Skip to main content

Introduction to Confirmatory Factor Analysis and Structural Equation Modeling

  • Chapter
Book cover Handbook of Quantitative Methods for Educational Research

Abstract

Confirmatory factor analysis (CFA) is a powerful and flexible statistical technique that has become an increasingly popular tool in all areas of psychology including educational research. CFA focuses on modeling the relationship between manifest (i.e., observed) indicators and underlying latent variables (factors).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allison, P. D. (2003). Missing data techniques for structural equation models. Journal of Abnormal Psychology, 112, 545–557.

    Article  Google Scholar 

  • Arbuckle, J. L. (2010). IBM SPSS Amos 19 User’s Guide. Crawfordville, FL: Amos Development Corporation.

    Google Scholar 

  • Asparouhov, T., & Muthén, B. (2009). Exploratory structural equation modeling. Structural Equation Modeling, 16, 397–438.

    Article  Google Scholar 

  • Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality & Social Psychology, 51, 1173–1182.

    Article  Google Scholar 

  • Bentler, P. M. (1990). Comparative fit indices in structural equation models. Psychological Bulletin, 28, 97–104.

    Google Scholar 

  • Bentler, P. M. (2006). EQS for Windows (Version 6.0) [Computer software]. Encino, CA: Multivariate Software.

    Google Scholar 

  • Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance structures. Psychological Bulletin, 88, 588–606.

    Article  Google Scholar 

  • Bollen, K. A., & Curran, P. J. (2006). Latent curve models: A structural equation perspective. Hoboken, NJ: Wiley-Interscience.

    Google Scholar 

  • Brown, T. A. (2006). Confirmatory factor analysis for applied research. New York: Guilford Press.

    Google Scholar 

  • Browne, M. W., & Cudeck, R. (1992). Alternative ways of assessing model fit. Sociological Methods & Research, 21, 230–258.

    Article  Google Scholar 

  • Burkholder, G. J., & Harlow, L. L. (2003). An illustration of a longitudinal cross-lagged design for larger structural equation models. Structural Equation Modeling, 10, 465–486.

    Article  Google Scholar 

  • Campbell, D. T., & Fiske, D. W. (1959). Convergent and discriminant validation by the multitraitmultimethod matrix. Psychological Bulletin, 56, 81–105.

    Article  Google Scholar 

  • Chemers, M. M., Hu, L., & Garcia, B. (2001). Academic self-efficacy and first-year college student performance and adjustment. Journal of Educational Psychology, 93, 55–65.

    Article  Google Scholar 

  • Cheung, G. W., & Rensvold, R. B. (2002). Evaluating goodness-of-fit indexes for testing measurement invariance. Structural Equation Modeling, 9, 233–255.

    Article  Google Scholar 

  • Cole, D. A., & Maxwell, S. E. (2003). Testing mediational models with longitudinal data: Myths and tips in the use of structural equation modeling. Journal of Abnormal Psychology, 112, 558–577.

    Article  Google Scholar 

  • Collins, L. M. (2006): Analysis of longitudinal data; The integration of theoretical model, temporal design, and statistical model, Annual Review of Psychology 57, 505–528.

    Google Scholar 

  • Eliason, S. R. (1993), Maximum likelihood estimation. Newbury Park, CA: Sage.

    Book  Google Scholar 

  • Enders, C. K. (2010). Applied missing data analysis. New York, NY: Guilford Press.

    Google Scholar 

  • Fox, J. (2006). Structural equation modeling with the sem package In R. Structural Equation Modeling, 13, 465–486.

    Article  Google Scholar 

  • Gallagher, M. W., & Lopez, S. J. (2008, August). The unique effects of hope and self-efficacy on academic performance. Poster presented at the American Psychological Association 116th Annual Convention, Boston, MA.

    Google Scholar 

  • Hu, L., & Benter, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1–55.

    Article  Google Scholar 

  • Jöreskog, K. G., & Sörbom, D. (1996). LISREL 8: User’s reference guide. Chicago: Scientific Software International.

    Google Scholar 

  • Kenny, D. A., & Kashy, D. A. (1992). The analysis of the multitrait-multimethod matrix using confirmatory factor analysis. Psychological Bulletin, 112, 165–172.

    Article  Google Scholar 

  • Kline, R. B. (2010). Principles and practice of structural equation modeling (3rd ed.). New York: Guilford Press.

    Google Scholar 

  • Little, T. D., Bovaird, J. A., & Card, N. A. (Eds.). (2007). Modeling contextual effects in longitudinal studies. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Little, T. D., Bovaird, J. A., & Widaman, K. F. (2006). On the merits of orthogonalizing powered and interaction terms: Implications for modeling interactions among latent variables. Structural Equation Modeling, 13, 497–519.

    Article  Google Scholar 

  • Little, T. D., Slegers, D. W., & Card, N. A. (2006). A non-arbitrary method of identifying and scaling latent variables in SEM and MACS models. Structural Equation Modeling, 13, 59–72.

    Article  Google Scholar 

  • MacCallum, R. C., & Austin, J. T. (2000). Applications of structural equation modeling in psychological research. Annual Review of Psychology, 51, 201–226.

    Article  Google Scholar 

  • MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1, 130–149

    Article  Google Scholar 

  • MacCallum, R. C., Roznowski, M., & Necowitz, L. (1992). Model modifications in covariance structure analysis: The problem of capitalization on chance. Psychological Bulletin, 111, 490–504.

    Article  Google Scholar 

  • MacKinnon, D. P. (2008). Introduction to statistical mediation analysis. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • McArdle, J. J. (2009). Latent variable modeling of differences and changes with longitudinal data. Annual Review of Psychology, 60, 577–605.

    Article  Google Scholar 

  • McDonald, R. P., & Ho, M. R. (2002). Principles and practice in reporting structural equation analyses. Psychological Methods, 7, 64–82.

    Article  Google Scholar 

  • Muthén, B. O., & Asparouhov, T. (2008). Growth mixture modeling: Analysis with non-Gaussian random effects. In G. Fitzmaurice, M. Davidian, G. Verbeke, & G. Molenberghs (Eds.), Longitudinal data analysis (pp. 143–165). Boca Raton, FL: Chapman & Hall/CRC.

    Google Scholar 

  • Muthén, B. O., & Muthén, L. K. (2008–2012). Mplus user’s guide. Muthén & Muthén: Los Angeles, CA.

    Google Scholar 

  • Muthén, L. K. and Muthén, B. O. (2002). How to use a Monte Carlo study to decide on sample size and determine power. Structural Equation Modeling, 4, 599–620.

    Article  Google Scholar 

  • Neale, M. C., Boker, S. M., Xie, G., Maes, H. H. (2003). Mx: Statistical modeling. 6. Department of Psychiatry, Virginia Commonwealth University/.

    Google Scholar 

  • Preacher, K. J., & Coffman, D. L. (2006, May). Computing power and minimum sample size for RMSEA [Computer software]. Available from http://www.quantpsy.org/.

    Google Scholar 

  • Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40, 879–891.

    Article  Google Scholar 

  • Preacher, K. J., Wichman, A. L., MacCallum, R. C., & Briggs, N. E. (2008). Latent growth curve modeling. Thousand Oaks, CA: Sage Publications.

    Book  Google Scholar 

  • Preacher, K. J., Zyphur, M. J., & Zhang, Z. (2010). A general multilevel SEM framework for assessing multilevel mediation. Psychological Methods, 15, 209–233.

    Article  Google Scholar 

  • SAS Institute (2005). SAS/STAT User’s Guide, Version 9. Cary, NC: SAS Institute Inc.

    Google Scholar 

  • Schafer. J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological Methods, 7, 147–177.

    Article  Google Scholar 

  • Schoemann, A. D. (2010). Latent variable moderation. Retrieved January 22nd, 2012, from http://www.quant.ku.edu/pdf/16.1%20latent%20variable%20moderation.pdf.

  • Selig, J. P., & Preacher, K. J. (2009). Mediation models for longitudinal data in developmental research. Research in Human Development, 6, 144–164

    Article  Google Scholar 

  • Steiger, J. H., & Lind, J. C. (1980). Statistically-based tests for the number of common factors. Paper presented at the annual Spring Meeting of the Psychometric Society in Iowa City. May 30, 1980.

    Google Scholar 

  • Teo, T., & Khine, M. S. (Eds.) (2009). Structural equation modeling in educational research: Concepts and applications. Rotterdam: Sense Publishers.

    Google Scholar 

  • Thurstone, L. L. (1947). Multiple-Factor Analysis. Chicago: University of Chicago Press.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Sense Publishers

About this chapter

Cite this chapter

Gallagher, M.W., Brown, T.A. (2013). Introduction to Confirmatory Factor Analysis and Structural Equation Modeling. In: Teo, T. (eds) Handbook of Quantitative Methods for Educational Research. SensePublishers, Rotterdam. https://doi.org/10.1007/978-94-6209-404-8_14

Download citation

Publish with us

Policies and ethics