Skip to main content
Log in

Clinical phenotype of nephrogenic diabetes insipidus in females heterozygous for a vasopressin type 2 receptor mutation

  • Original Investigation
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

Nephrogenic diabetes insipidus (NDI) usually shows an X-linked recessive mode of inheritance caused by mutations in the vasopressin type 2 receptor gene (AVPR2). In the present study, three NDI families are described in which females show clinical features resembling the phenotype in males. Maximal urine osmolality in three female patients did not exceed 200 mosmol/kg and the absence of extra-renal responses to 1-desamino-8-d-arginine vasopressin was demonstrated in two of them. All affected females and two asymptomatic female family members were shown to be heterozygous for an AVPR2 mutation. Skewed X-inactivation is the most likely explanation for the clinical manifestation of NDI in female carriers of an AVPR2 mutation. It is concluded that, in female NDI patients, the possibility of heterozygosity for an AVPR2 gene mutation has to be considered in addition to homozygosity for mutations in the aquaporin 2 gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aggarwal R, Janakiramen N, Luken J, Kumar S (1986) Nephrogenic diabetes insipidus in a female infant with hydrocephalus. Am J Dis Child 140:1095–1096

    Google Scholar 

  • Bichet DG, Razi M, Lonergan M, Arthus M, Papukna V, Kortas C, Barjon J (1988) Hemodynamic and coagulation responses to 1-desamino[8-D-arginine]vasopressin in patients with congenital nephrogenic diabetes insipidus. N Engl J Med 318:881–887

    Google Scholar 

  • Bichet DG, Arthus M, Lonergan M, Hendy GN, Paradis AJ, Fujiwara TM, Morgan K, et al (1993) X-linked nephrogenic diabetes insipidus mutations in North America and the Hopewell hypothesis. J Clin Invest 92:1262–1268

    Google Scholar 

  • Braden GL, Singer I, Cox M (1985) Nephrogenic diabetes insipidus. In: Gonick HC, Buckalew VM Jr (eds) Renal tubular disorders. Pathophysiology, diagnosis and management. Dekker, New York, pp 387–436

    Google Scholar 

  • Brenner B, Seligsohn U, Hochberg Z (1988) Normal response of factor VIII and von Willebrand factor to 1-deamino-8D-arginine vasopressin in nephrogenic diabetes insipidus. J Clin Endocrinol Metab 67:191–193

    Google Scholar 

  • Brodehl J, Braun L (1964) Hereditary nephrogenic diabetes insipidus in a female infant (complete form) Familiärer nephrogener Diabetes insipidus mit voller Ausprägung bei einem weib-lichen Säugling. Klin Wochenschr 42:563

    Google Scholar 

  • Brown RM, Fraser NJ, Brown GK (1990) Differential methylation of the hypervariable locus DXS255 on active and inactive X-chromosomes correlates with the expression of a human X-linked gene. Genomics 7:215–221

    Google Scholar 

  • Cannon JF (1955) Diabetes insipidus. Clinical and experimental studies with consideration of genetic relationships. Arch Int Med 96:215–272

    Google Scholar 

  • Carter C, Simpkiss M (1956) The “carrier” state in nephrogenic diabetes insipidus. Lancet 11:1069–1073

    Google Scholar 

  • Culpepper RM, Hebert SC, Andreoli TE (1983) Nephrogenic diabetes insipidus. In: Frederickson DS, Goldstein JL, Brown MS (eds) The metabolic basis of inherited disease, 5th edn. McGraw-Hil, New York, pp 1867–1888

    Google Scholar 

  • Dancis J, Birmingham JR, Leslie SH (1948) Congenital diabetes insipidus resistant to treatment with pitressin. Am J Dis Child 75:316–328

    Google Scholar 

  • Deen PMT, Verdijk MAJ, Knoers NVAM, Wieringa B, Monnens LAH, Os CH van, Oost BA van (1994) Requirement of human renal water channel aquaporin-2 for vasopressin-dependent concentration of urine. Science 264:92–95

    Google Scholar 

  • Fahrenholz F, Akhundova A, Büchner H, Gorbulev V (1993) V2 lysine vasopressin receptor and oxytocin receptor from pig LLC-PK1 cells: two new members of the vasopressin-oxytocin receptor family. In: Gross P, Richter D, Robertson GL (eds) Vasopressin. Libbey Eurotext, Paris, pp 45–57

    Google Scholar 

  • Feigin RD, David LR, Kaufman RL (1970) Nephrogenic diabetes insipidus in a Negro kindred. Am J Dis Child 120:64–68

    Google Scholar 

  • Ingerslev J, Schwartz M, Lamm LU, Kruse TA, Bukh A, Stenbjergm S (1989) Female haemophilia A in a family with seeming extreme bidirectional lyonization tendency: abnormal premature X-chromosome inactivation ? Clin Genet 35:41–48

    Google Scholar 

  • Knoers N, Brommer EJ, Willems H, Oost BA van, Monnens LAH (1990) Fibrinolytic responses to 1-desamino-8-D-arginine-vasopressin in patients with congenital nephrogenic diabetes insipidus. Nephron 54:322–326

    Google Scholar 

  • Langley JM, Balfe JW, Selander T, Ray PN, Clarke JTR (1991) Autosomal recessive inheritance of vasopressin-resistant diabetes insipidus. Am J Med Genet 38:90–94

    Google Scholar 

  • Lechner K (1982) Blutgerinnungsstörungen — Laboratoriumsdiagnostik hämatologischer Erkrankungen. Springer, Berlin Heidelberg New York, pp 188–192

    Google Scholar 

  • Lieburg AF van, Verdijk MAJ, Knoers VVAM, Essen AJ van, Proesmans W, Mallmann R, Monnens LAH, et al (1994) Patients with autosomal nephrogenic diabetes insipidus homozygous for mutations in the aquaporin 2 water channel gene. Am J Hum Genet 55:648–652

    Google Scholar 

  • Matsumoto T, Ito Y, Yukizane S, Ichikawa K, Yamashita F (1988) Hereditary nephrogenic diabetes insipidus type-2. Acta Paediatr Jpn 30:714–716

    Google Scholar 

  • McKusick VA (1986) Mendelian inheritance in man, 7th edn. Johns Hopkins University Press, Baltimore, p 197

    Google Scholar 

  • Miller SA, Dykes DD, Polesky HF (1988) A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 16:1215

    CAS  PubMed  Google Scholar 

  • Moses AM, Miller JL, Levine MA (1988) Two distinct pathophysiological mechanisms in congenital nephrogenic diabetes insipidus. J Clin Endocrinol Metab 66:1259–1264

    Google Scholar 

  • ]Niaudet P, Dechaux M, Leroy D, Broyer M (1985) Nephrogenic diabetes insipidus in children. Front Horm Res 13:224–231

    Google Scholar 

  • Nisen P, Stamberg J, Ehrenpreis R, Velasco S, Shende A, Engelberg J, Karayalcin G, et al (1989) The molecular basis of severe hemophilia B in a girl. N Engl J Med 315:1139–1142

    Google Scholar 

  • Ohzeki T, Igarashi T, Okamoto A (1984) Familial cases of congenital nephrogenic diabetes insipidus type II: remarkable increment of urinary adenosine 3′,5′-monophosphate in response to antidiuretic hormone. J Pediatr 104:593–595

    Google Scholar 

  • Ouweland AMW van den, Dreesen JCFM, Verdijk M, Knoers NVAM, Monnens LAH, Rocchi M, Oost BA van (1992) Mutations in the vasopressin type 2 receptor gene (AVPR2) associated with nephrogenic diabetes insipidus. Nature Genet 2:99–102

    Google Scholar 

  • Pallacks R, Nolte S, Banzhoff A, Gordjani N, Rascher W, Seyberth HW (1991) Familiärer nephrogener Diabetes insipidus (NDI) bei einem weiblichen Frühgeborene der 26 SSW. Monatsschr Kinderheilkd 139:184

    Google Scholar 

  • Pan Y, Metzenberg A, Das S, Jing B, Gitschier J (1992) Mutations in the V2 vasopressin receptor gene are associated with X-linked nephrogenic diabetes insipidus. Nature Genet 2:103–106

    Google Scholar 

  • Richards CS, Watkins SC, Hoffmann EP, Schneider NR, Milsark IW, Katz KS, Cook JD, et al (1990) Skewed X inactivation in a female monozygotic twin results in Duchenne muscular dystrophy. Am J Hum Genet 46:672–681

    Google Scholar 

  • Robinson MG, Kaplan SA (1960) Inheritance of vasopressin-resistant (“nephrogenic”) diabetes insipidus. Am J Dis Child 99:164–174

    Google Scholar 

  • Rosenthal W, Seibold A, Antaramian A, Lonergan M, Arthus M, Hendy GN, Birnbaumer M, et al (1992) Molecular identification of the gene responsible for congenital nephrogenic diabetes insipidus. Nature 359:233–235

    Google Scholar 

  • Schofer O, Beetz R, Kruse K, Rascher C, Schütz C, Bohl J (1990) Nephrogenic diabetes insipidus and intracerebral calcification. Arch Dis Child 65:885–887

    Google Scholar 

  • Schreiner RL, Skafish PR, Anand SK, Northway JD (1978) Congenital nephrogenic diabetes insipidus in a baby girl. Arch Dis Child 53:906–908

    Google Scholar 

  • Tihy F, Vogt N, Recan D, Malfoy B, Leturcq F, Coquet M, Serville F, et al (1994) Skewed inactivation of an X chromosome deleted at the dystrophin gene in an asymptomatic mother and her affected daughter. Hum Genet 93:563–567

    Google Scholar 

  • Wiggelinkhuizen J, Wolff B, Cremin BJ (1973) Nephrogenic diabetes insipidus and obstructive uropathy. Am J Dis Child 126:398–401

    Google Scholar 

  • Winchester B, Young E, Geddes S, Genet S, Habel A, Boyd Y, Malcolm S (1990) Mucopolysaccharidosis II (Hunter disease) in a female twin. J Med Genet 27:645–661

    Google Scholar 

  • Zimmerman D, Green OC (1975) Nephrogenic diabetes insipidus — type II: defect distal to the adenylate cyclase step. Pediatr Res 9:381

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Lieburg, A.F., Verdijk, M.A.J., Schoute, F. et al. Clinical phenotype of nephrogenic diabetes insipidus in females heterozygous for a vasopressin type 2 receptor mutation. Hum Genet 96, 70–78 (1995). https://doi.org/10.1007/BF00214189

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00214189

Keywords

Navigation