Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 239))

Abstract

Up till a decade ago, diagnostic identification of acquired or hereditary cardiac diseases was based upon clinical observations and pedigree analysis and supported by instrumental and biochemical diagnostic tests. The molecular basis of the majority of these disorders was grossly unknown or speculative. In the last ten years, rapidly evolving and innovative strategies in molecular biology and genetics have completely changed this scenario. Families with well-documented hereditary disorders, sometimes known for several decades, appeared very attractive to start the search for the causative molecular defect. Using linkage analysis with DNA markers (DNA variants scattered along the genome), it became possible to search for linkage of particular markers and the disease-causing locus in a given family. Once the risk locus was identified, several strategies to identify the gene defect could be applied. By comparing families with identical genetic defects and by an inventory on the clinical features of all affected individuals it may be possible to establish genotype-phenotype correlations, which in turn can lead to an exact diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Vulpian A, Contribution à l’é tude des ré tré cissements de I’orifiee ventrieulo-aortique. Archiv. Physiol., 1868; 3:220–222.

    Google Scholar 

  2. Broek R, Functional obstruetion of the left ventricle. Guys Hosp. Rep., 1957; 106:221–238.

    Google Scholar 

  3. Teare D, Asymetrieal hypertrophy of the heart in young adults. Br. Heart. J., 1958; 20:1–8.

    PubMed  CAS  Google Scholar 

  4. Wigle E.D, Sasson Z, Henderson M.A, et al., Hypertrophic cardiomyopathy. The importanee of the site and the extent of hypertrophy. A review. Prog. Cardiovase. Dis., 1985; 28:1–83.

    CAS  Google Scholar 

  5. Maron B.J, Bonow R.O, Cannon R.O, et al., Hypertrophic cardiomyopathy: interrelations of clinical manifestations, pathophysiology, and therapy. N. Engl. J. Med.,1987; 316:780–789 and 844-852.

    PubMed  CAS  Google Scholar 

  6. McKenna W.J and Camm A.J, Sudden death in hypertrophic cardiomyopathy: assessment of patients at high risk. Circulation, 1989; 80:1489–1492.

    PubMed  CAS  Google Scholar 

  7. Maron B, Hypertrophic cardiomyopathy. Lancet, 1997; 350:127–133.

    PubMed  CAS  Google Scholar 

  8. Spirito P, Seidman C.E, Mekenna W.J, et al., The management of hypertrophic cardiomyopathy. New Engl. J. Med., 1997; 336:775–785.

    PubMed  CAS  Google Scholar 

  9. Maron B.J, Olivotto I, Spirito P, et al., Epidemiology of hypertrophic cardiomyopathyrelated death: revisited in a large non-referral-based patient population. Circulation, 2000; 102:858–864.

    PubMed  CAS  Google Scholar 

  10. Maron B.J, Gardin J.M, Flaek I.M, et al., Prevalence of hypertrophic cardiomyopathy in a general population of young adults: echocardiographic analysis of 4111 subjects in the CARDIA study. Circulation, 1995; 92:785-789.

    Google Scholar 

  11. Hollman A, Goodwin J.F, Teare D, et al., A family with obstructive cardiomyopathy (asymetrieal hypertrophy). Br. Heart J.,1960; 22:449–456.

    PubMed  CAS  Google Scholar 

  12. MacRae C.A, Ghaisas N, Kass S, et al., Familial hypertrophic cardiomyopathy with WolffParkinson-White Syndrome maps to a locus on chromosome 7q3. J. Clin. lnvest., 1995; 96:1216–1220.

    CAS  Google Scholar 

  13. Patton K.K, Niimura H, Soults J, et al., Sarcomere protein gene mutations: a frequent cause of elderly-onset hypertrophic cardiomyopathy. Circulation, 2000; 102[Suppl.II]:178.

    Google Scholar 

  14. Regitz-Zagrosek V, Erdmann J, Wellnhofer E, et al., Novel Mutation in the-Tropomyosin Gene and Transition From Hypertrophic to Hypocontractile Dilated Cardiomyopathy. Circulation, 2000; 102:e112–e116.

    Google Scholar 

  15. Olson T.M., Michels V.V., Thibodeau S.N., et al., Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Seience, 1998; 280:750–752.

    CAS  Google Scholar 

  16. Kamisago M, Sharma S.D., DePalma S.R., et al., Mutations in Sarcomere Protein Genes as a Cause of Dilated Cardiomyopathy. N. Engl. J. Med., 2000; 343:1688–1696.

    PubMed  CAS  Google Scholar 

  17. Fung D.C, Yu B, Littlejohn T, et al., An online locus-specific mutation database for familial hypertrophic cardiomyopathy. Hum. Mutat., 1999; 14:326–332.

    PubMed  CAS  Google Scholar 

  18. Bonne G, Carrier L, Richard P, et al., Familial hypertrophic cardiomyopathy: from mutations to Functional defects. Circ. Res., 1998; 83:579–593.

    Google Scholar 

  19. Paré J.A.P, Fraser R.G, Pirozynski WJ, et al., Hereditary cardiovascular dysplasia: a form of familial eardiomyoapthy. Am. J. Med., 1961; 31:37–62.

    PubMed  Google Scholar 

  20. Jareho J.A, MKenna W, Pare J.A.P, et al., Mapping a gene for familial hypertrophic cardiomyopathy to chromosome 14ql. N. Engl. J. Med., 1989; 321:1372–1378.

    Google Scholar 

  21. Geisterfer-Lowranee A.A.T, Kass S, Tanigawa G, et al., A molecular basis for familial hypertrophic cardiomyopathy: a β cardiac myosin heavy chain gene missense mutation. Cell,1990; 62:999–1006.

    Google Scholar 

  22. Epstein N, Lin H, and Fananapazir L, Genetic evidence of dissociation (generational skips) of electrical from morphologic forms of hypertrophic cardiomyopathy. Am. J. Cardiol.,1990; 66:627–631.

    PubMed  CAS  Google Scholar 

  23. Hejtmaneik J.F, Brink P.A, Hill R, et al., Localization of gene for familial hypertrophic cardiomyopathy to chromosome 14ql in a diverse US population. Circulation, 1991; 83:1592–1597.

    Google Scholar 

  24. Ko Y.L, Lien W.P, Chen J.J, et al., No evidence for linkage of familial hypertrophic cadiomyopathy and chromosome 14qlloeus D14S26 in a chinese family: evidence for genetic heterogeneity. Hum. Gen., 1992; 89:597–601.

    CAS  Google Scholar 

  25. Schwartz K, Dufour C, Fougerousse F, et al., Exclusion of myosin heavy chain and cardiac actin gene involvement in hypertrophic cardiomyopathies of several freneh families. Cire. Res., 1992; 71:3–8.

    CAS  Google Scholar 

  26. Macera M.J, Szabo P, Wadgaonkar R, et al., Localization of the gene eneoding for ventricular myosin regulatory light chain (MYL2) to human chromosome 12q23q24.3. Genomies, 1992; 13:765–772.

    Google Scholar 

  27. Poetter K, Jiang H, Hassanzadeh S, et al., Mutation in either the essential or regulatory light chains of myosin are ` with a rare myopathy in human heart and skeletal muscle. Nature Genet., 1996; 13:63–69.

    PubMed  CAS  Google Scholar 

  28. Flavigny J, Richard P, Isnard R, et al., Identifieation of two novel mutations in the ventricular regulatory myosin light chain gene (MYL2) associated with familial and classieal forms ofhypertrophic cardiomyopathy. J. Mol. Med., 1998; 76:208–214.

    PubMed  CAS  Google Scholar 

  29. Kramer P.L, Luty J.A, and Litt M, Regional localization of the gene for cardiac muscle actin (ACTC) on chromosome 15g. Genomies, 1992; 13:904–905.

    CAS  Google Scholar 

  30. Mogensen J, Klausen I.C, Pedersen A.K, et al., a-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J. Clin. Invest., 1999; 103:R39–R43.

    PubMed  CAS  Google Scholar 

  31. Olson T.M, Doan T.P, Kishimoto N.Y, et al., Inherited and de novo mutations in the cardiac actin gene cause hypertrophic cardiomyopathy. J. Mol. Cell. Cardiol., 2000; J. Mol. Cell. Cardiol.: 1687–1694.

    Google Scholar 

  32. Farza H, Towsend P, Carrier L, et al., Genomie organization, alternative splicing and polymorphisms of the human cardiac troponin T gene. J. Mol. Cell. Cardiol., 1998; 30:1247–1253.

    PubMed  CAS  Google Scholar 

  33. Thierfelder L, Watkins H, MacRae C, et al., α-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sareomere. Cell,1994; 77:701–712.

    PubMed  Google Scholar 

  34. Watkins H, McKenna W.J, Thierfelder L, et al., Mutations in the genes for cardiac troponin T and α-tropomyosin in hypertrophic cardiomyopathy. N. Engl. J. Med., 1995; 332:1058–1064.

    PubMed  CAS  Google Scholar 

  35. Kimura A, Harada H, Park J.E, et al., Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nature Genet., 1997; 16:379–382.

    PubMed  CAS  Google Scholar 

  36. MacLeod A.R and Gooding C, Human hTMα gene: expression in muscle and nonmuscle tissue. Mol. Cell. Biol., 1988; 8:433–440.

    PubMed  CAS  Google Scholar 

  37. Eyre H, Akkari P.A, Wilton S.D, et al., Assignment of the human skeletal musc1e alphatropomyosin gene (TPM1) to band 15q22 by fluoreseenee in situ hydridization. Cytogenet. Cell Genet., 1995; 69:15–17.

    PubMed  CAS  Google Scholar 

  38. Karibe A, Tobaeman L.S, Strand J, et al., hypertrophic cardiomyopathy caused by a novel α-tropomyosin mutation (V95A) is associated with mild cardiac phenotype, abnormal calcium binding to troponin, abnormal myosin eyc1ing, and poor prognosis. Circulation, 2001; 103:65–71.

    PubMed  CAS  Google Scholar 

  39. Carrier L, Hengstenberg C, Beckmann J.S, et al., Mapping of a novel gene for familial hypertrophic cardiomyopathy to chromosome 11. Nature Genet., 1993; 4:311–313.

    PubMed  CAS  Google Scholar 

  40. Gautel M, Zuffardi O, Freiburg A, et al., Phosphorylation switches specific for the cardiac isoform of myosin binding protein C: a modulator of cardiac eontraetion? EMBO J., 1995; 14:1952–1960.

    PubMed  CAS  Google Scholar 

  41. Bonne G, Carrier L, Bercovici J, et al., Cardiae myosin binding protein-C gene splice acceptor site mutation is associated with familial hypertrophic cardiomyopathy. Nature Genet., 1995; 11:438–440.

    PubMed  CAS  Google Scholar 

  42. Watkins H, Conner D, Thierfelder L, et al., Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nature Genet., 1995; 11:434–437.

    PubMed  CAS  Google Scholar 

  43. Carrier L, Bonne G, Bährend E, et al., Organization and sequence of human cardiac myosin binding protein C gene (MYBPC3) and identifieation ofmutations predicted to produee truneated proteins in familial hypertrophic cardiomyopathy. Cire. Res., 1997; 80:427–434.

    CAS  Google Scholar 

  44. Rottbauer W, Gautel M, Zehelein J, et al., Novel splice donor site mutation in the cardiac myosin-binding protein-C gene in familial hypertrophic cardiomyopathy. Charaeterization of cardiac transeript and protein. J. Clin. lnvest., 1997; 100:475–482.

    CAS  Google Scholar 

  45. Moolman-Smook J.C, Mayosi B, Brink P, et al., ldentifieation of a new missense mutation in MyBP-C associated with hypertrophic cardiomyopathy. J. Med. Genet., 1998; 35:253–254.

    PubMed  CAS  Google Scholar 

  46. Niimura H, Baehinski L.L, Sangwatanaroj S, et al., Mutations in the gene for cardiac myosin-binding protein C and late-onset familial hypertrophic cardiomyopathy. N. Engl. J. Med., 1998; 338:1248–1257.

    PubMed  CAS  Google Scholar 

  47. Yu B, Freneh J.A, Carrier L, et al., Molecular pathology of familial hypertrophic cardiomyopathy caused by mutations in the cardiac myosin binding protein C gene. J. Med. Genet., 1998; 35:205–210.

    PubMed  CAS  Google Scholar 

  48. Moolman J.A, Reith S, Uhl K, et al., A newly created splice donor site in exon 25 of the MyBP-C gene is responsible for inherited hypertrophic cardiomyopathy with incomplete disease penetrance. Circulation, 2000; 101:1396–1402.

    PubMed  CAS  Google Scholar 

  49. Yang Q, Sanbe A, Osinska H, et al., A mouse model ofmyosin binding protein C human familial hypertrophic cardiomyopathy. J. Clin. lnvest., 1998; 102:1292–1300.

    CAS  Google Scholar 

  50. Flavigny J, Souehet M, Sebillon P, et al., COOH-terminal truneated cardiac myosinbinding protein C mutants resulting from familial hypertrophic cardiomyopathy mutations exhibit altered expression and/or ineorporation in fetal rat eardiomyoeytes. J. Mo1. Biol., 1999; 294:443–456.

    CAS  Google Scholar 

  51. McConnell B.K, Jones K.A, Fatkin D, et al., Dilated cardiomyopathy in homozygous myosin-binding protein-C mutant mice. J. Clin. lnvest., 1999; 104:1235–1244.

    CAS  Google Scholar 

  52. Yang Q, Sanbe A, Osinska H, et al., In vivo modeling ofmyosin binding protein C familial hypertrophic cardiomyopathy. Cire. Res., 1999; 85:841–847.

    CAS  Google Scholar 

  53. Sebillon P, Bonne G, Flavigny J, et al., COOH-terminal truncated human cardiac MyBP-C alters myosin filament organization. C. R. Acad. Sci., 2001:In Press.

    Google Scholar 

  54. Labeit S and Kolmerer B, Titins: giant proteins in charge of muscle ultrastrueture and elastieity. Seience, 1995; 270:293–296.

    CAS  Google Scholar 

  55. Satoh M, Takahashi M, Sakamoto T, et al., Structural analysis of the titin gene in hypertrophic cardiomyopathy: identifieation of a novel disease gene. Biochem. Biophys. Res. Comm., 1999; 262:411–417.

    CAS  Google Scholar 

  56. Durr A, Cossee M, Agid Y, et al., Clinical and genetic abnormalities in patients with Friedreieh’s ataxia. N. Engl. J. Med., 1996; 335:1169–1175.

    PubMed  CAS  Google Scholar 

  57. Campuzano V, Montermini L, Molto MD, et al., Friedreieh’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Seience, 1996; 8:1423–1427.

    Google Scholar 

  58. Pueeio H, Simon D, Cossee M, et al., Mouse models for friedreieh ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme defieieney followed by intramitochondrial iron deposits. Nature genet., 2001; 27:181–186.

    Google Scholar 

  59. Klues H.G, Schiffers A, and Maron B.J, Phenotypie spectrum and patterns ofleft ventricular hypertrophy in hypertrophic cardiomyopathy: morphologie observations and signifieanee as assessed by two-dimensional eehoeardiography in 600 patients. J. Am. Coll. Cardiol., 1995; 26:1699–1708.

    PubMed  CAS  Google Scholar 

  60. Watkins H, Rosenzweig T, Hwang D.S, et al., Characteristic and prognostic implieations of myosin missense mutations in familial hypertrophic cardiomyopathy. N. Engl. J. Med., 1992; 326:1106–1114.

    Google Scholar 

  61. Fananapazir L and Epstein N.D, Genotype-phenotype eorrelations in hypertrophic cardiomyopathy: Insights provided by eomparisons of kindreds with distinet and identieal ß-myosin heavy chain mutations. Circulation, 1994; 89:22–32.

    PubMed  CAS  Google Scholar 

  62. Enjuto M, Franeino A, Navarro-Lopez F, et al., Malignant hypertrophic cardiomyopathy caused by the Arg723Gly mutation in ß-myosin heavy chain gene. J. Mol. Cell. Cardiol., 2000; 32:2307–2313.

    PubMed  CAS  Google Scholar 

  63. Moolman J.C, Corfield V.A, Posen B, et al., Sudden death due to troponin T mutations. J.Am. Coll. Cardiol., 1997; 29:549–555.

    PubMed  CAS  Google Scholar 

  64. Nakajima-Taniguehi C, Matsui H, Fujio Y, et al., Novel missense mutation in cardiac troponin T gene found injapanese patient with hypertrophic cardiomyopathy. J. Mol. Cell. Cardiol., 1997; 29:839–843.

    Google Scholar 

  65. Forissier J-F, Carrier L, Farza H, et al., Codon 102 of the cardiac troponin T gene is a putative hot spot for mutations in familial hypertrophic cardiomyopathy. Circulation, 1996; 94:3069–3073.

    PubMed  CAS  Google Scholar 

  66. Charron P, Dubourg O, Desnos M, et al., Clinieal features and prognostic implieations of familial hypertrophic cardiomyopathy related to cardiac myosin binding protein C gene. Circulation, 1998; 97:2230–2236.

    PubMed  CAS  Google Scholar 

  67. Nishi H, Kimura A, Harada H, et al., A myosin missense mutation, not a null allele, causes familial hypertrophic cardiomyopathy. Circulation, 1995; 91:2911–2915.

    PubMed  CAS  Google Scholar 

  68. Riehard P, Isnard R, Carrier L, et al., Double heterozygosity for mutations in the beta myosin heavy chain and in the cardiac myosin binding protein C genes in a family with hypertrophic cardiomyopathy. J. Med. Genet., 1999; 36:542–545.

    Google Scholar 

  69. Riehard P, Charron P, Leclereq C, et al., Homozygotes for a R869G mutation in the betamysoin heavy chain gene have a severe form of familial hypertrophic cardiomyopathy. J. Mol. Cell. Cardiol., 2000; 32:1575–1583.

    Google Scholar 

  70. Forissier J-F, Richard P, Briault S, et al., First deseription of a germ line mosaieism in familial hypertrophic cardiomyopathy. J. Med. Genet., 2000; 37:132–134.

    PubMed  CAS  Google Scholar 

  71. Marian A.J, Yu Q-T, Workman R, et al., Angiotensin-eonverting enzyme polymorphism in hypertrophic cardiomyopathy and sudden cardiac death. Laneet, 1993; 342:1085–1086.

    CAS  Google Scholar 

  72. Lechin M, Quinones M.A, Omran A, et al., Angiotensin-I eonverting enzyme genotypes and left ventricular hypertrophy in patients with hypertrophic cardiomyopathy. Circulation, 1995; 92:1802–1812.

    Google Scholar 

  73. Yonega K, Okamoto H, Maehida M, et al., Angiotensin-eonverting enzyme gene polymorphism in japanese patients with hyeprtrophie cardiomyopathy. Am. Heart. J., 1995; 130:1089–1093.

    Google Scholar 

  74. Tesson F, Dufour C, Moolman J.C, et al., The influenee of the angiotensin I eonverting enzyme genotype in familial hypertrophic cardiomyopathy varies with the disease gene mutation. J. Mol. Cell. Cardiol., 1997; 29:831–838.

    PubMed  CAS  Google Scholar 

  75. Charron P, Dubourg O, Desnos M, et al., Diagnostie value of eleetroeardiography and eehoeardiography for familial hypertrophic cardiomyopathy in a genotyped adult population. Circulation, 1997; 96:214–219.

    PubMed  CAS  Google Scholar 

  76. Clark C.E, Henry W.L, and Epstein S.E, Familial prevalenee and genetie transmission of idiopathie subaortie stenosis. J. Engl. J. Med., 1973; 289:709–714.

    CAS  Google Scholar 

  77. Maron B.J, Niehols P.F, Pi ekle L.W, et al., Patterns of inheritanee in hypertrophic eardiomopathy. Assessment by M-mode and two-dimensional eehoeardiography. Am. J. Cardiol., 1984; 53:1087–1094.

    PubMed  CAS  Google Scholar 

  78. Greaves S.C, Roehe A.R.G, Neutze J.M, et al., Inheritanee of hypertrophic cardiomyopathy: a cross seetional and M mode eehoeardiographie study of 50 families. BI. Heart J., 1987; 58:259–266.

    CAS  Google Scholar 

  79. Charron P, Carrier L, Dubourg O, et al., Penetrance of familial hypertrophic cardiomyopathy. Genetie eounseling, 1997; 8:107–114.

    CAS  Google Scholar 

  80. Vikstrom K.L, Faetor S.M, and Leinwand L.A, Mice expressing mutant myosin heavy chains are a model for familial hypertrophic cardiomyopathy. Mol. Med., 1996; 2:556–567.

    PubMed  CAS  Google Scholar 

  81. Tokushima T, Utsunomiya T, Ogawa T, et al., Short-and long-term effeets ofnisoldipine on cardiac funetion and exercise toleranee in patients with hypertrophic cardiomyopathy. Basic. Res. Cardiol., 1996; 91:329–336.

    PubMed  CAS  Google Scholar 

  82. Sherrid M.V, Pearle G, and Gunsburg D.Z, Mechanism of benefit ofnegative inotropes in obstruetive hypertrophic cardiomyopathy. Circulation, 1998; 97:41–47.

    PubMed  CAS  Google Scholar 

  83. Ostman-Smith I, Wettrell G, and Riesenfeld T, A eohort study of ehildhood hypertrophic cardiomyopathy: improved survival following high-dose beta-adrenoceptor antagonist treatment. J. Am. Coll. Cardiol., 1999; 15:1813–1822.

    Google Scholar 

  84. Sherrid M.V, Gunsburg D, and Sharma A, Medieal treatment of hypertrophic cardiomyopathy. Curr. Cardiol., 2000; 2:148–153.

    CAS  Google Scholar 

  85. Zhu D.W, Sun H, Hili R, et al., The value of electrophysiology study and prophylaetie implantation of eardioverter defibrillator in patients with hypertrophic cardiomyopathy. Pacing Clin. Electrophysiol., 1998; 21(1 Pt 2):299–302.

    CAS  Google Scholar 

  86. Elliott P.M, The Role of Pharmacologie Treatment to Prevent Sudden Death in the Implantable Cardioverter Defibrillator Era. Curr. Cardiol. Rep., 2001; 3: 167–172.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Carrier, L., Jongbloed, R.J.E., Smeets, H.J.M., Doevendans, P.A. (2001). Hypertrophic Cardiomyopathy. In: Doevendans, P.A., Wilde, A.A.M. (eds) Cardiovascular Genetics for Clinicians. Developments in Cardiovascular Medicine, vol 239. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-1019-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-1019-1_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3888-1

  • Online ISBN: 978-94-010-1019-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics