Skip to main content

Utilization of Sensory Information for Motor Control

  • Chapter

Abstract

Interactions between perception and action can be considered on various levels, as stressed by Prinz and Sanders (1984), starting with neurophysiological problems and ending with philosophical ones. The problem of how an animal uses information about its own state and about the environment for controlling movement is among the lower-level problems. It is now generally acknowledged that most behaviors arise from a combination of “central” elements which rely on autonomous neural mechanisms and “peripheral” elements which rely on sensory information. Movements are not simply driven by stimuli in a reflex-like manner: in controlling their movements, organisms have some degree of autonomy, that is, some degree of independence from sensory input (von Hoist, 1937). On the other hand, there can be no doubt that most movements are influenced by sensory input, despite some opinions to the contrary (e. g., Jones, 1974). Thus, the problem is to determine how sensory input is combined with central or autonomous control. In the combined system, peripheral information can be seen to have three functions: (a) it influences the decision as to what action is to be performed; (b) it participates in adjusting the parameters of the movements required for the action; and (c) it acts such to ensure that the movements are carried out correctly in the face of potential disturbances.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbs, J.H., Gracco, V.L., Cole, K.J. (1984). Control of multi-movement coordination: sensorimotor mechanisms in speech motor programming. Journal of Motor Behavior, 16, 195–232.

    PubMed  Google Scholar 

  • Adams, J. A. (1971). A closed-loop theory of motor learning. Journal of Motor Behavior, 3, 111–150.

    PubMed  Google Scholar 

  • Baily, J.S. (1972). Adaptation to prisms: do proprioceptive changes mediate adapted behavior without ballistic arm movements? Quarterly Journal of Experimental Psychology, 24, 8–20.

    Article  PubMed  Google Scholar 

  • Bässler, U. (1974). Vom femoralen Chordotonalorgan gesteuerte Reaktionen bei der Stabheuschrecke Carausius morosus: Messung der von der Tibia erzeugten Kraft im aktiven und inaktiven Tier. Kybernetik, 16, 213–226.

    Article  Google Scholar 

  • Bässler, U. (1977). Sensory control of leg movement in the stick insect Carausius morosus. Biological Cybernetics, 25, 61–72.

    Article  Google Scholar 

  • Bässler, U. (1983). Neural basis of elementary behavior in stick insects. Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Bässler, U. (1986). On the definition of central pattern generator and its sensory control. Biological Cybernetics, 54, 65–69.

    Article  Google Scholar 

  • Bernstein, N.A. (1975). Einige heranreifende Probleme der Regulation der Bewegungsakte. In N.A. Bernstein (Ed.), Bewegungsphysiologie. Leipzig: Barth, (originally published 1957 ).

    Google Scholar 

  • Berthoz, A., Pavard, B., Young, L.R. (1975). Perception of linear horizontal self–motion induced by peripheral vision (linearvection). Basic characteristics and visual–vestibular interactions. Experimental Brain Research, 23, 471–489.

    Google Scholar 

  • Bizzi, E., Polit, A., Morasso, P. (1976). Mechanisms underlying achievement of final head position. Journal of Neurophysiology, 39, 435–444.

    PubMed  Google Scholar 

  • Brooks, V.B., Cooke, J.D., Thomas, J.S. (1973). The continuity of movements. In R.B. Stein, K.G. Pearson, R.S. Smith, J.B. Redford (Eds.), Control of posture and locomotion. New York: Plenum.

    Google Scholar 

  • Brown, T.G. (1911). The intrinsic factors in the act of progression in the mammal. Proceedings of the Royal Society, 84B, 308–319.

    Article  Google Scholar 

  • Carlton, L.G. (1981). Processing of visual feedback information for movement control. Journal of Experimental Psychology: Human Perception and Performance, 7, 1019–1030.

    Google Scholar 

  • Carter, M.C. (1984). Simultaneous control of two rhythmic behaviors in the cat: locomotion and the paw-shake response. Unpublished doctoral dissertation, University of California, Los Angeles.

    Google Scholar 

  • Chase, R.A. (1965). An information-flow model of the organization of motor activity. I. Transduction, transmission and central control of sensory information. Journal of Nervous and Mental Disease, 140, 239–251.

    Google Scholar 

  • Clarac, F. (1981). Decapod crustacean leg coordination during walking. In C.F. Herreid C.R. Fourtner (Eds.), Locomotion and energetics in arthropods. New York: Plenum.

    Google Scholar 

  • Cohen, L. (1971). Synchronous bimanual movements performed by homologous and non-homologous muscles. Perceptual and Motor Skills, 32, 639–644.

    Article  PubMed  Google Scholar 

  • Conrad, B., Brooks, V.B. (1974). Effects of dentate cooling on rapid alternating arm movements. Journal of Neurophysiology, 37, 792–804.

    Google Scholar 

  • Craik, K.J.W. (1974). Theory of the human operator in control system. I. The operator as an engineering system. British Journal of Psychology, 38, 56–61.

    Google Scholar 

  • Cruse, H. (1980). A quantitative model of walking incorporating central and peripheral influences: I. The control of the individual leg. Biological Cybernetics, 37, 131–136.

    Google Scholar 

  • Cruse, H. (1981). Biologische Kybernetik. Eine Einführung in die lineare und nichtlineare Systemtheorie. Weinheim: Verlag Chemie.

    Google Scholar 

  • Cruse, H. (1985a). Which parameters control the leg movement of a walking insect? I. Velocity control during the stance phase. Journal of Experimental Biology, 116, 343–355.

    Google Scholar 

  • Cruse, H. (1985b). Which parameters control the leg movement of a walking insect? II. The start of the swing phase. Journal of Experimental Biology, 116, 357–362.

    Google Scholar 

  • Cruse, H., Briiwer, M. (1987). The human arm as a redundant manipulator: the control of path and joint angles. Biological Cybernetics, 57, 137–144.

    Google Scholar 

  • Cruse, H., Müller, U. (1986). Two coupling mechanisms which determine the coordination of ipsilateral legs in the walking crayfish. Journal of Experimental Biology, 121, 349–369.

    Google Scholar 

  • Dean, J., Cruse, H. (1986). Evidence for the control of velocity as well as position in leg protraction and retraction by the stick insect. In H. Heuer C. Fromm (Eds.), Generation and modulation of action patterns. Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Dean, J., Wendler, G. (1983). Stick insect locomotion on a walking wheel: interleg coordination of leg position. Journal of Experimental Biology, 103, 75–94.

    Google Scholar 

  • Delcomyn, F. (1981). Insect locomotion on land. In C.F. Herreid C.R. Fourtner (Eds.), Locomotion and energetics in arthropods. New York: Plenum.

    Google Scholar 

  • DiCaprio, R.A.,Clarac, F. (1981). Reversal of a walking leg reflex elicited by a muscle receptor. Journal of Experimental Biology, 90, 197–203.

    Google Scholar 

  • Feldman, A.G. (1966). Functional tuning of the nervous system with control of movement maintenance of a steady posture. HI. Mechanographic analysis of the execution by man of the simplest of motor tasks. Biophysics, 11, 766–775.

    Google Scholar 

  • Feldman, A.G. (1974a). Change of muscle length due to shift of the equilibrium point of the muscle- load system. Biophysics, 19, 544–548.

    Google Scholar 

  • Feldman, A.G. (1974b). Control of muscle length. Biophysics, 19, 766–771.

    Google Scholar 

  • Feldman, A.G. (1986). Once more on the equilibrium point hypothesis (model) for motor control. Journal of Motor Behavior, 18, 17–54.

    PubMed  Google Scholar 

  • Forssberg, H., Grillner, S., Rossignol, S. (1975). Phase dependent reflex reversal during walking in chronic spinal cats. Brain Research, 85, 103–107.

    Google Scholar 

  • Goodwin, G.M., McCloskey, D.I., Matthews, P.B.C. (1972). The contribution of muscle afferents to kinesthesia shown by vibration–induced illusions of movement and by the effects of paralyzing joint afferents. Brain, 95, 705–748.

    Article  PubMed  Google Scholar 

  • Graham, D. (1972). A behavioral analysis of the temporal organization of walking movements in the 1st instar and adult stick insect. Journal of Comparative Physiology, 81, 23–52.

    Article  Google Scholar 

  • Graham, D. (1977). Simulation of a model for the coordination of leg movement in free walking insects. Biological Cybernetics, 26, 187–198.

    Article  Google Scholar 

  • Graham, D. (1979). Effects of circum-oesophageal lesion on the behavior of the stick insect Carausius morosus. H Changes in walking coordination. Biological Cybernetics, 32, 147–152.

    Google Scholar 

  • Graham, D., Bässler, U. (1981). Effects of afference sign reversal on motor activity in walking stick insects (iCarausius morosus). Journal of Experimental Biology, 91, 179–193.

    Google Scholar 

  • Grillner, S. (1981). Control of locomotion in bipeds, tetrapods, and fish. In V.B. Brooks (Ed.), Handbook of physiology: Sec. 1. The nervous system: Vol. 2. Motor control, part 2. Bethesda, MD: American Physiological Society.

    Google Scholar 

  • Gunkel, M. (1962). Über relative Koordination bei willkürlichen menschlichen Gliederbewegungen. Pflügers Archiv für die gesamte Physiologie, 275, 472–477.

    Article  Google Scholar 

  • Haken, H., Kelso, J.A.S., Bunz, H. (1985). A theoretical model of phase transitions in human hand movements. Biological Cybernetics, 51, 347–356.

    Google Scholar 

  • Hein, A., Held, R. (1962). A neural model for labile sensorimotor coordinations. In E.E. Bernhard, M.R. Kare (Eds.), Biological prototypes and synthetic systems I. New York: Plenum.

    Google Scholar 

  • Heuer, H. (1983). Bewegungslernen. Stuttgart: Kohlhammer.

    Google Scholar 

  • Heuer, H. (1988). Psychomotorik. In H. Spada (Ed.), Lehrbuch der Allgemeinen Psychologie. Bern: Huber.

    Google Scholar 

  • Heuer, H., Prinz, W. (1987). Initiierung und Steuerung von Handlungen und Bewegungen, In M. Amelang (Ed.), Bericht über den 35. Kongress der Deutschen Gesellschaft für Psychologie, Heidelberg, 1986. Göttingen: Hogrefe

    Google Scholar 

  • Heuer, H., Wing, A.M. (1984). Doing two things at once: Process limitations and interactions. In M.M. Smyth A.M. Wing (Eds.), Psychology of human movement. London: Academic.

    Google Scholar 

  • Hopf, H.C., Handwerker, H., Hausmanns, J. (1967). Die rasche Willkürbewegung des Menschen. Untersuchungen zur zentralen Programmierung. Deutsche Zeitschrift für Nervenheilkunde, 191, 186–209.

    Google Scholar 

  • Hoyle, G. (1964). Exploration of neuronal mechanisms underlying behavior in insects. In R.F. Reiss (Ed.), Neural theory and modelling. Stanford: Stanford University Press.

    Google Scholar 

  • Hoyle, G. (1983). Muscles and their neural control. New York: Wiley.

    Google Scholar 

  • Hughes, O.M., Abbs, J.H. (1976). Labial-mandibular coordination in the production of speech. Implications for the operation of motor equivalence. Phonetica, 33, 199–221.

    Google Scholar 

  • Hull, C.L. (1952). A behavior system. New Haven: Yale University Press.

    Google Scholar 

  • Ingle, D.J. (1982). Organization of visuomotor behaviours in vertebrates. In D.J. Ingle, M.A. Goodale, R.J.W. Mansfield (Eds.), Analysis of visual behavior. Cambridge, MA: MIT Press.

    Google Scholar 

  • Jander, J.P. (1985). Mechanical stability in stick insects when walking straight and around curves. In M. Gewecke G. Wendler (Eds.), Insect locomotion. Berlin: Parey.

    Google Scholar 

  • Jones, B. (1974). Is proprioception important for skilled performance? Journal of Motor Behavior, 6, 33–45.

    Google Scholar 

  • Jordan, T.C. (1972). Characteristics of visual and proprioceptive response times in the learning of a motor skill. Quarterly Journal of Experimental Psychology, 24, 536–543.

    Article  PubMed  Google Scholar 

  • Keele, S.W., Posner, M.I. (1968). Processing of visual feedback in rapid movements. Journal of Experimental Psychology, 77, 155–158.

    Google Scholar 

  • Kelso, J.A.S. (1986). Pattern formation in speech and limb movements involving many degrees of freedom. In H. Heuer C. Fromm (Eds.), Generation and modulation of action patterns. Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Kelso, J.A.S., Kay, B.S.A. (1987). Information and control. In H. Heuer A.F. Sanders (Eds.), Perspectives on perception and action. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Kelso, J.A.S., Stelmach, G.E. (1976). Central and peripheral mechanisms in motor control. In G.E. Stelmach (Ed.), Motor control: issues and trends. New York: Academic.

    Google Scholar 

  • Kelso, J.A.S., Southard, D.L., Goodman, D. (1979). On the co–ordination of two-handed movements. Journal of Experimental Psychology: Human Perception and Performance, 5, 229–238.

    Google Scholar 

  • Kelso, J.A.S., Holt, K.G., Kugler, P.N., Turvey, M.T. (1980). On the concept of coordinative structures as dissipative structures. II. Empirical lines of convergence. In G.E. Stelmach J. Requin (Eds.), Tutorials in motor behavior. Amsterdam: North-Holland.

    Google Scholar 

  • Kelso, J.A.S., Schöner, G., Scholz, J.P., Haken, H. (1987). Phase-locked modes, phase transitions and component oscillators in biological motion. Physica Scripta, 35, 79–98.

    Google Scholar 

  • Kugler, P.N., Kelso, J.A.S., Turvey, M.T. (1980). On the concept of coordinative structures as dissipative structures. I. Theoretical line. In G.E. Stelmach I. Requin (Eds.), Tutorials in motor behavior. Amsterdam: North–Holland.

    Google Scholar 

  • Kugler, P.N., Kelso, J.A.S., Turvey, M.T. (1982). On coordination and control in naturally developing systems. In J.A.S. Kelso J.E. Clarke (Eds.), The development of movement control and coordination. New York: Wiley.

    Google Scholar 

  • Land, M.F. (1972). Stepping movements made by jumping spiders during turns mediated by the lateral eyes. Journal of Experimental Biology, 57, 15–40.

    PubMed  Google Scholar 

  • Lashley, K.S. (1917). The accuracy of movement in the absence of excitation from the moving organ. American Journal of Physiology, 43, 169–194.

    Google Scholar 

  • Lashley, K.S. (1951). The problem of serial order in behavior. In L.A. Jeffress (Ed.), Cerebral mechanisms in behavior. The Hixon symposium. New York: Wiley.

    Google Scholar 

  • Laszlo, J.I. (1967). Training of fast tapping with reduction of kinesthetic, tactile, visual, and auditory sensations. Quarterly Journal of Experimental Psychology, 19, 344–349.

    Article  PubMed  Google Scholar 

  • Lee, D.N., Lishman, J.R. (1975). Visual proprioceptive control of stance. Journal of Human Movement Studies, 1, 87–95.

    Google Scholar 

  • Lee, D.N., Young, D.S. (1983). Visual timing of interceptive action. In D.J. Ingle, M. Jeannerod, D.N. Lee Brain mechanisms and spatial vision. Dordrecht: Nijhoff.

    Google Scholar 

  • Lee, D.N., Young, D.S. (1986). Gearing action to the environment. In H. Heuer C. Fromm (Eds.), Generation and modulation of action patterns. Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Lee, D.N., Lishman, J.R., Thomson, J.A. (1982). Visual regulation of gait in long jumping. Journal of Experimental Psychology: Human Perception and Performance, 8, 448–459.

    Google Scholar 

  • Lee, D.N., Young, D.S., Reddish, E., Lough, S., Clayton, T.M.H. (1983). Visual timing in hitting an accelerating ball. Quarterly Journal of Experimental Psychology, 35a, 333–346.

    Google Scholar 

  • MacKay, D.G. (1986). Self–inhibition and the disruptive effects of internal and external feedback in skilled behavior. In H. Heuer C. Fromm (Eds.), Generation and modulation of action patterns. Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • MacNeilage, P.F. (1980). Distinctive properties of speech motor control. In G.E. Stelmach J. Requin (Eds.), Tutorials in motor behavior. Amsterdam: North-Holland.

    Google Scholar 

  • Marteniuk, R.G., MacKenzie, C.L. (1980). A preliminary theory of two-hand coordination control. In G.E. Stelmach J. Requin (Eds.), Tutorials in motor behavior. Amsterdam: North-Holland.

    Google Scholar 

  • Marteniuk, R.G., MacKenzie, C.L., Baba, D.M. (1984). Bimanual movement control: information processing and interaction effects. Quarterly Journal of Experimental Psychology, 36a, 335–365.

    Google Scholar 

  • Meyer, D.E., Smith, J.E.K., Wright, C.E. (1982). Models for the speed and accuracy of aimed movements. Psychological Review, 89, 449–482.

    Google Scholar 

  • Miller, G.A., Galanter, E., Pribram, K.H. (1960). Plans and the structure of behavior. New York: Holt.

    Book  Google Scholar 

  • Monsell, S. (1986). Programming of complex sequences: evidence from the timing of rapid speech and other productions. In H. Heuer C. Fromm (Eds.), Generation and modulation of action patterns. Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Nashner, L., Berthoz, A. (1978). Visual contribution to rapid motor responses during postural control. Brain Research, 150, 403–407.

    Google Scholar 

  • Navas, F., Stark, L. (1968). Sampling or intermittency in hand control system dynamics. Biophysics Journal, 8, 252–302.

    PubMed  Google Scholar 

  • Nielsen, T.I. (1963). Volition: a new approach. Scandinavian Journal of Psychology, 4, 225–230.

    Article  Google Scholar 

  • Partridge, L.D. (1979). Muscle properties: a problem for the motor controller physiologist. In R.E. Talbott D.R. Humphrey (Eds.), Posture and movement. New York: Raven.

    Google Scholar 

  • Pearson, K.G., lies, F.J. (1973). Nervous mechanisms underlying intersegmental coordination of leg movements during walking in the cockroach. Journal of Experimental Biology, 58, 125–144.

    Google Scholar 

  • Pew, R.W. (1966). Acquisition of hierarchical control over the temporal organization of skill. Journal of Experimental Psychology, 71, 764–771.

    Article  PubMed  Google Scholar 

  • Poulton, E.C. (1957). On prediction in skilled movements. Psychological Bulletin, 54, 467–478.

    Article  PubMed  Google Scholar 

  • Poulton, E.C. (1966). Tracking behavior. In E.A. Bilodeau (Ed.), Acquisition of skill. New York: Aca–demic.

    Google Scholar 

  • Prinz, W., Sanders, A.F. (1984). Preface. In W. Prinz A.F. Sanders (Eds.), Cognition and motor processes. Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Roeck, E. (1977). Verzögerte auditive Rückkopplung (VAR) der Lautsprache. In E. Roeck (Ed.), Verzögerte auditive Rückkopplung (VAR). Bern: Huber.

    Google Scholar 

  • Rosenbaum, D.A. (1985). Motor programming: a review and a scheduling theory. In H.Heuer, U. Kleinbeck, K.–H. Schmidt (Eds.), Motor behavior. Programming, control, and acquisition. Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Salmoni, A.W., Schmidt, R.A., Walter, C.B. (1984). Knowledge of results and motor learning: a review and critical reappraisal. Psychological Bulletin, 95, 355–386.

    Google Scholar 

  • Saltzman, E. (1986). Task dynamic coordination of the speech articulators. A preliminary model. In H.Heuer C. Fromm (Eds.), Generation and modulation of action patterns. Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • Saltzman, E., Kelso, J.A.S. (1987). Skilled actions: a task–dynamic approach. Psychological Review, 94, 84–106.

    Google Scholar 

  • Schmidt, R.A. (1980). On the theoretical status of time in motor program representations. In G.E. Stelmach J. Requin (Eds.), Tutorials in motor behavior. Amsterdam: North-Holland.

    Google Scholar 

  • Schmidt, R.A. (1982). Motor control and learning: a behavioral emphasis. Champaign: Human Kinetics.

    Google Scholar 

  • Schmidt, R.A. (1985a). The search for invariance in skilled movement behavior. Research Quarterly for Exercises and sport, 56, 188–200.

    Google Scholar 

  • Schmidt, R.A. (1987). Motor and action perspectives on motor behavior. In O. Meijer K. Roth (Eds.), Complex movement behavior: the motor action controversy. Amsterdam: North-Holland.

    Google Scholar 

  • Schmidt, R.A. (1988). Motor control and learning: a behavioral emphasis ( 2nd ed. ). Champaign: Human Kinetics.

    Google Scholar 

  • Schmidt, R.A., Christenson, R., Rogers, P. (1975). Some evidence for the independence of recall and recognition in motor behavior. In D.M. Landers, D.V. Harris, R.W. Christian (Eds.), Psychology of motor behavior and sport I I. State College, PA: Penn State HPER Series.

    Google Scholar 

  • Schmidt, R.A., McGown, C., Quinn, J.T., Hawkins, B. (1986). Unexpected inertial loading in rapid reversal movements: violations of equifinality. Human Movement Science, 5, 263–273.

    Google Scholar 

  • Schöner, G., Haken, H., Kelso, J.A.S. (1986). A stochastic theory of phase transitions in human hand movements. Biological Cybernetics, 54, 247–257.

    Google Scholar 

  • Seiverston, A.I. (1980). Are central pattern generators understandable? Behavioral and Brain Sciences, 3, 535–571.

    Article  Google Scholar 

  • Shapiro, D.C., Zemicke, R.F., Gregor, R.J., Diestel, J.D. (1981). Evidence for generalized motor programs using gait pattern analysis. Journal of Motor Behavior, 13, 33–47.

    Google Scholar 

  • Shumway Cook, A., Woollacott, M.H. (1985). The growth of stability: postural control from a developmental perspective. Journal of Motor Behavior, 17, 131–147.

    Google Scholar 

  • Sittig, K. (1986). Kinesthesis and motor control. Unpublished doctoral dissertation, University of Utrecht

    Google Scholar 

  • Stein, R.B. (1982). What muscle variable(s) does the nervous systems control in limb movements? Behavioral and Brain Sciences, 5, 535–577.

    Article  Google Scholar 

  • Stimpel, E. (1933). Der Wurf. Neue Psychologische Studien, 9, 105–138.

    Google Scholar 

  • Taub, E. (1968). Prism compensation as a learning phenomenon: a phylogenetic perspective. In S.J. Freedman (Ed.), The neuropsychology of spatially oriented behavior. Homewood, IL: Dorsey.

    Google Scholar 

  • Taub, E. (1976). Movements in nonhuman primates deprived of somatosensory feedback. Exercise and Sport Sciences Reviews, 4, 335–374.

    Article  PubMed  Google Scholar 

  • Taub, E., Berman, A.J. (1968). Movement and learning in the absence of sensory feedback. In S.J. Freedman (Ed.), The neuropsychology of spatially oriented behavior. Homewood, IL: Dorsey.

    Google Scholar 

  • Taub, E., Goldberg, I.A., Taub, P. (1975). Deafferentation in monkeys: pointing at a target without visual feedback. Experimental Neurology, 46, 178–186.

    Article  PubMed  Google Scholar 

  • Taylor, F.V., Birmingham, H.P. (1948). Studies of tracking behavior. H, The acceleration of quick manual corrective responses. Journal of Experimental Psychology, 38, 783–795.

    Google Scholar 

  • Turvey, M.T. (1977). Preliminaries of a theory of action with respect to vision. In R. Shaw J. Bransford (Eds.), Perceiving, acting, and knowing. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Viviani, P. (1986). Do units of motor action really exist? In H. Heuer C. Fromm (Eds.), Generation and modulation of action patterns. Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  • von Holst, E. (1939). Die relative Koordination als Phänomen und als Methode zentralnervöser Funktionsanalyse. Ergebnisse der Physiologie, 42, 228–306.

    Google Scholar 

  • Welch, R.B. (1978). Perceptual modification: adapting to altered sensory environments. New York: Academic.

    Google Scholar 

  • Wendler, G. (1964). Laufen und Stehen der Stabheuschrecke: Sinnesborsten in den Beingelenken als Glieder von Regelkreisen. Zeitschrift für vergleichende Physiologie, 48, 198–250.

    Article  Google Scholar 

  • Wilson, D.M. (1968). The flight-control system of the locust. Scientific American, 218% 83–90.

    Google Scholar 

  • Wing, A.M. (1977). Perturbations of auditoiy feedback delay and the timing of movement. Journal of Experimental Psychology: Human Perception and Performance, 3, 175–186.

    Article  PubMed  Google Scholar 

  • Zelaznik, H.N., Hawkins, B., Kisselburgh, L. (1983). Rapid visual feedback processing in single-ai-ming movements. Journal of Motor Behavior, 15, 217–236.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cruse, H., Dean, J., Heuer, H., Schmidt, R.A. (1990). Utilization of Sensory Information for Motor Control. In: Neumann, O., Prinz, W. (eds) Relationships Between Perception and Action. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-75348-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-75348-0_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-75350-3

  • Online ISBN: 978-3-642-75348-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics