Skip to main content

Part of the book series: Cognitive Science and Technology ((CSAT))

Abstract

Saliency historically refers to the bottom-up visual properties of an object that automatically drive attention. It is an ordinal property that depends on the relative saliency of one object with respect to others in the scene. Simple examples are a red spot on a green background, a horizontal bar among vertical bars, or a sudden onset of motion. Researchers have introduced the idea of a saliency map, an abstract and featureless map of the ‘winners’ of attention competition, to model the dynamics of visual attention. The standard saliency map involves channels like color, orientation, size, shape, movement or unique onset. But how do complex stimuli, especially stimuli with social meaning such as faces, pop out and attract attention? Suppose you are attending a big party: your attention might be captured by someone in a fancy dress, someone looking at you, someone who is attractive, familiar, or distinctive in some way. This happens essentially automatically, and encompasses a huge number of different stimuli that are all competing for your attention. What determines which is the most salient, and how can we best measure this?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams RB, Kleck RE (2003) Perceived gaze direction and the processing of facial displays of emotion. Psychol Sci 14:644–647

    Article  Google Scholar 

  • Adolphs R (2008) Fear, faces, and the human amygdala. Curr Opin Neurobiol 18:166–172

    Article  Google Scholar 

  • Adolphs R (2010) What does the amygdala contribute to social cognition? Ann NY Acad Sci 1191:42–61

    Article  Google Scholar 

  • Adolphs R, Baron-Cohen S, Tranel D (2002) impaired recognition of social emotions following amygdala damage. J Cogn Neurosci 14:1264–1274

    Article  Google Scholar 

  • Adolphs R, Gosselin F, Buchanan TW, Tranel D, Schyns P, Damasio AR (2005) A mechanism for impaired fear recognition after amygdala damage. Nature 433:68–72

    Article  Google Scholar 

  • Adolphs R, Sears L, Piven J (2001) Abnormal processing of social information from faces in autism. J Cogn Neurosci 13:232–240

    Article  Google Scholar 

  • Adolphs R, Tranel D, Damasio AR (1998) The human amygdala in social judgment. Nature 393:470–474

    Article  Google Scholar 

  • Adolphs R, Tranel D, Damasio H, Damasio A (1994) Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature 372:669–672

    Article  Google Scholar 

  • Adolphs R, Tranel D, Hamann S, Young AW, Calder AJ, Phelps EA, Anderson A, Lee GP, Damasio AR (1999) Recognition of facial emotion in nine individuals with bilateral amygdala damage. Neuropsychologia 37:1111–1117

    Article  Google Scholar 

  • Akiyama T, Kato M, Muramatsu T, Saito F, Umeda S, Kashima H (2006) Gaze but not arrows: a dissociative impairment after right superior temporal gyrus damage. Neuropsychologia 44:1804–1810

    Article  Google Scholar 

  • Amaral DG, Behniea H, Kelly JL (2003) Topographic organization of projections from the amygdala to the visual cortex in the macaque monkey. Neuroscience 118:1099–1120

    Article  Google Scholar 

  • Amaral DG, Schumann CM, Nordahl CW (2008) Neuroanatomy of autism. Trends Neurosci 31:137–145

    Article  Google Scholar 

  • Anderson BA, Laurent PA, Yantis S (2011) Value-driven attentional capture. Proc Natl Acad Sci

    Google Scholar 

  • Anderson JR, Sallaberry P, Barbier H (1995) Use of experimenter-given cues during object-choice tasks by capuchin monkeys. Anim Behav 49:201–208

    Article  Google Scholar 

  • Anderson JS, Druzgal TJ, Froehlich A, DuBray MB, Lange N, Alexander AL, Abildskov T, Nielsen JA, Cariello AN, Cooperrider JR, Bigler ED, Lainhart JE (2010) Decreased Interhemispheric Functional Connectivity in Autism. Cerebral Cortex

    Google Scholar 

  • Arcizet F, Mirpour K, Bisley JW (2011) A pure salience response in posterior parietal cortex. Cereb Cortex 21:2498–2506

    Article  Google Scholar 

  • Argyle M, Ingham R, Alkema F, McCallin M (1973) The different functions of gaze. Semiotica, 7:19

    Google Scholar 

  • Aviezer H, Trope Y, Todorov A (2012) Body cues, not facial expressions, discriminate between intense positive and negative emotions. Science 338:1225–1229

    Article  Google Scholar 

  • Bagshaw MH, Mackworth NH, Pribram KH (1972) The effect of resections of the inferotemporal cortex or the amygdala on visual orienting and habituation. Neuropsychologia 10:153–162

    Article  Google Scholar 

  • Baron-Cohen S, Ring HA, Bullmore ET, Wheelwright S, Ashwin C, Williams SCR (2000) The amygdala theory of autism. Neurosci Biobehav Rev 24:355–364

    Article  Google Scholar 

  • Basso MA, Wurtz RH (2002) Neuronal activity in substantia nigra pars reticulata during target selection. J Neurosci 22:1883–1894

    Google Scholar 

  • Batki A, Baron-Cohen S, Wheelwright S, Connellan J, Ahluwalia J (2000) Is there an innate gaze module? Evidence from human neonates. Infant Behav Dev 23:223–229

    Article  Google Scholar 

  • Bauman M, Kemper TL (1985) Histoanatomic observations of the brain in early infantile autism. Neurology 35:866–874

    Article  Google Scholar 

  • Baxter MG, Murray EA (2002) The amygdala and reward. Nat Rev Neurosci 3:563–573

    Article  Google Scholar 

  • Baxter MG, Parker A, Lindner CCC, Izquierdo AD, Murray EA (2000) Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex. J Neurosci 20:4311–4319

    Google Scholar 

  • Bechara A, Tranel D, Damasio H, Adolphs R, Rockland C, Damasio A (1995) Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science 269:1115–1118

    Article  Google Scholar 

  • Becker B, Mihov Y, Scheele D, Kendrick KM, Feinstein JS, Matusch A, Aydin M, Reich H, Urbach H, Oros-Peusquens A-M, Shah NJ, Kunz WS, Schlaepfer TE, Zilles K, Maier W, Hurlemann R (2012) Fear processing and social networking in the absence of a functional amygdala. Biol Psychiatry 72:70–77

    Article  Google Scholar 

  • Bermudez MA, Gobel C, Schultz W (2012) Sensitivity to temporal reward structure in amygdala neurons. Curr Biol CB 22:1839–1844

    Article  Google Scholar 

  • Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Rev 28:309–369

    Article  Google Scholar 

  • Bichot NP, Rossi AF, Desimone R (2005) Parallel and serial neural mechanisms for visual search in macaque area V4. Science 308:529–534

    Article  Google Scholar 

  • Blair IV, Judd CM, Chapleau KM (2004) The influence of afrocentric facial features in criminal sentencing. Psychol Sci 15:674–679

    Article  Google Scholar 

  • Blakemore S-J, Decety J (2001) From the perception of action to the understanding of intention. Nat Rev Neurosci 2:561–567

    Article  Google Scholar 

  • Brothers L (1990) The social brain: a project for integrating primate behavior and neurophysiology in a new domain. Concepts Neurosci 1:27–51

    Google Scholar 

  • Burrows BE, Moore T (2009) Influence and limitations of popout in the selection of salient visual stimuli by area V4 neurons. J Neurosci 29:15169–15177

    Article  Google Scholar 

  • Byrnit J (2009) Gorillas’ (Gorilla gorilla) use of experimenter-given manual and facial cues in an object-choice task. Anim Cogn 12:401–404

    Article  Google Scholar 

  • Campbell R, Heywood CA, Cowey A, Regard M, Landis T (1990) Sensitivity to eye gaze in prosopagnosic patients and monkeys with superior temporal sulcus ablation. Neuropsychologia 28:1123–1142

    Article  Google Scholar 

  • Carlin JD, Calder AJ, Kriegeskorte N, Nili H, Rowe JB (2011) A head view-invariant representation of gaze direction in anterior superior temporal sulcus. Curr Biol CB 21:1817–1821

    Article  Google Scholar 

  • Chelazzi L, Miller EK, Duncan J, Desimone R (1993) A neural basis for visual search in inferior temporal cortex. Nature 363:345–347

    Article  Google Scholar 

  • Constantinidis C, Steinmetz MA (2001) Neuronal responses in area 7a to multiple-stimulus displays: i. neurons encode the location of the salient stimulus. Cereb Cortex 11:581–591

    Article  Google Scholar 

  • Dalton KM, Nacewicz BM, Alexander AL, Davidson RJ (2007) Gaze-fixation, brain activation, and amygdala volume in unaffected siblings of individuals with autism. Biol Psychiatry 61:512–520

    Article  Google Scholar 

  • Dalton KM, Nacewicz BM, Johnstone T, Schaefer HS, Gernsbacher MA, Goldsmith HH, Alexander AL, Davidson RJ (2005) Gaze fixation and the neural circuitry of face processing in autism. Nat Neurosci 8:519–526

    Google Scholar 

  • Dawson G, Webb SJ, McPartland J (2005) Understanding the nature of face processing impairment in autism: insights from behavioral and electrophysiological studies. Dev Neuropsychol 27:403–424

    Article  Google Scholar 

  • Desimone R, Gross CG (1979) Visual areas in the temporal cortex of the macaque. Brain Res 178:363–380

    Article  Google Scholar 

  • DSM-5 (2013) Diagnostic and statistical manual of mental disorders: DSM-5. American Psychiatric Association

    Google Scholar 

  • Dunbar RIM (2010) The social role of touch in humans and primates: behavioural function and neurobiological mechanisms. Neurosci Biobehav Rev 34:260–268

    Article  Google Scholar 

  • Ecker C, Suckling J, Deoni SC, Lombardo MV, Bullmore ET, Baron-Cohen S, Catani M, Jezzard P, Barnes A, Bailey AJ, Williams SC, Murphy DGM (2012) Brain anatomy and its relationship to behavior in adults with autism spectrum disorder: a multicenter magnetic resonance imaging study. Arch Gen Psychiatry 69:195–209

    Article  Google Scholar 

  • Emery NJ, Capitanio JP, Mason WA, Machado CJ, Mendoza SP, Amaral DG (2001) The effects of bilateral lesions of the amygdala on dyadic social interactions in rhesus monkeys (Macaca mulatta). Behav Neurosci 115:515–544

    Article  Google Scholar 

  • Emery NJ, Lorincz EN, Perrett DI, Oram MW, Baker CI (1997) Gaze following and joint attention in Rhesus monkeys (Macaca mulatta). J Comp Psychol 111:286–293

    Article  Google Scholar 

  • Farran EK, Branson A, King BJ (2011) Visual search for basic emotional expressions in autism; impaired processing of anger, fear and sadness, but a typical happy face advantage. Res Autism Spectrum Disord 5:455–462

    Article  Google Scholar 

  • Field T (2003) Touch. MIT Press, Cambridge

    Google Scholar 

  • Fitzgerald DA, Angstadt M, Jelsone LM, Nathan PJ, Phan KL (2006) Beyond threat: Amygdala reactivity across multiple expressions of facial affect. NeuroImage 30:1441–1448

    Article  Google Scholar 

  • Freese JL, Amaral DG (2006) Synaptic organization of projections from the amygdala to visual cortical areas TE and V1 in the macaque monkey. J Comp Neurol 496:655–667

    Article  Google Scholar 

  • Friesen CK, Kingstone A (1998) The eyes have it! Reflexive orienting is triggered by nonpredictive gaze. Psychon Bull Rev 5:490–495

    Article  Google Scholar 

  • Gallace A, Spence C (2010) The science of interpersonal touch: an overview. Neurosci Biobehav Rev 34:246–259

    Article  Google Scholar 

  • Gamer M, Büchel C (2009) Amygdala activation predicts gaze toward fearful eyes. J Neurosci 29:9123–9126

    Article  Google Scholar 

  • Gazzola V, Spezio ML, Etzel JA, Castelli F, Adolphs R, Keysers C (2012) Primary somatosensory cortex discriminates affective significance in social touch. Proc Natl Acad Sci

    Google Scholar 

  • Geschwind DH, Levitt P (2007) Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol 17:103–111

    Article  Google Scholar 

  • Ghashghaei HT, Barbas H (2002) Pathways for emotion: interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience 115:1261–1279

    Article  Google Scholar 

  • Gothard KM, Battaglia FP, Erickson CA, Spitler KM, Amaral DG (2007) Neural responses to facial expression and face identity in the monkey amygdala. J Neurophysiol 97:1671–1683

    Article  Google Scholar 

  • Gottlieb JP, Kusunoki M, Goldberg ME (1998) The representation of visual salience in monkey parietal cortex. Nature 391:481–484

    Article  Google Scholar 

  • Gotts SJ, Simmons WK, Milbury LA, Wallace GL, Cox RW, Martin A (2012) Fractionation of social brain circuits in autism spectrum disorders. Brain 135:2711–2725

    Article  Google Scholar 

  • Grabenhorst F, Hernadi I, Schultz W (2012) Prediction of economic choice by primate amygdala neurons. Proc Natl Acad Sci

    Google Scholar 

  • Grant EC, Mackintosh JH (1963) A comparison of the social postures of some common laboratory rodents. Behaviour 21:246–259

    Article  Google Scholar 

  • Gross CG (1994) How inferior temporal cortex became a visual area. Cereb Cortex 4:455–469

    Article  Google Scholar 

  • Hadj-Bouziane F, Liu N, Bell AH, Gothard KM, Luh W-M, Tootell RBH, Murray EA, Ungerleider LG (2012) Amygdala lesions disrupt modulation of functional MRI activity evoked by facial expression in the monkey inferior temporal cortex. Proc Natl Acad Sci 109:E3640–E3648

    Article  Google Scholar 

  • Hall ET (1966) The hidden dimension. Doubleday, Garden City, N.Y

    Google Scholar 

  • Happe F (2003) Cognition in autism: one deficit or many? Novartis Found Symp 251:198–207

    Article  Google Scholar 

  • Happe F, Ronald A, Plomin R (2006) Time to give up on a single explanation for autism. Nat Neurosci 9:1218–1220

    Article  Google Scholar 

  • Hariri AR, Mattay VS, Tessitore A, Kolachana B, Fera F, Goldman D, Egan MF, Weinberger DR (2002) Serotonin transporter genetic variation and the response of the human amygdala. Science 297:400–403

    Article  Google Scholar 

  • Harms M, Martin A, Wallace G (2010) Facial emotion recognition in autism spectrum disorders: a review of behavioral and neuroimaging studies. Neuropsychol Rev 20:290–322

    Article  Google Scholar 

  • Herry C, Bach DR, Esposito F, Di Salle F, Perrig WJ, Scheffler K, Luthi A, Seifritz E (2007) Processing of temporal unpredictability in human and animal amygdala. J Neurosci 27:5958–5966

    Article  Google Scholar 

  • Hickey C, Chelazzi L, Theeuwes J (2010) Reward changes salience in human vision via the anterior cingulate. J Neurosci 30:11096–11103

    Article  Google Scholar 

  • Hickey C, van Zoest W (2012) Reward creates oculomotor salience. Curr Biol 22:R219–R220

    Article  Google Scholar 

  • Hietanen J (2002) Social attention orienting integrates visual information from head and body orientation. Psychol Res 66:174–179

    Article  Google Scholar 

  • Hietanen JK (1999) Does your gaze direction and head orientation shift my visual attention? NeuroRep Rapid Commun Neurosci Res 10:3443–3447

    Google Scholar 

  • Hoffman EA, Haxby JV (2000) Distinct representations of eye gaze and identity in the distributed human neural system for face perception. Nat Neurosci 3:80–84

    Article  Google Scholar 

  • Hoffman KL, Gothard KM, Schmid MC, Logothetis NK (2007) Facial-expression and gaze-selective responses in the monkey amygdala. Curr Biol CB 17:766–772

    Article  Google Scholar 

  • Hood BM, Willen JD, Driver J (1998) Adult’s eyes trigger shifts of visual attention in human infants. Psychol Sci 9:131–134

    Article  Google Scholar 

  • Ikemoto S, Panksepp J (1999) The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking. Brain Res Rev 31:6–41

    Article  Google Scholar 

  • Ipata AE, Gee AL, Goldberg ME, Bisley JW (2006) Activity in the lateral intraparietal area predicts the goal and latency of saccades in a free-viewing visual search task. J Neurosci 26:3656–3661

    Article  Google Scholar 

  • Izuma K, Matsumoto K, Camerer CF, Adolphs R (2011) Insensitivity to social reputation in autism. Proc Natl Acad Sci 108:17302–17307

    Article  Google Scholar 

  • Izuma K, Saito DN, Sadato N (2008) Processing of social and monetary rewards in the human striatum. Neuron 58:284–294

    Article  Google Scholar 

  • Joseph RM, Keehn B, Connolly C, Wolfe JM, Horowitz TS (2009) Why is visual search superior in autism spectrum disorder? Dev Sci 12:1083–1096

    Article  Google Scholar 

  • Kanner L (1943) Autistic disturbances of affective contact. Nerv Child 2:217–250

    Google Scholar 

  • Kemner C, van Ewijk L, van Engeland H, Hooge I (2008) Brief report: eye movements during visual search tasks indicate enhanced stimulus discriminability in subjects with PDD. J Autism Dev Disord 38:553–557

    Article  Google Scholar 

  • Kennedy DP, Adolphs R (2012) Perception of emotions from facial expressions in high-functioning adults with autism. Neuropsychologia 50:3313–3319

    Article  Google Scholar 

  • Kennedy DP, Glascher J, Tyszka JM, Adolphs R (2009) Personal space regulation by the human amygdala. Nat Neurosci 12:1226–1227

    Article  Google Scholar 

  • Kingstone A, Friesen CK, Gazzaniga MS (2000) Reflexive joint attention depends on lateralized cortical connections. Psychol Sci 11:159–166

    Article  Google Scholar 

  • Kingstone A, Tipper C, Ristic J, Ngan E (2004) The eyes have it!: An fMRI investigation. Brain Cogn 55:269–271

    Article  Google Scholar 

  • Kleinhans NM, Richards T, Johnson LC, Weaver KE, Greenson J, Dawson G, Aylward E (2011) fMRI evidence of neural abnormalities in the subcortical face processing system in ASD. NeuroImage 54:697–704

    Article  Google Scholar 

  • Kliemann D, Dziobek I, Hatri A, Jr Baudewig, Heekeren HR (2012) The role of the amygdala in atypical gaze on emotional faces in autism spectrum disorders. J Neurosci 32:9469–9476

    Article  Google Scholar 

  • Kliemann D, Dziobek I, Hatri A, Steimke R, Heekeren HR (2010) Atypical reflexive gaze patterns on emotional faces in autism spectrum disorders. J Neurosci 30:12281–12287

    Article  Google Scholar 

  • Klin A, Jones W, Schultz R, Volkmar F, Cohen D (2002) Visual fixation patterns during viewing of naturalistic social situations as predictors of social competence in individuals with autism. Arch Gen Psychiatry 59:809–816

    Article  Google Scholar 

  • Klin A, Lin DJ, Gorrindo P, Ramsay G, Jones W (2009) Two-year-olds with autism orient to non-social contingencies rather than biological motion. Nature 459:257–261

    Article  Google Scholar 

  • Kling AS, Brothers LA (1992) The amygdala: neurobiological aspects of emotion, memory and mental dysfunction

    Google Scholar 

  • Kreiman G, Koch C, Fried I (2000) Category-specific visual responses of single neurons in the human medial temporal lobe. Nat Neurosci 3:946–953

    Article  Google Scholar 

  • LaBar K, LeDoux J, Spencer D, Phelps E (1995) Impaired fear conditioning following unilateral temporal lobectomy in humans. J Neurosci 15:6846–6855

    Google Scholar 

  • Langton SRH, O’Malley C, Bruce V (1996) Actions speak no louder than words: symmetrical cross-modal interference effects in the processing of verbal and gestural information. J Exp Psychol Hum Percept Perform 22:1357–1375

    Article  Google Scholar 

  • Langton SRH, Watt RJ, Bruce V (2000) Do the eyes have it? Cues to the direction of social attention. Trends Cogn Sci 4:50–59

    Article  Google Scholar 

  • Law Smith MJ, Montagne B, Perrett DI, Gill M, Gallagher L (2010) Detecting subtle facial emotion recognition deficits in high-functioning Autism using dynamic stimuli of varying intensities. Neuropsychologia 48:2777–2781

    Article  Google Scholar 

  • LeDoux JE (1993) Emotional memory systems in the brain. Behav Brain Res 58:69–79

    Article  Google Scholar 

  • Leonard CM, Rolls ET, Wilson FA, Baylis GC (1985) Neurons in the amygdala of the monkey with responses selective for faces. Behav Brain Res 15:159–176

    Article  Google Scholar 

  • Lewis MH, Bodfish JW (1998) Repetitive behavior disorders in autism. Ment Retard Dev Disabil Res Rev 4:80–89

    Article  Google Scholar 

  • Lin A, Adolphs R, Rangel A (2012a) Impaired learning of social compared to monetary rewards in autism. Front Neurosci 6

    Google Scholar 

  • Lin A, Adolphs R, Rangel A (2012b) Social and monetary reward learning engage overlapping neural substrates. Soc Cogn Affect Neurosci 7:274–281

    Article  Google Scholar 

  • Lin A, Tsai K, Rangel A, Adolphs R (2012c) Reduced social preferences in autism: evidence from charitable donations. J Neurodev Disord 4:8

    Article  Google Scholar 

  • Logothetis NK, Sheinberg DL (1996) Visual object recognition. Annu Rev Neurosci 19:577–621

    Article  Google Scholar 

  • Loken LS, Wessberg J, Morrison I, McGlone F, Olausson H (2009) Coding of pleasant touch by unmyelinated afferents in humans. Nat Neurosci 12:547–548

    Article  Google Scholar 

  • Malkova L, Gaffan D, Murray EA (1997) Excitotoxic lesions of the amygdala fail to produce impairments in visual learning for auditory secondary reinforcement but interfere with reinforcer devaluation effects in Rhesus monkeys. J Neurosci 17:6011–6020

    Google Scholar 

  • Mason WA, Capitanio JP, Machado CJ, Mendoza SP, Amaral DG (2006) Amygdalectomy and responsiveness to novelty in rhesus monkeys (Macaca mulatta): generality and individual consistency of effects. Emotion 6:73–81

    Article  Google Scholar 

  • Mazer JA, Gallant JL (2003) Goal-related activity in V4 during free viewing visual search: evidence for a ventral stream visual salience map. Neuron 40:1241–1250

    Article  Google Scholar 

  • McGaugh JL (2000) Memory–a century of consolidation. Science 287:248–251

    Article  Google Scholar 

  • McGaugh JL (2004) The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu Rev Neurosci 27:1–28

    Article  Google Scholar 

  • McPeek RM, Keller EL (2002) Superior colliculus activity related to concurrent processing of saccade goals in a visual search task. J Neurophysiol 87:1805–1815

    Article  Google Scholar 

  • McPeek RM, Keller EL (2004) Deficits in saccade target selection after inactivation of superior colliculus. Nat Neurosci 7:757–763

    Article  Google Scholar 

  • Miklösi A, Polgárdi R, Topál J, Csányi V (1998) Use of experimenter-given cues in dogs. Anim Cogn 1:113–121

    Article  Google Scholar 

  • Moeller S, Freiwald WA, Tsao DY (2008) Patches with links: a unified system for processing faces in the macaque temporal lobe. Science 320:1355–1359

    Article  Google Scholar 

  • Mormann F, Dubois J, Kornblith S, Milosavljevic M, Cerf M, Ison M, Tsuchiya N, Kraskov A, Quiroga RQ, Adolphs R, Fried I, Koch C (2011) A category-specific response to animals in the right human amygdala. Nat Neurosci 14:1247–1249

    Article  Google Scholar 

  • Morris JS, Frith CD, Perrett DI, Rowland D, Young AW, Calder AJ, Dolan RJ (1996) A differential neural response in the human amygdala to fearful and happy facial expressions. Nature 383:812–815

    Article  Google Scholar 

  • Murthy A, Ray S, Shorter SM, Schall JD, Thompson KG (2009) Neural control of visual search by frontal eye field: effects of unexpected target displacement on visual selection and saccade preparation. J Neurophysiol 101:2485–2506

    Article  Google Scholar 

  • Nacewicz BM, Dalton KM, Johnstone T, Long M, McAuliff E, Oakes T, Alexander AL, Davidson RJ (2006) Amygdala volume and nonverbal social impairment in adolescent and adult males with autism. Arch Gen Psychiatry 63:1417–1428

    Article  Google Scholar 

  • Neumann D, Spezio ML, Piven J, Adolphs R (2006) Looking you in the mouth: abnormal gaze in autism resulting from impaired top-down modulation of visual attention. Soc Cogn Affect Neurosci 1:194–202

    Article  Google Scholar 

  • Nummenmaa L, Hyönä J, Hietanen JK (2009) I’ll walk this way: eyes reveal the direction of locomotion and make passersby look and go the other way. Psychol Sci 20:1454–1458

    Article  Google Scholar 

  • O’Riordan M (2000) Superior modulation of activation levels of stimulus representations does not underlie superior discrimination in autism. Cognition 77:81–96

    Article  Google Scholar 

  • O’Riordan M, Plaisted K (2001) Enhanced discrimination in autism. Q J Exp Psychol A 54:961–979

    Article  Google Scholar 

  • O’Riordan M, Plaisted K, Driver J, Baron-Cohen S (2001) Superior visual search in autism. J Exp Psychol Hum Percept Perform 27:719–730

    Article  Google Scholar 

  • O’Riordan MA (2004) Superior visual search in adults with autism. Autism 8:229–248

    Article  Google Scholar 

  • Ogawa T, Komatsu H (2004) Target selection in area V4 during a multidimensional visual search task. J Neurosci 24:6371–6382

    Article  Google Scholar 

  • Olausson H, Lamarre Y, Backlund H, Morin C, Wallin BG, Starck G, Ekholm S, Strigo I, Worsley K, Vallbo AB, Bushnell MC (2002) Unmyelinated tactile afferents signal touch and project to insular cortex. Nat Neurosci 5:900–904

    Article  Google Scholar 

  • Oosterhof NN, Todorov A (2008) The functional basis of face evaluation. Proc Natl Acad Sci 105:11087–11092

    Article  Google Scholar 

  • Osterling J, Dawson G (1994) Early recognition of children with autism: A study of first birthday home videotapes. J Autism Dev Disord 24:247–257

    Article  Google Scholar 

  • Paton JJ, Belova MA, Morrison SE, Salzman CD (2006) The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature 439:865–870

    Article  Google Scholar 

  • Paul L, Corsello C, Tranel D, Adolphs R (2010) Does bilateral damage to the human amygdala produce autistic symptoms? J Neurodev Disord 2:165–173

    Article  Google Scholar 

  • Peignot P, Anderson JR (1999) Use of experimenter-given manual and facial cues by gorillas (Gorilla gorilla) in an object-choice task. J Comp Psychol 113:253–260

    Article  Google Scholar 

  • Pelphrey K, Sasson N, Reznick JS, Paul G, Goldman B, Piven J (2002) Visual scanning of faces in autism. J Autism Dev Disord 32:249–261

    Article  Google Scholar 

  • Pelphrey KA, Singerman JD, Allison T, McCarthy G (2003) Brain activation evoked by perception of gaze shifts: the influence of context. Neuropsychologia 41:156–170

    Article  Google Scholar 

  • Pelphrey KA, Viola RJ, McCarthy G (2004) When strangers pass: processing of mutual and averted social gaze in the superior temporal sulcus. Psychol Sci 15:598–603

    Article  Google Scholar 

  • Perrett DI, Smith PAJ, Potter DD, Mistlin AJ, Head AS, Milner AD, Jeeves MA (1985) Visual cells in the temporal cortex sensitive to face view and gaze direction. Proc R Soc Lond B Biol Sci 223:293–317

    Article  Google Scholar 

  • Phelps EA, LeDoux JE (2005) Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 48:175–187

    Article  Google Scholar 

  • Philip RCM, Dauvermann MR, Whalley HC, Baynham K, Lawrie SM, Stanfield AC (2012) A systematic review and meta-analysis of the fMRI investigation of autism spectrum disorders. Neurosci Biobehav Rev 36:901–942

    Article  Google Scholar 

  • Philip RCM, Whalley HC, Stanfield AC, Sprengelmeyer R, Santos IM, Young AW, Atkinson AP, Calder AJ, Johnstone EC, Lawrie SM, Hall J (2010) Deficits in facial, body movement and vocal emotional processing in autism spectrum disorders. Psychol Med 40:1919–1929

    Article  Google Scholar 

  • Piech RM, McHugo M, Smith SD, Dukic MS, Van Der Meer J, Abou-Khalil B, Most SB, Zald DH (2011) Attentional capture by emotional stimuli is preserved in patients with amygdala lesions. Neuropsychologia 49:3314–3319

    Article  Google Scholar 

  • Piech RM, McHugo M, Smith SD, Dukic MS, Van Der Meer J, Abou-Khalil B, Zald DH (2010) Fear-enhanced visual search persists after amygdala lesions. Neuropsychologia 48:3430–3435

    Article  Google Scholar 

  • Piven J, Arndt S, Bailey J, Havercam S, Andreasen N, Palmer P (1995) An MRI study of brain size in autism. Am J Psychiatry 152:1145–1149

    Article  Google Scholar 

  • Plaisted K, O’Riordan M, Baron-Cohen S (1998) Enhanced visual search for a conjunctive target in autism: a research note. J Child Psychol Psychiatry 39:777–783

    Article  Google Scholar 

  • Povinelli DJ, Eddy TJ (1996) Chimpanzees: joint visual attention. Psychol Sci 7:129–135

    Article  Google Scholar 

  • Puce A, Allison T, Bentin S, Gore JC, McCarthy G (1998) Temporal cortex activation in humans viewing eye and mouth movements. J Neurosci 18:2188–2199

    Google Scholar 

  • Purcell BA, Weigand PK, Schall JD (2012) Supplementary eye field during visual search: salience, cognitive control, and performance monitoring. J Neurosci 32:10273–10285

    Article  Google Scholar 

  • Ristic J, Friesen C, Kingstone A (2002) Are eyes special? It depends on how you look at it. Psychon Bull Rev 9:507–513

    Article  Google Scholar 

  • Rolls E (1984) Neurons in the cortex of the temporal lobe and in the amygdala of the monkey with responses selective for faces. Hum Neurobiol 3:209–222

    Google Scholar 

  • Rolls ET (2010) The affective and cognitive processing of touch, oral texture, and temperature in the brain. Neurosci Biobehav Rev 34:237–245

    Article  Google Scholar 

  • Rolls ET, O’Doherty J, Kringelbach ML, Francis S, Bowtell R, McGlone F (2003) Representations of pleasant and painful touch in the human orbitofrontal and cingulate cortices. Cereb Cortex 13:308–317

    Article  Google Scholar 

  • Roozendaal B, Castello NA, Vedana G, Barsegyan A, McGaugh JL (2008) Noradrenergic activation of the basolateral amygdala modulates consolidation of object recognition memory. Neurobiol Learn Mem 90:576–579

    Article  Google Scholar 

  • Rosset D, Santos A, Da Fonseca D, Rondan C, Poinson F, Deruelle C (2011) More than just another face in the crowd: Evidence for an angry superiority effect in children with and without autism. Res Autism Spectrum Disord 5:949–956

    Article  Google Scholar 

  • Rutishauser U, Tudusciuc O, Neumann D, Mamelak AN, Heller AC, Ross IB, Philpott L, Sutherling WW, Adolphs R (2011) Single-unit responses selective for whole faces in the human amygdala. Curr Biol CB 21:1654–1660

    Article  Google Scholar 

  • Rutishauser U, Tudusciuc O, Wang S, Mamelak AN, Ross IB, Adolphs R (2013) Single-neuron correlates of atypical face processing in autism. Neuron 80:887–899

    Article  Google Scholar 

  • Sander D, Grandjean D, Pourtois G, Schwartz S, Seghier ML, Scherer KR, Vuilleumier P (2005) Emotion and attention interactions in social cognition: brain regions involved in processing anger prosody. NeuroImage 28:848–858

    Article  Google Scholar 

  • Sasson N (2006) The development of face processing in autism. J Autism Dev Disord 36:381–394

    Article  Google Scholar 

  • Sasson NJ, Elison JT, Turner-Brown LM, Dichter GS, Bodfish JW (2011) Brief report: circumscribed attention in young children with autism. J Autism Dev Disord 41:242–247

    Article  Google Scholar 

  • Sasson NJ, Turner-Brown LM, Holtzclaw TN, Lam KSL, Bodfish JW (2008) Children with autism demonstrate circumscribed attention during passive viewing of complex social and nonsocial picture arrays. Autism Res 1:31–42

    Article  Google Scholar 

  • Sato W, Okada T, Toichi M (2007) Attentional shift by gaze is triggered without awareness. Exp Brain Res 183:87–94

    Article  Google Scholar 

  • Sato W, Yoshikawa S, Kochiyama T, Matsumura M (2004) The amygdala processes the emotional significance of facial expressions: an fMRI investigation using the interaction between expression and face direction. NeuroImage 22:1006–1013

    Article  Google Scholar 

  • Scaife M, Bruner JS (1975) The capacity for joint visual attention in the infant. Nature 253:265–266

    Article  Google Scholar 

  • Scheumann M, Call J (2004) The use of experimenter-given cues by South African fur seals (Arctocephalus pusillus). Anim Cogn 7:224–230

    Article  Google Scholar 

  • Schirmer A, Teh KS, Wang S, Vijayakumar R, Ching A, Nithianantham D, Escoffier N, Cheok AD (2011) Squeeze me, but don’t tease me: Human and mechanical touch enhance visual attention and emotion discrimination. Soc Neurosci 6:219–230

    Article  Google Scholar 

  • Schumann CM, Amaral DG (2006) Stereological analysis of amygdala neuron number in autism. J Neurosci 26:7674–7679

    Article  Google Scholar 

  • Schumann CM, Hamstra J, Goodlin-Jones BL, Lotspeich LJ, Kwon H, Buonocore MH, Lammers CR, Reiss AL, Amaral DG (2004) The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages. J Neurosci 24:6392–6401

    Article  Google Scholar 

  • Sheinberg DL, Logothetis NK (2001) Noticing familiar objects in real world scenes: the role of temporal cortical neurons in natural vision. J Neurosci 21:1340–1350

    Google Scholar 

  • Shen K, Paré M (2007) Neuronal activity in superior colliculus signals both stimulus identity and saccade goals during visual conjunction search. J Vis 7

    Google Scholar 

  • Shen K, Paré M (2014) Predictive saccade target selection in superior colliculus during visual search. J Neurosci 34:5640–5648

    Article  Google Scholar 

  • South M, Ozonoff S, McMahon W (2005) Repetitive behavior profiles in asperger syndrome and high-functioning autism. J Autism Dev Disord 35:145–158

    Article  Google Scholar 

  • Spezio ML, Adolphs R, Hurley RSE, Piven J (2007a) Abnormal use of facial information in high-functioning autism. J Autism Dev Disord 37:929–939

    Article  Google Scholar 

  • Spezio ML, Adolphs R, Hurley RSE, Piven J (2007b) Analysis of face gaze in autism using “Bubbles”. Neuropsychologia 45:144–151

    Article  Google Scholar 

  • Tanaka K (1997) Mechanisms of visual object recognition: monkey and human studies. Curr Opin Neurobiol 7:523–529

    Article  Google Scholar 

  • Thomas NWD, Paré M (2007) Temporal processing of saccade targets in parietal cortex area lip during visual search. J Neurophysiol 97:942–947

    Article  Google Scholar 

  • Thompson KG, Bichot NP (2005) A visual salience map in the primate frontal eye field. Prog Brain Res 147:249–262

    Google Scholar 

  • Thompson KG, Hanes DP, Bichot NP, Schall JD (1996) Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. J Neurophysiol 76:4040–4055

    Google Scholar 

  • Todd RM, Talmi D, Schmitz TW, Susskind J, Anderson AK (2012) Psychophysical and neural evidence for emotion-enhanced perceptual vividness. J Neurosci 32:11201–11212

    Article  Google Scholar 

  • Todorov A, Mandisodza AN, Goren A, Hall CC (2005) Inferences of competence from faces predict election outcomes. Science 308:1623–1626

    Article  Google Scholar 

  • Tolias AS, Moore T, Smirnakis SM, Tehovnik EJ, Siapas AG, Schiller PH (2001) eye movements modulate visual receptive fields of v4 neurons. Neuron 29:757–767

    Article  Google Scholar 

  • Tsao DY, Freiwald WA, Tootell RBH, Livingstone MS (2006) A cortical region consisting entirely of face-selective cells. Science 311:670–674

    Article  Google Scholar 

  • Tye KM, Stuber GD, de Ridder B, Bonci A, Janak PH (2008) Rapid strengthening of thalamo-amygdala synapses mediates cue-reward learning. Nature 453:1253–1257

    Article  Google Scholar 

  • van Boxtel JJA, Lu H (2011) Visual search by action category. J Vis 11

    Google Scholar 

  • van Boxtel JJA, Lu H (2012) Signature movements lead to efficient search for threatening actions. PLoS ONE 7:e37085

    Article  Google Scholar 

  • Vuilleumier P (2002) Perceived gaze direction in faces and spatial attention: a study in patients with parietal damage and unilateral neglect. Neuropsychologia 40:1013–1026

    Article  Google Scholar 

  • Vuilleumier P (2005) How brains beware: neural mechanisms of emotional attention. Trends Cogn Sci 9:585–594

    Article  Google Scholar 

  • Vuilleumier P, Richardson MP, Armony JL, Driver J, Dolan RJ (2004) Distant influences of amygdala lesion on visual cortical activation during emotional face processing. Nat Neurosci 7:1271–1278

    Article  Google Scholar 

  • Wallace G, Case L, Harms M, Silvers J, Kenworthy L, Martin A (2011) Diminished sensitivity to sad facial expressions in high functioning autism spectrum disorders is associated with symptomatology and adaptive functioning. J Autism Dev Disord 41:1475–1486

    Article  Google Scholar 

  • Wang S, Fukuchi M, Koch C, Tsuchiya N (2012a) Spatial attention is attracted in a sustained fashion toward singular points in the optic flow. PLoS ONE 7:e41040

    Article  Google Scholar 

  • Wang S, Krajbich I, Adolphs R, Tsuchiya N (2012b) The role of risk aversion in non-conscious decision-making. Front Psychol 3

    Google Scholar 

  • Wang S, Tudusciuc O, Mamelak AN, Ross IB, Adolphs R, Rutishauser U (2014a) Neurons in the human amygdala selective for perceived emotion. Proc Natl Acad Sci USA 111:E3110–E3119

    Google Scholar 

  • Wang S, Xu J, Jiang M, Zhao Q, Hurlemann R, Adolphs R (2014b) Autism spectrum disorder, but not amygdala lesions, impairs social attention in visual search. Neuropsychologia 63:259–274

    Google Scholar 

  • Wang S, Tsuchiya N, New J, Hurlemann R, Adolphs R (2015) Preferential attention to animals and people is independent of the amygdala. Soc Cogn Affect Neurosci 10:371–380

    Google Scholar 

  • Watson KK, Platt ML (2012) Social signals in primate orbitofrontal cortex. Curr Biol CB 22:2268–2273

    Article  Google Scholar 

  • Willis J, Todorov A (2006) First impressions: making up your mind after a 100-ms exposure to a face. Psychol Sci 17:592–598

    Article  Google Scholar 

  • Willis ML, Palermo R, Burke D, McGrillen K, Miller L (2010) Orbitofrontal cortex lesions result in abnormal social judgements to emotional faces. Neuropsychologia 48:2182–2187

    Article  Google Scholar 

  • Wise RA (2004) Dopamine, learning and motivation. Nat Rev Neurosci 5:483–494

    Article  Google Scholar 

  • Wolfe JM (2012) The rules of guidance in visual search. In: Kundu M et al. (ed) Perception and machine intelligence, vol 7143, pp 1–10. Springer, Heidelberg

    Google Scholar 

  • Wolfe JM, Horowitz TS (2004) What attributes guide the deployment of visual attention and how do they do it? Nat Rev Neurosci 5:495–501

    Article  Google Scholar 

  • Yang J, Bellgowan PSF, Martin A (2012) Threat, domain-specificity and the human amygdala. Neuropsychologia 50:2566–2572

    Article  Google Scholar 

  • Zhang B, Noble PL, Winslow JT, Pine DS, Nelson EE (2012) Amygdala volume predicts patterns of eye fixation in rhesus monkeys. Behav Brain Res 229:433–437

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuo Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Wang, S., Adolphs, R. (2017). Social Saliency. In: Zhao, Q. (eds) Computational and Cognitive Neuroscience of Vision. Cognitive Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-0213-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-0213-7_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-0211-3

  • Online ISBN: 978-981-10-0213-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics