested under three conditions. In the first, they observed grasping movements of common objects performed by the experimenter. In the second, they reached and grasped the same objects. These two conditions were compared with a third condition consisting of object observation. On the basis of monkey data, it was hypothesized that during grasping observation, activations should be present in the region of the superior temporal sulcus (STS) and in inferior area 6. The findings in humans demonstrated that grasp observation significantly activates the cortex of the middle temporal gyrus including that of the adjacent superior temporal sulcus (Brodmann's area 21) and the caudal part of the left inferior frontal gyrus (Brodmann's area 45). The possible functional homologies between these areas and the monkey STS region and frontal area F5 are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bailey P, Bonin G von (1951) The isocortex of man. University of Illinois Press, Urbana

    Google Scholar 

  • Bettinardi V, Scardaoni R, Gilardi MC, Rizzo G, Perani D, Paulesu E, Striano G, Triulzi F, Fazio F (1991) Head holder for PET, CT, MR studies. J Comp Assist Tomogr 15: 886–892

    Google Scholar 

  • Bonda E, Petrides M, Frey S, Evans AC (1994) Frontal cortex involvement in organized sequences of hand movements: evidence from a positron emission tomography study. Soc Neurosci Abstr 20: 152.6

    Google Scholar 

  • Bonin G von, Bailey P (1947) The neocortex of Macaca mulatta. University of Illinois Press, Urbana

    Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde. Barth, Leipzig (reprinted 1925)

    Google Scholar 

  • Brothers L, Ring B, Kling A (1990) Response of neurons in the macaque amygdala to complex social stimuli. Behav Brain Res 41: 199–213

    Google Scholar 

  • Bruce CJ (1988) Single neuron activity in the monkey's prefrontal cortex. In: Rakic P, Singer W (eds) Neurobiology of neocortex. Wiley, Chichester, pp 297–329

    Google Scholar 

  • Bruce CJ, Desimone R, Gross CG (1981) Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J Neurophysiol 46: 369–384

    CAS  PubMed  Google Scholar 

  • Bruce CJ, Goldberg ME, Bushnell MC, Stanton GB (1985) Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. J Neurophysiol 54: 714–734

    Google Scholar 

  • Campbell AW (1905) Histological studies on the localization of cerebral function. Cambridge University Press, New York

    Google Scholar 

  • Chollet F, Di Piero V, Wise RSJ, Brooks DJ, Dolan RJ, Frackoviak RSJ (1991) The functional anatomy of functional recovery after stroke in humans. Ann Neurol 29: 63–71

    Article  Google Scholar 

  • Colebatch JG, Deiber M-P, Passingham RE, Friston KJ, Frackowiak RSJ (1991) Regional cerebral blood flow during voluntary arm and hand movements in human subjects. J Neurophysiol 65: 1392–1401

    CAS  PubMed  Google Scholar 

  • Decety J, Perani D, Jeannerod M, Bettinardi V, Tadary B, Woods R, Mazziotta JC, Fazio F (1994) Mapping motor representations with positron emission tomography. Nature 371: 600–602

    Google Scholar 

  • Deiber M-P, Passingham RE, Colebatch JG, Friston KJ, Nixon PD, Frackowiak RSJ (1991) Cortical areas and the selection of movement: a study with positron emission tomography. Exp Brain Res 84: 393–402

    Google Scholar 

  • Desimone R, Albright TD, Gross CG, Bruce C (1984) Stimulusselective properties of inferior temporal neurons in the macaque. J Neurosci 8: 2051–2062

    Google Scholar 

  • di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G (1992) Understanding motor events: a neurophysiological study. Exp Brain Res 91: 176–180

    Google Scholar 

  • Distler C, Boussaoud D, Desimone R, Ungerleider LG (1993) Cortical connections of inferior temporal area TEO in macaque monkeys. J Comp Neurol 334: 125–150

    Google Scholar 

  • Economo C von (1929) The cytoarchitectonics of the human cerebral cortex. Oxford University Press, London

    Google Scholar 

  • Fadiga L, Fogassi L, Pavesi G, Rizzolatti G (1995) Motor facilitation during action observation: a magnetic stimulation study. J Neurophysiol 73: 2608–2611

    Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in primate cerebral cortex. Cerebral Cortex 1: 1–47

    CAS  PubMed  Google Scholar 

  • Friston KJ, Frith CD, Liddle PF, Dolan RJ, Lammertsma AA, Frackoviak RSJ (1990) The relationship between global and local changes in PET scans. J Cerebr Blood Flow Metab 10: 458–466

    Google Scholar 

  • Friston KJ, Frith CD, Liddle PF, Frackoviak RSJ (1991) Comparing functional (PET) images: the assessement of significant change. J Cerebr Blood Flow Metab 11: 690–699

    Google Scholar 

  • Gallese V, Buccino G, Fadiga L, Fogassi L, Rizzolatti G, Tedeschi P (1995) Reversible inactivation of inferior premotor areas (F4 and F5) and primary motor cortex (F1) in the macaque mokey. Eur J Neurosci, suppl. 8:50

    Google Scholar 

  • Gallese V, Fadiga L, Fogassi L, Rizzolatti G (1996) Action recognition in the premotor cortex. Brain 119:593–609

    Google Scholar 

  • Gentilucci M, Fogassi L, Luppino G, Matelli M, Camarda R, Rizzolatti G (1988) Functional organization of inferior area 6 in the macaque monkey: I. Somatotopy and the control of proximal movements. Exp Brain Res 71: 475–490

    PubMed  Google Scholar 

  • Grafton ST, Woods RP, Mazziotta JC (1993) Within-arm somatotopy in human motor areas determined by positron emission tomography imaging of cerebral blood flow. Exp Brain Res 95: 172–176

    Google Scholar 

  • Grafton ST, Fagg AH, Woods RP, Arbib MA (1996) Functional anatomy of pointing and grasping in humans. Cerebral Cortex, in press

  • Gross CG, Rocha-Miranda CE, Bender DB (1972) Visual properties of neurons in the inferotemporal cortex of the macaque. J Neurophysiol 35: 96–111

    Google Scholar 

  • Gross CG, Desimone R, Albright TD, Schwartz EL (1985) Inferior temporal cortex and pattern recognition. In: Chagas C, Gattass R, Gross C (eds) Pattern recognition mechanisms. Springer, Berlin Heidelberg New York, pp 179–201

    Google Scholar 

  • Hast MH, Fisher JM, Wetzel AB, Thompson VE (1974) Cortical motor representation of the laryngeal muscles in Macaca mulatta. Brain Res 73: 229–240

    Google Scholar 

  • Hayes TL, Lewis DA (1995) Anatomical specialization of the anterior motor speech area: hemispheric differences in magnopyramidal neurons. Brain Lang 49: 289–308

    Google Scholar 

  • Hepp-Reymond M-C, Husler EJ, Maier MA, Qi H-X (1994) Force-related neuronal activity in two regions of the primate ventral premotor cortex. Can J Physiol Pharmacol 72: 571–579

    Google Scholar 

  • Jeannerod M (1994) The representing brain: neural correlates of motor intention and imagery. Behav Brain Sci 17: 187–245

    Google Scholar 

  • Jeannerod M, Arbib MA, Rizzolatti G, Sakata H (1995) Grasping objects: the cortical mechanisms of visuomotor transformation. Trends Neurosci 18: 314–320

    Article  CAS  PubMed  Google Scholar 

  • Kobatake E, Tanaka K (1994) Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. J Neurophysiol 71: 856–867

    Google Scholar 

  • Leonard CM, Rolls ET, Wilson FAW, Baylis GC (1985) Neurons in the amygdala of the monkey with responses selective for faces. Behav Brain Res. 15: 159–176

    Google Scholar 

  • Liberman AM, Mattingly IG (1985) The motor theory of speech perception revised. Cognition 21: 1–36

    Google Scholar 

  • Matelli M, Luppino G, Rizzolatti G (1985) Patterns of cytochrome oxidase activity in the frontal agranular cortex of macaque monkey. Behav Brain Res 18: 125–137

    Google Scholar 

  • Matelli M, Camarda R, Glickstein M, Rizzolatti G (1986) Afferent and efferent projections of the inferior area 6 in the macaque monkey. J Comp Neurol 251: 281–298

    CAS  PubMed  Google Scholar 

  • Matelli M, Rizzolatti G, Bettinardi V, Gilardi MC, Perani D, Rizzo G, Fazio F (1993) Activation of precentral and mesial motor areas during the execution of elementary proximal and distal arm movements: a PET study. Neuroreport 4: 1295–1298

    Google Scholar 

  • Matelli M, Luppino G, Murata A, Sakata H. (1994) Independent anatomical circuits for reaching and grasping linking the inferior parietal sulcus and inferior area 6 in macaque monkey. Soc Neurosci Abstr 20: 404.4

    Google Scholar 

  • Matsumura M, Kubota K (1979) Cortical projection of hand-arm motor area from postarcuate area in macaque monkey: a histological study of retrograde transport of horseradish peroxidase. Neurosci Lett 11: 241–246

    Google Scholar 

  • Mesulam MM (1990) Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol 28: 597–613

    CAS  PubMed  Google Scholar 

  • Muakkassa KF, Strick PL (1979) Frontal lobe inputs to primate motor cortex: evidence for four somatotopically organized “premotor” areas. Brain Res 177: 176–182

    Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh Inventory. Neuropsychologia 9: 97–113

    Article  CAS  PubMed  Google Scholar 

  • Oram MW, Perrett DI (1994) Responses of anterior superior temporal polysensory (STPa) neurons to “biological motion” stimuli. J Cogn Neurosci 6: 99–116

    Google Scholar 

  • Parsons LM, Fox PT, Downs JH, Glass T, Hirsch TB, Martin CC, Jerabek PA, Lancaster JL (1995) Use of implicit motor imagery for visual shape discrimination as revealed by PET. Nature 375: 54–58

    Google Scholar 

  • Passingham R (1993) The frontal lobes and voluntary action. Oxford University Press, Oxford

    Google Scholar 

  • Perrett DI, Rolls ET, Caan W (1982) Visual neurones responsive to faces in the monkey temporal cortex. Exp Brain Res 47: 329–342

    Google Scholar 

  • Perrett DI, Harries MH, Bevan R, Thomas S, Benson PI, Mistlin AJ, Chitty AI, Hietanen JK, Ortega JE (1989) Frameworks of analysis for the neural representation of animate objects and actions. J Exp Biol 146: 87–113

    Google Scholar 

  • Perrett DI, Mistlin AJ, Harries MH, Chitty AJ (1990) Understanding the visual appearance and consequence of hand actions. In: Goodale MA (ed) Vision and action: the control of grasping. Ablex, Norwood, NJ, pp 163–180

    Google Scholar 

  • Petrides M, Pandya DN (1994) Comparative architectonic analysis of the human and the macaque frontal cortex. In: Boller F, Grafman J (ed) Handbook of neuropsychology vol IX. Elsevier, Amsterdam, pp 17–58

    Google Scholar 

  • Rizzolatti G, Camarda R, Fogassi M, Gentilucci M, Luppino G, Matelli M (1988) Functional organization of inferior area 6 in the macaque monkey: II. Area F5 and the control of distal movements. Exp Brain Res. 71: 491–507

    CAS  PubMed  Google Scholar 

  • Rizzolatti G, Fadiga L, Gallese V, Fogassi L (1996) Premotor cortex and the recognition of motor actions. Cogn Brain Res 3: 131–141

    Google Scholar 

  • Sakata H, Taira M, Mine S, Murata A (1992) Hand-movement related neurons of the posterior parietal cortex of the monkey: their role in visual guidance of hand movements. In: Caminiti R, Johnson PB, Burnod Y (eds) Control of arm movement in space. (Exp Brain Res Suppl 22) Springer, Berlin Heidelberg New York, pp 185–198

    Google Scholar 

  • Schlaug G, Knorr U, Seitz RJ (1994) Inter-subject variability of cerebral activations in acquiring a motor skill: a study with positron emission tomography. Exp Brain Res 98: 523–534

    Google Scholar 

  • Seltzer B, Pandya DN (1989) Frontal lobe connections of the superior temporal sulcus in the rhesus monkey. J Comp Neurol 281: 97–113

    Google Scholar 

  • Spinks TJ, Jones T, Gilardi MC, Heather JD (1988) Physical performance of the latest generation of commercial positron scanners. IEEE Trans Nucl Sci 35: 721–725

    Google Scholar 

  • Suzuki H, Azuma M (1983) Topographic studies on visual neurons in the dorsolateral prefrontal cortex of the monkey. Exp Brain Res 53: 47–58

    Google Scholar 

  • Taira M, Mine S, Georgopulos AP, Murata A, Sakata H (1990) Parietal cortex neurons of the monkey related to the visual guidance of hand movement. Exp Brain Res 83: 29–36

    CAS  PubMed  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the brain. Thieme, New York

    Google Scholar 

  • Tanaka K, Saito HA, Fukada Y, Moriya M (1991) Coding visual images of objects in the inferotemporal cortex of the macaque monkey. J Neurophysiol 66: 170–189

    Google Scholar 

  • Tanji J, Kurata K (1982) Comparison of movement-related activity in two cortical motor areas of primates. J Neurophysiol 57: 633–653

    Google Scholar 

  • Tootell RBH, Reppas JB, Dale AM, Look RB, Sereno MI, Malach R, Brady TJ, Rosen BR (1995) Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature 375: 139–141

    Google Scholar 

  • Ungerleider LG, Mishkin M (1982) Two cortical visual systems. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. MIT Press, Cambridge, Mass., pp 549–586

    Google Scholar 

  • Walker AE (1940) A cytoarchitectonical study of the prefrontal area of the macaque monkey. J Comp Neurol 262: 256–270

    Google Scholar 

  • Watson JD, Myers R, Frackoviak RSJ, Hajnal JV, Woods RP, Mazziotta JC, Shipp S, Zeki S (1993) Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cerebral Cortex 3: 79–94

    Google Scholar 

  • Weiller C, Chollet F, Friston KJ, Wise RJS, Frackowiak RSJ (1992) Functional reorganisation of the brain in recovery from striatocapsular infarction in man. Ann Neurol 31: 463–472

    Google Scholar 

  • Weiller C, Ramsay SC, Wise RJS, Friston KJ, Frackowiak RSJ (1993) Individual patterns of functional reorganisation in the human cerebtral cortex after capsular infarction. Ann Neurol 33: 181–189

    Google Scholar 

  • Zeki SM, Watson JDG, Lueck CJ, Friston KJ, Kennard C, Frackowiack RSJ (1991) A direct dimonstration of functional specialization in human visual cortex. J Neurosci 11: 641–649

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rizzolatti, G., Fadiga, L., Matelli, M. et al. Localization of grasp representations in humans by PET: 1. Observation versus execution. Exp Brain Res 111, 246–252 (1996). https://doi.org/10.1007/BF00227301

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00227301

Key words

Navigation