Skip to main content
Log in

Localization of grasp representations in humans by positron emission tomography

2. Observation compared with imagination

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Positron emission tomography imaging of cerebral blood flow was used to localize brain areas involved in the representation of hand grasping movements. Seven normal subjects were scanned under three conditions. In the first, they observed precision grasping of common objects performed by the examiner. In the second, they imagined themselves grasping the objects without actually moving the hand. These two tasks were compared with a control task of object viewing. Grasp observation activated the left rostral superior temporal sulcus, left inferior frontal cortex (area 45), left rostral inferior parietal cortex (area 40), the rostral part of left supplementary motor area (SMA-proper), and the right dorsal premotor cortex. Imagined grasping activated the left inferior frontal (area 44) and middle frontal cortex, left caudal inferior parietal cortex (area 40), a more extensive response in left rostral SMA-proper, and left dorsal premotor cortex. The two conditions activated different areas of the right posterior cerebellar cortex. We propose that the areas active during grasping observation may form a circuit for recognition of hand-object interactions, whereas the areas active during imagined grasping may be a putative human homologue of a circuit for hand grasping movements recently defined in nonhuman primates. The location of responses in SMA-proper confirms the rostrocaudal segregation of this area for imagined and real movement. A similar segregation is also present in the cerebellum, with imagined and observed grasping movements activating different parts of the posterior lobe and real movements activating the anterior lobe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arbib MA (1981) Perceptual structures and distributed motor control. In: Brooks VB (ed) Motor control (Handbook of physiology, sect 2, The nervous system, vol II, part 1) American Physiological Society, Bethesda, pp 1449–1480

    Google Scholar 

  • Bailey P, Bonin G von (1951) The isocortex of man. University of Illinois Press, Urbana

    Google Scholar 

  • Bonda E, Petrides M, Frey S, Evans AC (1994) Frontal cortex involvement in organized sequences of hand movements: evidence from a positron emission tomography study. Soc Neurosci Abstr 20: 152.6

    Google Scholar 

  • Campbell AW (1905) Histological studies on the localization of cerebral function. Cambridge University Presss, New York

    Google Scholar 

  • Colebatch JG, Deiber M-P, Passingham RE, Friston KJ, Frackowiak RSJ (1991) Regional cerebral blood flow during voluntary arm and hand movements in human subjects. J Neurophysiol 65: 1392–1401

    Google Scholar 

  • Decety J, Sjoholm H, Ryding E, Stenberg G, Ingvar DH (1990) The cerebellum participates in mental activity: tomographic measurements. Brain Res 535: 313–317

    Google Scholar 

  • Decety J, Perani D, Jeannerod M, Bettinardi V, Tadary B, Woods R, Mazziotta JC, Fazio F (1994) Mapping motor representations with PET. Nature 371: 600–602

    Google Scholar 

  • Deiber M-P, Passingham RE, Colebatch JG, Friston KJ, Nixon PD, Frackowiak RSJ (1991) Cortical areas and the selection of movement: a study with PET. Exp Brain Res 84: 393–402

    Google Scholar 

  • Dum RP, Strick PL (1991) The origin of corticospinal projections from the premotor areas in the frontal lobe. J Neurosci 11: 667–689

    Google Scholar 

  • Economo C von (1929) The cytoarchitectonics of the human cerebral cortex. Oxford University Press, London

    Google Scholar 

  • Fox PT, Mintun MA, Raichle ME, Herscovitch P (1984) A non-invasive approach to quantitative functional brain mapping with H215O and positron emission tomography. J Cereb Blood Flow Metab 4: 329–333

    Google Scholar 

  • Friston KJ, Frith CD, Liddle PF, Frackowiak RSJ (1991) Comparing functional (PET) images: the assessement of significant change. J Cereb Blood Flow Metab 11: 690–699

    Google Scholar 

  • Fuster JM (1995) Memory in the cerebral cortex. MIT Press, Cambridge

    Google Scholar 

  • Gallese V, Murata A, Kaseda M, Niki N, Sakata H (1994) Deficit of hand preshaping after muscimol injection in monkey parietal cortex. Neuroreport 5: 1525–1529

    Google Scholar 

  • Gentilucci M, Fogassi L, Luppino G, Matelli M, Camarda R, Rizzolatti G (1988) Functional organization of inferior area 6 in the macaque monkey. I. Somatotopy and the control of proximal movements. Exp Brain Res 71: 475–490

    Google Scholar 

  • Godschalk M, Lemon RN, Kuypers HGJM, Ronday HK (1984) Cortical afferents and efferents of monkey postarcuate area: an anatomical and electrophysiological study. Exp Brain Res 56: 410–424

    Google Scholar 

  • Goldman-Rakic PS (1987) Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In: Plum F, Mountcastle V (eds) Higher functions of the brain. (Handbook of physiology, sect 1, The nervous system, vol V) American Physiology Society, Bethesda, pp 373–417

    Google Scholar 

  • Grafton ST, Huang SC, Mahoney DK, Mazziotta JC, Phelps ME (1990) Analysis of optimal reconstruction filters for maximizing signal to noise ratios in PET cerebral blood flow studies (abstract). J Nucl Med 31: 865

    Google Scholar 

  • Grafton ST, Woods RP, Mazziotta JC, Phelps ME (1991) Somatotopic mapping of the primary motor cortex in man: activation studies with cerebral blood flow and PET. J Neurophysiol 66: 735–743

    Google Scholar 

  • Grafton ST, Mazziotta JC, Woods RP, Phelps ME (1992) Human functional anatomy of visually guided finger movements. Brain 115: 565–587

    Google Scholar 

  • Grafton ST, Woods RP, Tyszka JM (1994) Functional imaging of procedural motor learning: relating cerebral blood flow with individual subject performance. Hum Brain Mapp 1: 221–234

    Google Scholar 

  • Grafton ST, Fagg AH, Woods RP, Arbib MA (1996) Functional anatomy of pointing and grasping in humans. Cereb Cortex 6: 226–237

    Google Scholar 

  • Haxby JV, Grady CL, Horwitz B, Ungerleider LG, Mishkin M, Carson RE, Herscovitch P, Schapiro MB, Rapoport SI (1991) Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proc Natl Acad Sci USA 88: 1621–1625

    Google Scholar 

  • He S-Q, Dum RP, Strick PL (1993) Topographic organization of corticospinal projections from the frontal lobe: motor areas on the lateral surface of the hemisphere. J Neurosci 13: 952–980

    Google Scholar 

  • He S-Q, Dum RP, Strick PL (1995) Topographic organization of corticospinal projections from the frontal lobe: motor areas on the medial surface of the hemisphere. J Neurosci 15: 3284–3306

    Google Scholar 

  • Hepp-Reymond MC, Husler EJ, Maier MA, Qi HX (1994) Forcerelated neuronal activity in two regions fo the primate ventral premotor cortex. Can J Physiol Pharmacol 72: 571–579

    Google Scholar 

  • Herscovitch P, Markham J, Raichle ME (1983) Brain blood flow measured with intravenous H2 15O. I. Theory and error analysis. J Nucl Med 24: 782–789

    Google Scholar 

  • Jeannerod M (1988) The neural and behavioural organization of goal-directed movement. Oxford University Press, Oxford

    Google Scholar 

  • Jeannerod M (1994) The representing brain: neural correlates of motor intention and imagery. Behav Brain Sci 17: 187–245

    Google Scholar 

  • Jeannerod M, Arbib MA, Rizzolatti G, Sakata H (1995) Grasping objects: the cortical mechanisms of visuomotor transformation. Trends Neurosci 18: 314–320

    Google Scholar 

  • Jenkins IH, Brooks DJ, Nixon PD, Frackowiak RSJ, Passingham RE (1994) Motor sequence learning: a study with positron emission tomography. J Neurosci 14: 3775–3790

    Google Scholar 

  • Kimura D (1993) Neuromotor mechanisms in human communication. Oxford University Press, New York

    Google Scholar 

  • Kurata K (1993) Premotor cortex of monkeys: set- and movementrelated activity reflecting amplitude and direction of wrist movements. J Neurophysiol 69: 187–200

    Google Scholar 

  • Kurata K, Tanji J (1986) Premotor cortex neurons in macaques: activity before distal and proximal forelimb movements. J Neurosci 6: 403–411

    Google Scholar 

  • Leinonen L, Nyman G (1979) Functional properties of cells in antero-lateral part of area 7 associative face area of awake monkeys. Exp Brain Res 34: 321–333

    Google Scholar 

  • Luppino G, Matelli M, Camarda RM, Gallese V, Rizzolatti G (1991) Multiple representations of body movements in mesial area 6 and the adjacent cingulate cortex: an intracortical microstimulation study in the macaque monkey. J Comp Neurol 311: 463–482

    Google Scholar 

  • Matelli M, Camarda M, Glickstein M, Rizzolatti G (1986) Afferent and efferent projections of the inferior area 6 in the macaque monkey. J Comp Neurol 251: 281–298

    Google Scholar 

  • Matelli M, Luppino G, Rizzolatti G (1991) Architecture of superior and mesial area 6 and of adjacent cingulate cortex. J Comp Neurol 311: 445–462

    Google Scholar 

  • Matelli M, Rizzolatti G, Bettinardi V, Gilardi MC, Perani D, Rizzo G, Fazio F (1993) Activation of precentral and mesial motor areas during the execution of elementary proximal and distal arm movements: a PET study. Neuroreport 4: 1295–1298

    Google Scholar 

  • Matsumura M, Kubota K (1979) Cortical projections of hand-arm motor area from postarcuate area in macaque monkey: a histological study of retrograde transport of horse radish peroxidase. Neurosci Lett 11: 241–246

    Google Scholar 

  • Matsuzaka Y, Aizawa H, Tanji J (1992) A motor area rostral to the supplementary motor area (presupplementary motor area) in the monkey: neuronal activity during a learned motor task. J Neurophysiol 68: 653–662

    Google Scholar 

  • Mazziotta JC, Huang S-C, Phelps ME, Carson RE, MacDonald NS, Mahoney K (1985) A noninvasive positron computed tomography technique using oxygen-15-labeled water for the evaluation of neurobehavioral task batteries. J Cereb Blood Flow Metab 5: 70–78

    Google Scholar 

  • Milner AD, Goodale MA (1995) The visual brain in action. Oxford University Press, Oxford

    Google Scholar 

  • Muakkassa KF, Strick PL (1994) Frontal lobe inputs to primate motor cortex: evidence for four somatotopically organized “premotor” areas. Brain Res 177: 176–182

    Google Scholar 

  • Neter J, Wasserman W, Kutner MH (1990) Applied linear statistical models. Irwin, Boston

    Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9: 97–113

    Google Scholar 

  • Orgogozo JM., Larsen B (1979) Activation of the supplementary motor area during voluntary movement in man suggests it works as a supramotor area. Science 206: 847–850

    Google Scholar 

  • Parsons LM, Fox PT, Downs JH, Glass T, Hirsch TB, Martin CC, Jerabek PA, Lancaster JL (1995) Use of implicit motor imagery for visual shape discrimination as revealed by PET. Nature 375: 54–56

    Google Scholar 

  • Passingham R (1993) The frontal lobes and voluntary action. Oxford University Press, Oxford

    Google Scholar 

  • Pellegrino G di, Fadiga L, Fogassi L, Gallese V, Rizzolatti G (1992) Understanding motor events: a neurophysiological study. Exp Brain Res 91: 176–180

    Google Scholar 

  • Perrett DI, Harries MH, Bevan R, Thomas S, Benson PJ, Mistlin AJ, Chitty AJ, Hietanen JK, Ortega JE (1989) Frameworks of analysis for the neural representation of animate objects and actions. J Exp Biol 146: 87–113

    Google Scholar 

  • Perrett DI, Mistlin AJ, Harries MH, Chitty AJ (1990) Understanding the visual appearance and consequence of hand actions. In: Goodale MA (ed) Vision and action: the control of grasping. Ablex, Norwood, NJ, pp 163–180

  • Peterson SE, Fox PT, Posner MI, Mintun M, Raichle ME (1988) Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature 331: 585–589

    Google Scholar 

  • Petrides M, Pandya DN (1984) Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J Comp Neurol 228: 105–116

    Google Scholar 

  • Petrides M, Pandya DN (1994) Comparative architectonic analysis of the human and the macaque frontal cortex. In: Boiler F, Grafman J (ed) Handbook of neuropsychology. Elsevier, New York, pp 17–58

    Google Scholar 

  • Picard N, Strick PL (1996) Motor areas of the medial wall: a review of their location and functional activation. Cereb Cortex (in press)

  • Raichle ME, Martin WRW, Herscovitch P (1983) Brain blood flow measured with intravenous HH 152 O. II. Implementation and validation. J Nucl Med 24: 790–798

    Google Scholar 

  • Rao SM, Binder JR, Bandettini PA, Hammeke TA, Yetkin FZ, Jesmanowicz A, Lisk LM, Morris GL, Mueller WM, Estkowski LD, Wong EC, Haughton VM, Hyde JS (1993) Functional magnetic resonance imaging of complex human movements. Neurology 43: 2311–2318

    Google Scholar 

  • Rizzolatti G, Scandolara C, Gentilucci G, Matelli M, Gentiluuci M (1981) Afferent properties of peri-arcuate neurons in macaque monkeys. II. Visual responses. Behav Brain Res 2: 147–163

    Google Scholar 

  • Rizzolatti GM, Gentilucci L, Fogassi G, Luppino G, Matelli M, Ponzoni-Maggi S (1987) Neurons related to goal-directed motor acts in inferior area 6 of the macaque monkey. Exp Brain Res 67: 220–224

    Google Scholar 

  • Rizzolatti G, Camarda R, Fogassi L, Gentilucci M, Luppino G, Matelli M (1988) Functional organization of inferior area 6 in the macaque monkely. II. Area F5 and the control of distal movements. Exp Brain Res 71: 491–507

    Google Scholar 

  • Rizzolatti G, Fadiga L, Gallese V, Fogassi L (1996a) Premotor cortex and the recognition of motor actions. Cogn Brain Res 3: 131–141

    Google Scholar 

  • Rizzolatti G, Fadiga L, Matelli M, Bettinardi V, Perani D, Fazio F (1996b) Localization of grasp representations in humans by PET. 1. Observation versus execution. Exp Brain Res (in press)

  • Roland PE, Larsen B, Lassen NA, Skinhøj E (1980) Supplementary motor area and other cortical areas in organization of voluntary movements in man. J Neurophysiology 43: 118–136

    Google Scholar 

  • Seltzer B, Pandya DN (1978) Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Res 149: 106–109

    Google Scholar 

  • Sergent J, Zuck E, Terriah S, MacDonald B (1992) Distributed neural network underlying musical sight-reading and keyboard performance. Science 257: 106–109

    Google Scholar 

  • Stephan KM, Fink GR, Passingham RE, Silbersweig D, Ceballos-Baumann AO, Frith CD, Frackowiak RSJ (1995) Imaging the execution of movements. J Neurophysiol 73: 373–386

    Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the brain. Thieme Medical, New York

    Google Scholar 

  • Tanji J (1994) The supplementary motor area in the cerebral cortex. Neurosci Res 19: 251–268

    Google Scholar 

  • Thach WT (1996) On the specific role of the cerebellum in motor learning and cognition: cluses from PET activation and lesion studies in man. Behav Brain Sci

  • Tyszka JM, Grafton ST, Chew W, Woods RP, Colletti PM (1994) Parcellation of mesial frontal motor areas during ideation and movement using functional magnetic resonance imaging at 1.5 Tesla. Ann Neurol 35: 746–749

    Google Scholar 

  • Watson JD, Myers R, Frackowiak RS, Hajnal JV, Woods RP, Mazziotta JC, Shipp S, Zeki S (1993) Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cereb Cortex 3: 79–94

    Google Scholar 

  • Webster MJ, Bachevalier J, Ungerleider LG (1994) Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. Cereb Cortex 4: 470–483

    Google Scholar 

  • Weisendanger M (1986) Recent developments in studies of the supplementary motor area of primates. Rev Physiol Biochem Pharmacol 103: 1–59

    Google Scholar 

  • Wise SP, Desimone R (1988) Behavioral neurophysiology: insights into seeing and grasping. Science 242: 736–741

    Google Scholar 

  • Woods RP, Cherry SR, Mazziotta JC (1992) Rapid automated algorithm for aligning and reslicing PET images. J Comp Assist Tomog 115: 565–587

    Google Scholar 

  • Woods RP, Mazziotta JC, Cherry SR (1993) Automated image registration. Ann Nucl Med [Suppl] 7: S70

    Google Scholar 

  • Woods RP, Iacoboni M, Grafton ST, Mazziotta JC (1996) Threeway analysis of variance. In: Myers R, Cunningham V, Bailey D (ed) Quantification of brain function using PET. Academic, New York, pp 353–358

    Google Scholar 

  • Worsley KJ, Evans AC, Marrett S, Neelin P (1992) A three-dimensional statistical analysis for CBF activation studies in human brain. J Cereb Blood Flow Metab 12: 900–918

    Google Scholar 

  • Zatorre RJ, Evans AC, Meyer E, Gjedde A (1992) Lateralization of phonetic and pitch discrimination in speech processing. Science 256: 846–849

    Google Scholar 

  • Zilles K, Schlaug G, Geyger S, Luppino G, Matelli M, Qu M, Schormann T (1996) Anatomy and transmitter receptors of the supplementary motor areas in the human and non human primate brain. Adv Neurol 70: 29–43

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grafton, S.T., Arbib, M.A., Fadiga, L. et al. Localization of grasp representations in humans by positron emission tomography. Exp Brain Res 112, 103–111 (1996). https://doi.org/10.1007/BF00227183

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00227183

Key words

Navigation