Skip to main content

Autism Spectrum Disorders and Ataxia

  • Reference work entry
Handbook of the Cerebellum and Cerebellar Disorders

Abstract

Autism is a neurodevelopmental disorder characterized by pervasive deficits in language, behavior, and cognition. Pathology exists throughout the brains of subjects with autism including the cerebellum. These changes include changes in cerebellar and vermal volume, changes in pyramidal cell density, and changes in gray and white matter. Additionally, a number of brain markers associated with GABAergic function, brain development, inflammation, immune system function, and apoptosis have shown altered expression in the cerebellum of subjects with autism. The initial focus was on the contribution of cerebellar pathology on movement disorder. Over the past 15 years there has been an increased understanding that the cerebellum is involved in emotional processing, cognition, and other higher brain functions, many of which are impaired in autism. Ataxia, or abnormal gait, is often accompanied by degeneration of the cerebellum. Moreover, similar to autism, ataxia is often associated with deficits in executive function, emotional processing, and cognition. The purpose of this chapter is to summarize findings of cerebellar pathology in autism and how cerebellar pathology may contribute to the behavioral and cognitive aspects of autism and ataxia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abrahams BS, Geschwind DH (2010) Connecting genes to brain in autism spectrum disorders. Arch Neurol 67:395–399

    Article  PubMed  Google Scholar 

  • Ã…hsgren I, Baldwin I, Goetzinger-Falk C et al (2005) Ataxia, autism, and the cerebellum: a clinical study of 32 individuals with congenital ataxia. Dev Med Child Neurol 47:193–198

    Article  PubMed  Google Scholar 

  • American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. APA Press, Washington, DC

    Google Scholar 

  • Araghi-Niknam M, Fatemi SH (2003) Levels of Bcl-2 and P53 are altered in superior frontal and cerebellar cortices of autistic subjects. Cell Mol Neurobiol 23:945–952

    Article  PubMed  CAS  Google Scholar 

  • Bailey A, Luthert P, Dean A et al (1998) Clinicopathological study of autism. Brain 121:889–905

    Article  PubMed  Google Scholar 

  • Bauman ML, Kemper TL (1985) Histoanatomic observations of the brain in early infantile autism. Neurology 35:866–874

    Article  PubMed  CAS  Google Scholar 

  • Bauman ML, Kemper TL (2003) The neuropathology of autism spectrum disorders: what have we learned? In: Novartis foundation symposium 251:112–122; discussion 22–28, 281–297

    Google Scholar 

  • Bauman ML, Kemper TL (2005) Structural brain anatomy in autism: what is the evidence? In: Bauman ML, Kemper TL (eds) The neurobiology of autism. Johns Hopkins University Press, Baltimore, MD

    Google Scholar 

  • Bedogni F, Hodge RD, Nelson BR et al (2010) Autism susceptibility candidate 2 (Auts2) encodes a nuclear protein expressed in developing brain regions implicated in autism neuropathology. Gene Expr Patterns 10:9–15

    Article  PubMed  CAS  Google Scholar 

  • Burk K, Bosch S, Globas C et al (2001) Executive dysfunction in spinocerebellar ataxia type 1. Eur Neurol 46:43–48

    Article  PubMed  CAS  Google Scholar 

  • Burk K, Globas C, Bosch S et al (2003) Cognitive deficits in spinocerebellar ataxia type 1:2 and 3. J Neurol 250:207–211

    Article  PubMed  CAS  Google Scholar 

  • Centers for Disease Control and Prevention (2009) Prevalence of autism spectrum disorders: autism and developmental disabilities monitoring network, United States. Surveill Summ MMWR 58:1–20

    Google Scholar 

  • Cipriano R, Patton JT, Mayo LD et al (2010) Inactivation of p53 signaling by p73 or PTEN ablation results in a transformed phenotype that remains susceptible to nutilin-3 mediated apoptosis. Cell Cycle 9:1373–1379

    Article  PubMed  CAS  Google Scholar 

  • Courchesne E, Yeung-Courchesne R, Press GA et al (1988) Hypoplasia of cerebellar vermal lobules VI and VII in autism. N Engl J Med 318:1349–1354

    Article  PubMed  CAS  Google Scholar 

  • Courchesne E, Townsend J, Saitoh O (1994) The brain in infantile autism: posterior fossa structures are abnormal. Neurology 44:214–223

    Article  PubMed  CAS  Google Scholar 

  • Courchesne E, Karns CM, Davis HR et al (2001) Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology 57:245–254

    Article  PubMed  CAS  Google Scholar 

  • Crooks R, Mitchell T, Thom M (2000) Patterns of cerebellar atrophy in patients with chronic epilepsy; a quantitative neuropathological study. Epilepsy Res 41:63–73

    Article  PubMed  CAS  Google Scholar 

  • D’Hulst C, De Geest N, Reeve SP et al (2006) Decreased expression of the GABAA receptor in fragile X syndrome. Brain Res 1121:238–245

    Article  PubMed  Google Scholar 

  • El Idrissi A, Ding XH, Scalia J et al (2005) Decreased GABAA receptor expression in the seizure-prone fragile X mouse. Neurosci Lett 377:141–146

    Article  PubMed  CAS  Google Scholar 

  • El-Fishawy P, State MW (2010) The genetics of autism: key issues, recent findings, and clinical implications. Psychiatr Clin North Am 33:83–105

    Article  PubMed  Google Scholar 

  • Fatemi SH, Halt AR, Realmuto G et al (2002a) Purkinje cell size is reduced in cerebellum of patients with autism. Cell Mol Neurobiol 22:171–175

    Article  PubMed  Google Scholar 

  • Fatemi SH, Halt A, Stary J et al (2002b) Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in parietal and cerebellar cortices of autistic subjects. Biol Psychiatry 52:805–810

    Article  PubMed  CAS  Google Scholar 

  • Fatemi SH, Snow AV, Stary JM et al (2005) Reelin signaling is impaired in autism. Biol Psychiatry 57:777–787

    Article  PubMed  CAS  Google Scholar 

  • Fatemi SH, Reutiman TJ, Folsom TD et al (2009a) GABA(A) Receptor downregulation in brains of subjects with autism. J Autism Dev Disord 39:223–230

    Article  PubMed  Google Scholar 

  • Fatemi SH, Folsom TD, Reutiman TJ et al (2009b) Expression of GABA(B) receptors is altered in brains of subjects with autism. Cerebellum 8:64–69

    Article  PubMed  CAS  Google Scholar 

  • Fatemi SH, Folsom TD, Kneeland RE et al (2011) Metabotropic glutamate receptor 5 upregulation in children with autism is associated with underexpression of both Fragile X mental retardation protein and GABAA receptor beta 3 in adults with autism. Anat Rec (In press)

    Google Scholar 

  • Forster E, Tielsch A, Saum B et al (2002) Reelin, disabled 1, and beta 1 integrins are required for the formation of the radial glial scaffold in the hippocampus. Proc Natl Acad Sci USA 99:13178–13183

    Article  PubMed  CAS  Google Scholar 

  • Gantois I, Vandescompele J, Speleman F et al (2006) Expression profiling suggests underexpression of the GABAA receptor subunit delta in the fragile X knockout mouse model. Neurobiol Dis 21:346–357

    Article  PubMed  CAS  Google Scholar 

  • Garrard P, Martin NH, Giunti P et al (2008) Cognitive and social cognitive functioning in spinocerebellar ataxia. J Neurol 255:398–405

    Article  PubMed  CAS  Google Scholar 

  • Globas C, Bosch S, Zuhlke C et al (2003) The cerebellum and cognition. Intellectual function in spinocerebellar ataxia type 6 (SCA6). J Neurol 250:1482–1487

    Article  PubMed  CAS  Google Scholar 

  • Gottwald B, Wilde B, Mihajlovic Z et al (2004) Evidence for distinct cognitive deficits after focal cerebellar lesions. J Neurol Neurosurg Psychiatry 75:1124–1131

    Article  Google Scholar 

  • Haas RH, Townsend J, Courchesne E et al (1996) Neurological abnormalities in infantile autism. J Child Neurol 11:84–92

    Article  PubMed  CAS  Google Scholar 

  • Hagerman RJ (1996) Physical and behavioral phenotype. In: Hagerman RJ, Cronister A (eds) Diagnosis, Treatment, and Research. The Johns Hopkins University Press, Baltimore, MD

    Google Scholar 

  • Hagerman RJ, Ono MY, Hagerman PJ (2005) Recent advances in fragile X: a model for autism and neurodegeneration. Curr Opin Psychiatry 18:490–496

    Article  PubMed  Google Scholar 

  • Hallahan B, Daly EM, McAlonan G et al (2009) Brain morphology volume in autistic spectrum disorder: a magnetic resonance imaging study of adults. Psychol Med 39:337–346

    Article  PubMed  CAS  Google Scholar 

  • Hallet M, Lebiedowska MK, Thomas SL et al (1993) Locomotion of autistic adults. Arch Neurol 50:1304–1308

    Article  Google Scholar 

  • Hardan AY, Minshew NJ, Harenski K et al (2001) Posterior fossa magnetic resonance imaging in autism. J Am Acad Child Adolesc Psychiatry 40:666–672

    Article  PubMed  CAS  Google Scholar 

  • Hazlett HC, Poe M, Gerig G et al (2005) Magnetic resonance imaging and head circumference study of brain size in autism: birth through age 2 years. Arch Gen Psychiatry 62:1366–1376

    Article  PubMed  Google Scholar 

  • Herbert MR (2010) Contributions of the environment and environmentally vulnerable physiology to autism spectrum disorders. Curr Opin Neurol 23:103–110

    Article  PubMed  Google Scholar 

  • Herbert MR, Ziegler DA, Deutsch CK et al (2003) Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys. Brain 126:1182–1192

    Article  PubMed  CAS  Google Scholar 

  • Holttum J, Minshew N, Sanders R (1992) Magnetic resonance imaging of the posterior fossa in autism. Biol Psychiatry 32:1091–1101

    Article  PubMed  CAS  Google Scholar 

  • Karatekin C, Lazareff JA, Asarnow RF (2000) Relevance of the cerebellar hemispheres for executive function. Pediatr Neurol 22:106–112

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi Y, Okamoto T, Taniwaki M et al (1994) CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet 8:221–227

    Article  PubMed  CAS  Google Scholar 

  • Kawai Y, Takeda A, Abe Y et al (2004) Cognitive impairments in Machado-Joseph disease. Arch Neurol 61:1757–1760

    Article  PubMed  Google Scholar 

  • Kelly RM, Strick PL (2003) Cerebellar loops with motor cortex and prefrontal cortex. J Neurosci 23:8432–8444

    PubMed  CAS  Google Scholar 

  • Kinney DK, Munir KM, Crowley DJ et al (2008) Prenatal stress and risk for autism. Neurosci Biobehav Rev 32:1519–1532

    Article  PubMed  Google Scholar 

  • Kleiman MD, Neff S, Rosman NP (1992) The brain in infantile autism: are posterior fossa structures abnormal? Neurology 42:753–760

    Article  PubMed  CAS  Google Scholar 

  • Kogan MD, Blumberg SJ, Schieve LA et al (2009) Prevalence of parent-reported diagnosis of autism spectrum disorder among children in the US, 2007. Pediatrics 124:1395–1403

    Article  PubMed  Google Scholar 

  • Laurence JA, Fatemi SH (2005) Glial fibrillary acidic protein is elevated in superior frontal, parietal and cerebellar cortices of autistic subjects. Cerebellum 4:206–210

    Article  PubMed  CAS  Google Scholar 

  • Luque JM, Morante-Oria J, Fairen A (2003) Localization of ApoER2, VLDLR and Dab-1 in radial glia: groundwork for a new model of Reelin action during cortical development. Develop Brain Res 140:195–203

    Article  CAS  Google Scholar 

  • Manes F, Piven J, Vrancic D (1999) An MRI study of the corpus callosum and cerebellum in mentally retarded autistic individuals. J Neuropsychiatry Clin Neurosci 11:470–474

    PubMed  CAS  Google Scholar 

  • Manto M (2005) The wide spectrum of spinocerebellar ataxias (SCAs). Cerebellum 4:2–6

    Article  PubMed  CAS  Google Scholar 

  • Manto M, Marmolino D (2009) Cerebellar ataxias. Curr Opin Neurol 22:419–429

    Article  PubMed  Google Scholar 

  • Martin LA, Goldowitz D, Mittleman G (2010) Repetitive behavior and increased activity in mice with Purkinje cell loss: a model for understanding the role of cerebellar pathology in autism. Eur J Neurosci 31:544–555

    Article  PubMed  Google Scholar 

  • McAlonan GM, Cheung V, Cheung C et al (2005) Mapping the brain in autism: a voxel-based MRI study of volumetric differences and intercorrelations in autism. Brain 128:268–276

    Article  PubMed  Google Scholar 

  • Middleton FA, Strick PL (1994) Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive functioning. Science 266:458–461

    Article  PubMed  CAS  Google Scholar 

  • Mostofsky SH, Powell SK, Simmonds DJ et al (2009) Decreased connectivity and cerebellar activity in autism during motor task performance. Brain 132:2413–2425

    Article  PubMed  Google Scholar 

  • Palmen SJ, van Engeland H, Hof PR et al (2004) Neuropathological findings in autism. Brain 127:2572–2583

    Article  PubMed  Google Scholar 

  • Palmen SJ, Hulshoff Pol HE, Kemner C et al (2005) Increased gray-matter volume in medication-naïve high-functioning children with autism spectrum disorder. Psychol Med 35:561–570

    Article  PubMed  Google Scholar 

  • Paulson HL (2009) The spinocerebellar ataxias. J Neuroopthamlmol 23:227–237

    Article  Google Scholar 

  • Piven J, Saliba K, Bailey J et al (1997) An MRI study of autism: the cerebellum revisited. Neurology 49:546–551

    Article  PubMed  CAS  Google Scholar 

  • Ravizza SM, McCormick CA, Schlerf JE et al (2006) Cerebellar damage produces selective deficits in verbal working memory. Brain 129:306–320

    Article  PubMed  Google Scholar 

  • Redfern RE, Daou MC, Li L et al (2010) A mutant form of PTEN linked to autism. Protein Sci 19:1948–1956

    Article  PubMed  CAS  Google Scholar 

  • Rinehart NJ, Tonge BJ, Iansek R et al (2006) Gait function in newly diagnosed children with autism: cerebellar and basal ganglia related motor disorder. Dev Med Child Neurol 48:819–824

    Article  PubMed  Google Scholar 

  • Ritvo ER, Freeman BJ, Scheibel AB et al (1986) Lower Purkinje cell counts in the cerebella of four autistic subjects: initial findings of the UCLA-NSAC autopsy research report. Am J Psychiatry 146:862–866

    Google Scholar 

  • Riva D, Giorgi C (2000) The cerebellum contributes to higher functions during development: evidence from a series of children surgically treated for posterior fossa tumors. Brain 123:1051–1061

    Article  PubMed  Google Scholar 

  • Rojas DC, Peterson E, Winterrowd E et al (2006) Regional gray matter volumetric changes in autism associated with social and repetitive behavior symptoms. BMC Psychiatry 6:56

    Article  PubMed  Google Scholar 

  • Sajdel-Sulkowska EM, Lipinski B, Windhom H et al (2008) Oxidative stress in autism: cerebellar 3-nitrotyrosine levels. Am J Biochem Biotechnol 4:73–84

    Article  CAS  Google Scholar 

  • Sajdel-Sulkowska EM, Xu M, Koibuchi N (2009) Increase in cerebellar neurotrophin-3 and oxidative stress markers in autism. Cerebellum 8:366–372

    Article  PubMed  CAS  Google Scholar 

  • Schmahmann JD (2010) The role of the cerebellum in cognition and emotion: personal reflections since 1982 on the dysmetria of thought hypothesis, and its historical evolution from theory to therapy. Neuropsychol Rev 20:236–260

    Article  PubMed  Google Scholar 

  • Schmahmann JD, Pandya DN (1989) Anatomical investigation of projections to the basis pontis from posterior parietal association cortices in rhesus monkey. J Comp Neurol 289:53–73

    Article  PubMed  CAS  Google Scholar 

  • Schmahmann JD, Sherman JC (1997) Cerebellar cognitive affective syndrome. Int Rev Neurobiol 41:433–440

    Article  PubMed  CAS  Google Scholar 

  • Schmahmann JD, Weilburg JB, Sherman JC (2007) The neuropsychiatry of the cerebellum – insights from the clinic. Cerebellum 6:254–267

    Article  PubMed  Google Scholar 

  • Scott RB, Stoodley CJ, Anslow P et al (2001) Lateralized cognitive deficits in children following cerebellar lesions. Dev Med Child Neurol 43:685–691

    Article  PubMed  CAS  Google Scholar 

  • Scott JA, Schumann CM, Goodlin-Jones BL et al (2009) A comprehensive volumetric analysis of the cerebellum in children and adolescents with autism spectrum disorder. Autism Res 2:246–257

    Article  PubMed  Google Scholar 

  • Sheikh AM, Malik M, Wen G et al (2010a) BDNF-AKT-Bcl2 antiapoptotic signaling pathway is compromised in the brain of autistic subjects. J Neurosci Res 88:2641–2647

    PubMed  CAS  Google Scholar 

  • Sheikh AM, Li X, Wen G et al (2010b) Cathepsin D and apoptosis related proteins are elevated in the brain of autistic subjects. Neuroscience 165:363–370

    Article  PubMed  CAS  Google Scholar 

  • Sivaswamy L, Kumar A, Rajan D et al (2010) A diffusion tensor imaging study of the cerebellar pathways in children with autism spectrum disorder. J Child Neurol 25:1223–1231

    Article  PubMed  Google Scholar 

  • Sparks BF, Friedman SD, Shaw DW et al (2002) Brain structural abnormalities in young children with autism spectrum disorder. Neurology 59:184–192

    Article  PubMed  CAS  Google Scholar 

  • Stanfield AC, McIntosh AM, Spencer MD et al (2008) Towards a neuroanatomy of autism: a systematic review and meta-analysis of structural magnetic resonance imaging studies. Eur Psychiatry 23:289–299

    Article  PubMed  Google Scholar 

  • Starr EM, Berument SK, Tomlins M et al (2005) Brief report: autism in individuals with Down syndrome. J Autism Dev Disord 35:665–673

    Article  PubMed  Google Scholar 

  • Steinlin M, Styger M, Boltshauser E (1998) Non-progressive congenital ataxia with or without cerebellar hypoplasi: a review of 34 subjects. Dev Med Child Neurol 40:148–154

    Article  PubMed  CAS  Google Scholar 

  • Stoodley CJ, Schmahmann JD (2009) Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage 44:489–501

    Article  PubMed  Google Scholar 

  • Taroni F, DiDonato S (2004) Pathways to motor incoordination: the inherited ataxias. Nat Rev Neurosci 5:641–655

    Article  PubMed  CAS  Google Scholar 

  • Tavano A, Grasso R, Gagliardi C et al (2007) Disorders of cognitive and affective development in cerebellar malformations. Brain 130:2646–2660

    Article  PubMed  Google Scholar 

  • Toal F, Bloemen OJ, Deeley Q et al (2009) Psychosis and autism: magnetic resonance imaging study of brain anatomy. Br J Psychiatry 194:418–425

    Article  PubMed  Google Scholar 

  • Tuchman R, Rapin I (2002) Epilepsy in autism. Lancet Neurol 1:352–358

    Article  PubMed  Google Scholar 

  • Varga EA, Pastore M, Prior T et al (2009) The prevalence of PTEN mutations in a clinical pediatric cohort with autism spectrum disorders, developmental delay, and macrocephaly. Genet Med 11:111–117

    Article  PubMed  Google Scholar 

  • Vargas DL, Nascimbene C, Krishnan C et al (2005) Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 57:67–81

    Article  PubMed  CAS  Google Scholar 

  • Wassmer E, Davies P, Whitehouse WP et al (2003) Clinical spectrum associated with cerebellar hypoplasia. Pediatr Neurol 28:347–351

    Article  PubMed  Google Scholar 

  • Webb SJ, Sparks BF, Friedman SD et al (2009) Cerebellar vermal volumes and behavioral correlates in children with autism spectrum disorder. Psychiatry Res 172:61–67

    Article  PubMed  Google Scholar 

  • Whitney ER, Kemper TL, Bauman ML et al (2008a) Cerebellar Purkinje cells are reduced in a subpopulation of autistic brains: a stereological experiment using calbindin-D28k. Cerebellum 7:406–416

    Article  PubMed  CAS  Google Scholar 

  • Whitney ER, Kemper TL, Rosene DL et al (2008b) Calbindin-D28k is a more reliable marker of human Purkinje cells than standard Nissl stains: a sterological experiment. J Neurosci Meth 168:42–47

    Article  CAS  Google Scholar 

  • Williams RS, Hauser LS, Parpura DP et al (1980) Autism and mental retardation: neuropathologic studies performed in four retarded persons with autistic behavior. Arch Neurol 37:749–753

    Article  PubMed  CAS  Google Scholar 

  • Witnitzer M (2004) Autism and tuberous sclerosis. J Child Neurol 19:675–679

    Google Scholar 

  • Yip J, Soghomonian JJ, Blatt GJ (2007) Decreased GAD67 mRNA levels in cerebellar Purkinje cells in autism: pathophysiological implications. Acta Neuropathol 113:559–568

    Article  PubMed  CAS  Google Scholar 

  • Yip J, Soghomonian JJ, Blatt GJ (2008) Increased GAD67 mRNA expression in cerebellar interneurons in autism: implications for Purkinje cell dysfunction. J Neurosci Res 86:525–530

    Article  PubMed  CAS  Google Scholar 

  • Yip J, Soghomonian JJ, Blatt GJ (2009) Decreased GAD65 mRNA levels in select subpopulations of neurons in cerebellar dentate nuclei in autism: an in situ hybridization study. Autism Res 2:50–59

    Article  PubMed  Google Scholar 

  • Zheng T, Meng X, Wang J et al (2010) PTEN- and p53-mediated apoptosis and cell cycle arrest by FTY720 in gastric cancer cells and nude mice. J Cell Biochem 111:218–228

    Article  PubMed  CAS  Google Scholar 

  • Zhuchenko O, Bailey J, Bonnen P et al (1997) Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the α-1A-voltage dependent calcium channel. Nat Genet 15:62–69

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding from NIH (5R01HD052074-04 and 3R01HD052074-03 S1) to SHF is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hossein Fatemi M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Fatemi, S.H., Folsom, T.D. (2013). Autism Spectrum Disorders and Ataxia. In: Manto, M., Schmahmann, J.D., Rossi, F., Gruol, D.L., Koibuchi, N. (eds) Handbook of the Cerebellum and Cerebellar Disorders. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1333-8_87

Download citation

Publish with us

Policies and ethics