Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 53))

Summary

Visual interpretations of coronary arteriograms are marked by such great interobserver and intraobserver variability that comparison of arteriograms from different subjects, or at different times in the same subject, are of limited value for assessing severity, changes in severity or functional significance of coronary artery stenosis. The universal use of percent diameter narrowing as a clinical measure of severity ignores other geometric characteristics of stenoses such as length, absolute diameter, multiple lesions in series or eccentric narrowings which may be worse in one view as compared to another view. Accordingly, we have developed an approach for analyzing coronary artery stenoses in both anatomic and functional terms. In this chapter an overview of the functional and anatomic approaches for quantifying severity of coronary artery stenoses is presented, their validation and equivalence outlined and the remaining problems to be solved indicated.

Our quantitative analysis of coronary arteriograms requires high quality orthogonal X-rays processed in two different ways. In the first, the entire region of interest on the arteriogram is digitized with the borders of the arteriogram identified automatically utilizing an edge detection method in computer software without visual interpretation. In the second approach, the stenosis of interest is analyzed by integrating the optical density diametrically across the long axis of the artery image. The arterial cross-sectional areas measured by both techniques are automatically compared for each segment of the artery. The border recognition technique is accurate with a ± 0.1mm error for lesions that are not crescentic in shape to less than 0.5 mm diameter. However, for crescentic shaped lesions, border recognition is inadequate because the atheromatous mass may project into the arterial lumen within the limits of the X-ray borders. For crescentic lesions the integrated density technique is more accurate since the optical density across the artery reflects displacement of contrast media by a crescentic atheroma projecting into the lumen of the artery. Therefore, where the border recognition and integrated density technique do not agree, the integrated density method is used for determining the severity of the stenosis. The dimensions determined by these automated techniques are then incorporated into validated fluid dynamic equations in order to predict the functional, pressure-flow effects of the stenosis as well as coronary flow reserve. Our results demonstrate that our automated, quantitated coronary arteriographic analysis predicts pressure-flow characteristics or coronary flow reserve as a single measure of stenosis severity reflecting all the integrated, combined effects of the geometric characteristics of the lesion including absolute diameter, percent stenosis, length and shape. Our results further demonstrate that consideration of a single dimension alone such as percent diameter narrowing or absolute diameter alone do not correlate or predict with coronary flow reserve measured independently by flow meter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gould KL, Lipscomb K, Hamilton GW: Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 33, 1974: 87–94.

    Article  PubMed  CAS  Google Scholar 

  2. Gould KL, Lipscomb K: Effects of coronary stenoses on coronary flow reserve and resistance. Am J Cardiol 34, 1974: 48–55.

    Article  PubMed  CAS  Google Scholar 

  3. Gould KL, Lipscomb K, Calvert C: Compensatory changes of the distal coronary vascular bed during progressive coronary constriction. Circulation 51, 1975: 1085–1094.

    PubMed  CAS  Google Scholar 

  4. Gould KL: Pressure-flow characteristics of coronary stenoses in unsedated dogs at rest and during coronary vasodilation. Circ Res 43, 1978: 242–253.

    PubMed  CAS  Google Scholar 

  5. Gould KL: Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilation. I. Physiologic basis and experimental validation. Am J Cardiol 41, 1978: 267–278.

    Article  PubMed  CAS  Google Scholar 

  6. Gould KL, Westcott RJ, Albro PC, Hamilton GW: Noninvasive assessment of coronary stenoses by myocardial perfusion imaging during pharmacologic coronary vasodilatation. II. Clinical methodology and feasibility. Am J Cardiol 41, 1978: 279–287.

    Article  PubMed  CAS  Google Scholar 

  7. Albro PC, Gould KL, Westcott RJ, Hamilton GW, Ritchie JL, Williams DL: Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilatation. III. Clinical trial. Am J Cardiol 42, 1978: 751–760.

    Article  PubMed  CAS  Google Scholar 

  8. Gould KL: Assessment of coronary stenoses with myocardial perfusion imaging during pharmacologic coronary vasodilatation. IV. Limits of detection of stenosis with idealized experimental cross-sectional myocardial imaging. Am J Cardiol 42, 1978: 761–768.

    Article  PubMed  CAS  Google Scholar 

  9. Gould KL, Schelbert HR, Phelps ME, Hoffman EJ: Noninvasive assessment of coronary stenoses with myocardial perfusion imaging during pharmacologic coronary vasodilatation. V. Detection of 47 percent diameter coronary stenosis with intravenous Nitrogen-13 ammonia and emission-computed tomography in intact dogs. Am J Cardiol 43, 1979: 200–208.

    Article  PubMed  CAS  Google Scholar 

  10. Schelbert HR, Wisenberg G, Phelps ME, Gould KL, Henze E, Hoffman EJ, Gomes A, Kuhl DE: Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilation. VI. Detection of coronary artery disease in human beings with intravenous N-13 ammonia and positron computed tomography. Am J Card 49, 1982: 1197–1207.

    Article  PubMed  CAS  Google Scholar 

  11. Gould KL: Dynamic coronary stenosis. Am J Cardiol 45, 1980: 286–292.

    Article  PubMed  CAS  Google Scholar 

  12. Gould KL, Kelley KO: Physiological significance of coronary flow velocity and changing stenosis geometry during coronary vasodilation in awake dogs. Circ Res 50, 1982: 695–704.

    PubMed  CAS  Google Scholar 

  13. Young DF, Cholvin NR, Kirkeeide RL, Roth AC: Hemodynamics of arterial stenoses at elevated flow rates. Circ Res 41, 1977: 99–107.

    PubMed  CAS  Google Scholar 

  14. Mates RE, Gupta RL, Bell AC, Klocke FJ: Fluid dynamics of coronary artery stenosis. Circ Res 42, 1978: 152–162.

    PubMed  CAS  Google Scholar 

  15. Roth AC, Young DF, Cholvin NR: Effect of collateral and peripheral resistance on blood flow through arterial stenoses. J Biomechanics 9, 1976: 367–375.

    Article  CAS  Google Scholar 

  16. Elzinga WE, Skinner DB: Hemodynamic characteristics of critical stenosis in canine coronary arteries. J Thoracic Cardiov Surgery 69, 1975: 217–222.

    CAS  Google Scholar 

  17. Hillis WS, Friesinger GC: Reactive hyperemia: An index of the significance of coronary stenoses. Am Heart J 92, 1976: 737–740.

    Article  PubMed  CAS  Google Scholar 

  18. Feldman RL, Nichols WW, Pepine CJ, Conti CR: Hemodynamic significance of the length of a coronary arterial narrowing. Am J Cardiol 41, 1978: 865–871.

    Article  PubMed  CAS  Google Scholar 

  19. Folts JD, Gallagher K, Rowe GG: Hemodynamic effects of controlled degrees of coronary artery stenosis in short-term and long-term studies in dogs. J Thoracic and Cardiov Surg 73,1977: 722– 727.

    CAS  Google Scholar 

  20. Mullani NA, Gould KL: First pass measurements of regional blood flow with external detectors. J Nucl Med 24, 1983: 577–581.

    PubMed  CAS  Google Scholar 

  21. Hoffman JIE: Maximal coronary flow and the concept of coronary vascular reserve. Circulation 70, 1984: 153–159.

    Article  PubMed  CAS  Google Scholar 

  22. Gould KL, Kelley KO, Bolson EL: Experimental validation of quantitative coronary arteriogra¬phy for determining pressure-flow characteristics of coronary stenosis. Circulation 66,1982: 930– 937.

    Article  PubMed  CAS  Google Scholar 

  23. White CW, Wright CB, Doty DB, Hiratzka LF, Eastham CL, Harrison DG, Marcus ML: Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Eng J Med 310, 1984: 819–824.

    Article  CAS  Google Scholar 

  24. Harrison DG, White CW, Hiratzka LF, Doty DB, Barnes DH, Eastham CL, Marcus ML: The value of lesion cross-sectional area determined by quantitative coronary angiography in assessing the physiologic significance of proximal left anterior descending coronary arterial stenoses. Circulation 69, 1984: 1111–1119

    Article  PubMed  CAS  Google Scholar 

  25. Marcus ML, Armstrong ML, Heistad DD, East ham CL, Mark AL: Comparison of three methods of evaluating coronary obstructive lesions: Postmortem arteriography, pathologic examination and measurement of regional myocardial perfusion during maximal vasodilation. Am J Cardiol 49, 1982: 1699–1706.

    Article  PubMed  CAS  Google Scholar 

  26. Fiddian RV, Byar D, Edwards EA: Factors affecting flow through a stenosed vessel. Arch Surg 88, 1964: 83–90.

    PubMed  CAS  Google Scholar 

  27. Bomberger RA, Zarins CK, Glagov S: Resident research award. Subcritical arterial stenosis enhances distal atherosclerosis. J Surg Research 30, 1981: 205–212.

    Article  CAS  Google Scholar 

  28. Brown BG, Bolson E, Frimer M, Dodge HT: Quantitative coronary arteriography. Estimation of dimensions, hemodynamic resistance, and atheroma mass of coronary artery lesions using the arteriogram and digital computation. Circulation 55, 1977: 329–337.

    PubMed  CAS  Google Scholar 

  29. McMahon MM, Brown BG, Cukingnan R, Rolett EL, Bolson E, Frimer M, Dodge FIT: Quantitative coronary angiography: Measurement of the ‘critical’ stenosis in patients with unstable angina and single-vessel disease without collaterals. Circulation 60, 1979: 106–113.

    PubMed  CAS  Google Scholar 

  30. Brown BG, Bolson E, Petersen RB, Pierce CD, Dodge HT: The mechanisms of nitroglycerin action: Stenosis vasodilatation as a major component of the drug response. Circulation 64, 1981: 1089–1097.

    Article  PubMed  CAS  Google Scholar 

  31. Brown BG, Lee AB, Bolson EL, Dodge HT: Reflex constriction of significant coronary stenosis as a mechanism contributing to ischemic left ventricular dysfunction during isometric exercise. Circulation 70, 1984: 18–24.

    Article  PubMed  CAS  Google Scholar 

  32. Gould KL, Lee D, Lovgren K: Techniques for arteriography and hydraulic analysis of coronary stenoses in unsedated dogs. Am J Physiol 235, 1978: H350 - H356.

    PubMed  CAS  Google Scholar 

  33. Spears JR, Sandor T, Baim DS, Paulin S: The minimum error in estimating coronary luminal cross-sectional area from cineangiographic diameter measurements. Cath and Cardiov Diagn 9, 1983: 119–128.

    Article  CAS  Google Scholar 

  34. Spears JR, Sandor T, Als AV, Malagold M, Markis JE, Grossman W, Serur JR, Paulin S: Computerized image analysis for quantitative measurement of vessel diameter from cineangio- grams. Circulation 68, 1983: 453–461.

    Article  PubMed  CAS  Google Scholar 

  35. Sanders WJ, Alderman EL, Harrison DC: Coronary artery quantitation using digital imaging processing techniques. Comp Cardiol 1979: 15–20.

    Google Scholar 

  36. Reiber JHC, Serruys PW, Kooijman CJ, Wijns W, Slager CJ, Gerbrands JJ, Schuurbiers JCH, Boer A den, Hugenholtz PG: Assessment of short-, medium-, and long-term variations in arterial dimensions for computer-assisted quantitation of coronary cineangiograms. Circulation 71, 1985: 280–288.

    Article  PubMed  CAS  Google Scholar 

  37. Selzer RH, Blankenhorn DH: The identification of the variation of atherosclerosis plaques by invasive and non-invasive methods. In: Atherosclerosis clinical evaluation and therapy. GC Lenzis and Descovich (Eds.) MTP Press Limited, Boston, 1982: 453–465.

    Google Scholar 

  38. Kirkeeide RL, Fung P, Smalling RW, Gould KL: Automated evaluation of vessel diameter from arteriograms. Comp Cardiol 1982: 215–218.

    Google Scholar 

  39. Kirkeeide RL, Smalling RW, Gould KL: Automated measurement of artery diameter from arteriograms. Circulation 66, 1982: 11–325 (Abstract).

    Google Scholar 

  40. Kirkeeide RL, Parsel L, Gould KL: Prediction of coronary flow reserve of stenotic coronary arteries by quantitative arteriography. Circulation 70, 1984: 11–250 (Abstract).

    Google Scholar 

  41. Brown BG, Bolson EL, Dodge HT: Arteriographic assessment of coronary atherosclerosis. Review of current methods, their limitations, and clinical applications. Arteriosclerosis 2, 1982: 2–15.

    Article  PubMed  CAS  Google Scholar 

  42. Lipscomb K, Gould KL: Mechanism of the effect of coronary artery stenosis on coronary flow in the dog. Am Heart J 89, 1975: 60–67.

    Article  PubMed  CAS  Google Scholar 

  43. Helfant RH : The relationship between myocardial blood flow and contraction by myocardial layer in the canine left ventricle during ischema. Circ res 48, 1981: 430–438

    PubMed  CAS  Google Scholar 

  44. Bache RJ, Schwartz JS: Effect of perfusion pressure distal to a coronary stenosis on transmural myocardial blood flow. Circulation 65,1982: 928–935.

    Article  PubMed  CAS  Google Scholar 

  45. Young DF, Cholvin NR, Roth AC: Pressure drop across artificially induced stenoses in the femoral arteries of dogs. Circ Res 36, 1975: 735–743.

    PubMed  CAS  Google Scholar 

  46. Young DF, Tsai FY: Flow characteristics in models of arterial stenoses. I. Steady flow. J Biomechanics 6, 1973: 395–410.

    Article  CAS  Google Scholar 

  47. Young DF, Tsai FY: Flow characteristics in models of arterial stenoses. II. Unsteady flow. J Biomechanics 6, 1973: 547–559.

    Article  CAS  Google Scholar 

  48. Seeley BD, Yound DF: Effect of geometry on pressure losses across models of arterial stenoses. J Biomechanics 9, 1976: 439–448.

    Article  CAS  Google Scholar 

  49. Lipscomb K, Hooten S: Effect of stenotic dimensions and blood flow on the hemodynamic significance of model coronary arterial stenoses. Am J Cardiol 42, 1978: 781–792.

    Article  PubMed  CAS  Google Scholar 

  50. Siebes M, Gottwik M, Schlepper M: Qualitative and quantitative experimental studies on the evaluation of model coronary arteries from angiograms. Comp Cardiol 1982: 211–214.

    Google Scholar 

  51. Rutishauser W: Equipment for cinedensitometry from 35-mm film. In: Roentgen-, Cine-, and Videodensitometry. P.H. Heintzen (Ed). Georg Thieme Verlag, Stuttgart, 1971: 68–73.

    Google Scholar 

  52. Crawford DW, Brooks SH, Selzer RH, Barndt Jr R, Beckenback ES, Blankenhorn DH: Computer densitometry for angiographic assessment of arterial cholesterol content and gross pathology in human atherosclerosis. J Lab Clin Med 89, 1977: 378–392.

    PubMed  CAS  Google Scholar 

  53. Nichols AB, Gabrieli CFO, Fenoglio JJ, Esser PD: Quantification of relative coronary arterial stenosis by cinevideodensitometric analysis of coronary arteriograms. Circ 69, 1984: 512–522.

    Article  CAS  Google Scholar 

  54. Serruys PW, Reiber JHC, Wijns W, Brand M van den, Kooijman CJ, Katen HJ ten, Hugenholtz PG: Assessment of percutaneous transluminal coronary angioplasty by quantitative coronary angiography: Diameter versus densitometric area measurements. Am J Cardiol 54, 1984: 482– 488.

    Article  PubMed  CAS  Google Scholar 

  55. Talukder N, Karayannacos PE, Nerem RM, Vasko JS: An experimental study of the fluid dynamics of multiple noncritical stenoses. J Biochemical Engineering, 1977: 74–82.

    Google Scholar 

  56. Walinsky P, Santamore WP, Weiner L, Brest AN: Dynamic changes in the haemodynamic severity of coronary artery stenosis in a canine model. Cardiov Res 13, 1979: 113–118.

    Article  CAS  Google Scholar 

  57. Schwartz JS, Carlyle PF, Cohn JN: Effect of dilation of the distal coronary bed on flow and resistance in severely stenotic coronary arteries in the dog. Am J Cardiol 43, 1979: 219–224.

    Article  PubMed  CAS  Google Scholar 

  58. Santamore WP, Walinsky P: Altered coronary flow responses to vasoactive drugs in the presence of coronary arterial stenosis in the dog. Am J Cardiol 45, 1980: 276–285.

    Article  PubMed  CAS  Google Scholar 

  59. Brown BG, Josephson MA, Petersen RB, Pierce CD, Wong M, Hecht HS, Bolson E, Dodge HT: Intravenous dipyridamole combined with isometric handgrip for near maximal acute increase in coronary flow in patients with coronary artery disease. Am J Cardiol 48, 1981: 1077–1085.

    Article  PubMed  CAS  Google Scholar 

  60. Logan SE: On the fluid mechanics of human coronary artery stenosis. IEEE Trans on Biom Eng BME-22, 1975: 327–334.

    Google Scholar 

  61. Gould KL: Collapsing coronary stenosis — a Starling resistor. Int J Cardiol 2, 1982: 39–42.

    Article  PubMed  CAS  Google Scholar 

  62. Fiddian RV, Byar D, Edwards EA: Factors affecting flow through a stenosed vessel. Archives of Surgery 88, 1964: 105–112.

    Google Scholar 

  63. Collins SM, Skorton DJ, Harrison DG, White CW, Eastham CL, Hiratzka LF, Doty DB, Marcus ML: Quantitative computer-based videodensitometry and the physiological significance of a coronary stenosis. Comp Cardiol 1982: 219–222.

    Google Scholar 

  64. Marcus M, Wright C, Doty D, Eastham C, Laughlin D, Krumm P, Fastenow C, Brody M: Measurements of coronary velocity and reactive hyperemia in the coronary circulation of humans. Circ Res 49, 1981: 877–891.

    PubMed  CAS  Google Scholar 

  65. Gewirtz H, Williams DO, Most AS: Quantitative assessment of the effects of a fixed 50% coronary artery stenosis on regional myocardial flow reserve and transmural distribution of blood flow. J Am Coll Cardiol 1, 1983: 1273–1280.

    Article  PubMed  CAS  Google Scholar 

  66. Hoffman JIE: Maximal coronary flow and the concept of coronary vascular reserve. Circulation 70,1984: 153–159.

    Article  Google Scholar 

  67. Mullani NA: Myocardial perfusion with rubidium-82: III. Theory relating severity of coronary stenosis to perfusion deficit. J Nucl Med 25, 1984: 1190–1196.

    PubMed  CAS  Google Scholar 

  68. Mullani NA, Goldstein RA, Gould KL, Marani SK, Fisher DJ, O’Brien Jr HA, Loberg MD: Myocardial perfusion with Rubidium-82: I. Measurement of extraction fraction and flow with external detectors. J Nucl Med 24, 1983: 898–906.

    PubMed  CAS  Google Scholar 

  69. Goldstein RA, Mullani NA, Marani SK, Fisher DJ, Gould KL, O’Brien Jr HA: Myocardial perfusion with rubidium-82: II. Effects of metabolic and pharmacologic interventions. J Nucl Med 24, 1983: 907–915.

    PubMed  CAS  Google Scholar 

  70. Vlodaver Z, Frech R, Van Tassel RA, Edwards JE: Correlation of the antemortem coronary arteriogram and the postmortem specimen. Circulation 47, 1973: 162–169.

    PubMed  CAS  Google Scholar 

  71. Grondin CM, Dyrda I, Pasternac A, Campeau L, Bourassa MG, Lesperance J: Discrepancies between cineangiographic and postmortem findings in patients with coronary artery disease and recent myocardial revascularization. Circulation 49, 1974: 703–708.

    PubMed  CAS  Google Scholar 

  72. Gallagher KP, Folts JD, Rowe GG: Comparison of coronary arteriograms with direct measurements of stenosed coronary arteries in dogs. Am Heart J 95, 1978: 338–347.

    Article  PubMed  CAS  Google Scholar 

  73. Hutchins GM, Bulkley BH, Ridolfi RL, Griffith LSC, Lohr FT, Piasio MA: Correlation of coronary arteriograms and left ventriculograms with postmortem studies. Circulation 56, 1977: 32–37.

    PubMed  CAS  Google Scholar 

  74. Yano Y, Budinger TF, Chiang G, O’Brien HA, Grant PM: Evaluation and application of alumina-based RB-82 generators charged with high levels of SR-82/85. J Nucl Med 20,1979: 961– 966.

    PubMed  CAS  Google Scholar 

  75. Mullani NA, Ficke DC, Hartz R, Markham J, Wong WH: System design of fast PET scanners utilizing time-of-flight. IEEE Trans Nucl Sei NS-28, 1981: 104–108.

    Google Scholar 

  76. Philippe EA, Mullani N, Wong W, Hartz R: Real-time image reconstruction for time-of-flight positron emission tomography (TOFPET). IEEE Trans Nucl Sei NS-29, 1982: 524–528.

    Google Scholar 

  77. Mullani N, Wong W, Hartz R, Philippe E, Yerian K: Sensitivity improvement of TOFPET by the utilization of the inter-slice coincidences. IEEE Trans Nucl Sei NS-29, 1982: 479–483.

    Google Scholar 

  78. Wong W-H, Mullani NA, Phillipe EA, Hartz R, Gould KL: Image improvement and design optimization of the Time-of Flight PET. J Nucl Med 24, 1983: 52–60.

    PubMed  CAS  Google Scholar 

  79. Mullani NA, Gaeta J, Yerian K, Wong WH, Hartz RK, Philippe EA, Bristow D, Gould KL: Dynamic imaging with high resolution time-of-flight PET Camera - TOFPET I. IEEE Trans Nucl Sei NS-31, 1984: 609–613.

    Google Scholar 

  80. Wong W-H, Mullani NA, Wardworth G, Hartz RK, Bristow D: Characteristics of small barium fluoride (BaF2) scintillator for high intrinsic resolution time-of-flight positron emission tomography. IEEE Trans Nucl Sei NS-31, 1984: 381–386.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Gould, K.L., Kirkeeide, R.L. (1986). Assessment of stenosis severity. In: Reiber, J.H.C., Serruys, P.W. (eds) State of the Art in Quantitative Coronary Arteriography. Developments in Cardiovascular Medicine, vol 53. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-4279-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-4279-0_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8401-7

  • Online ISBN: 978-94-009-4279-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics