Skip to main content

Fragile X Syndrome and Targeted Treatment Trials

  • Chapter
  • First Online:
Modeling Fragile X Syndrome

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 54))

Abstract

Work in recent years has revealed an abundance of possible new treatment targets for fragile X syndrome (FXS). The use of animal models, including the fragile X knockout mouse which manifests a phenotype very similar to FXS in humans, has resulted in great strides in this direction of research. The lack of Fragile X Mental Retardation Protein (FMRP) in FXS causes dysregulation and usually overexpression of a number of its target genes, which can cause imbalances of neurotransmission and deficits in synaptic plasticity. The use of metabotropic glutamate receptor (mGluR) blockers and gamma amino-butyric acid (GABA) agonists have been shown to be efficacious in reversing cellular and behavioral phenotypes, and restoring proper brain connectivity in the mouse and fly models. Proposed new pharmacological treatments and educational interventions are discussed in this chapter. In combination, these various targeted treatments show promising preliminary results in mitigating or even reversing the neurobiological abnormalities caused by loss of FMRP, with possible translational applications to other neurodevelopmental disorders including autism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen K, Gleeson J et al (1998) PAK3 mutation in nonsyndromic X-linked mental retardation. Nat Genet 20:25–30

    Article  PubMed  CAS  Google Scholar 

  • Alloway TP, Alloway RG (2010) Investigating the predictive roles of working memory and IQ in academic attainment. J Exp Child Psychol 106(1):20–29

    Article  PubMed  Google Scholar 

  • Amaria RN, Billeisen LL et al (2001) Medication use in fragile X syndrome. Mental Health Asp Dev Dis 4(4):143–147

    Google Scholar 

  • Antar L, Afroz R et al (2004) Metabotropic glutamate receptor activation regulates fragile X mental retardation protein and FMR1 mRNA localization differentially in dendrites and at synapses. J Neurosci 24:2648–2655

    Article  PubMed  CAS  Google Scholar 

  • Antar L, Li C et al (2006) Local functions for FMRP in axon growth cone motility and activity-dependent regulation of filopodia and spine synapses. Mol Cell Neurosci 32:37–48

    Article  PubMed  CAS  Google Scholar 

  • Aschrafi A, Cunningham B et al (2005) The fragile X mental retardation protein and group I metabotropic glutamate receptors regulate levels of mRNA granules in brain. Proc Natl Acad Sci USA 102:2180–2185

    Article  PubMed  CAS  Google Scholar 

  • Backes M, Genç B et al (2000) Cognitive and behavioral profile of fragile X boys: correlations to molecular data. Am J Med Genet 95:150–156

    Article  PubMed  CAS  Google Scholar 

  • Baddeley A (2000) The episodic buffer: a new component of working memory? Trends Cogn Sci 4(11):417–423

    Article  PubMed  Google Scholar 

  • Baker S, Hooper S et al (2011) Working memory subsystems and task complexity in young boys with Fragile X syndrome. J Intellect Disabil Res 55(1):19–29

    Article  PubMed  CAS  Google Scholar 

  • Bakker C, D.-B. F. X. Consortium (1994) FMR1 knockout mice: a model to study fragile X mental retardation. Cell 78:23–33

    Google Scholar 

  • Barkley RA (1996) Attention-deficit=hyperactivity disorder. In: Mash EJ, Barkley RA (eds) Child psychopathology. Guilford, New York, pp 63–112

    Google Scholar 

  • Bassell GJ, Warren ST (2008) Fragile X syndrome: loss of local mRNA regulation alters synaptic development and function. Neuron 60(2):201–214

    Article  PubMed  CAS  Google Scholar 

  • Bear MF, Huber KM et al (2004) The mGluR theory of fragile X mental retardation. Trends Neurosci 27(7):370–377

    Article  PubMed  CAS  Google Scholar 

  • Beaulieu J, Caron M (2008) Looking at lithium: molecular moods and complex behaviour. Mol Interv 8:230–241

    Article  PubMed  CAS  Google Scholar 

  • Beck SJ, Hanson CA et al (2010) A controlled trial of working memory training for children and adolescents with ADHD. J Clin Child Adolesc Psychol 39(6):825–836

    Article  PubMed  Google Scholar 

  • Belmonte MK, Bourgeron T (2006) Fragile X syndrome and autism at the intersection of genetic and neural networks. Nat Neurosci 9(10):1221–1225

    Article  PubMed  CAS  Google Scholar 

  • Bent S, Hendren RL (2010) Improving the prediction of response to therapy in autism. Neurotherapeutics 7(3):232–240

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361(6410):315–325

    Article  PubMed  CAS  Google Scholar 

  • Berry-Kravis E, Ciurlionis R (1998) Overexpression of fragile X gene (FMR-1) transcripts increases cAMP production in neural cells. J Neurosci Res 51(1):41–48

    Article  PubMed  CAS  Google Scholar 

  • Berry-Kravis E, Potanos K (2004) Psychopharmacology in fragile X syndrome – present and future. Ment Retard Dev Disabil Res Rev 10(1):42–48

    Article  PubMed  Google Scholar 

  • Berry-Kravis E, Hicar M et al (1995) Reduced cyclic AMP production in fragile X syndrome: cytogenetic and molecular correlations. Pediatr Res 38(5):638–643

    Article  PubMed  CAS  Google Scholar 

  • Berry-Kravis E, Krause SE et al (2006) Effect of CX516, an AMPA-modulating compound, on cognition and behavior in fragile X syndrome: A controlled trial. J Child Adolesc Psychopharmacol 16(5):525–540

    Article  PubMed  Google Scholar 

  • Berry-Kravis E, Sumis A et al (2008a) Open-label treatment trial of lithium to target the underlying defect in fragile X syndrome. J Dev Behav Pediatr 29(4):293–302

    Article  PubMed  Google Scholar 

  • Berry-Kravis E, Sumis A et al (2008b) Characterization of potential outcome measures for future clinical trials in fragile x syndrome. J Autism Dev Disord 38(9):1751–1757

    Article  PubMed  Google Scholar 

  • Berry-Kravis E, Hessl D et al (2009) A pilot open label, single dose trial of fenobam in adults with fragile X syndrome. J Med Genet 46(4):266–271

    Article  PubMed  CAS  Google Scholar 

  • Berry-Kravis E, Raspa M et al (2010) Seizures in fragile x syndrome: characteristics and comorbid diagnoses. Am J Intellect Dev Disabil 115(6):461–472

    Article  PubMed  Google Scholar 

  • Berry-Kravis E, Knox A et al (2011) Targeted treatments for fragile X syndrome. J Neurodev Disord 3(3):193–210

    Google Scholar 

  • Biederman J, Monuteaux MC et al (2004) Impact of executive function deficits and attention-deficit/hyperactivity disorder (ADHD) on academic outcomes in children. J Consult Clin Psychol 72(5):757–766

    Article  PubMed  Google Scholar 

  • Bienvenu T, des Portes V et al (2000) Missense mutation in PAK3, R67C, causes X-linked nonspecific mental retardation. Am J Med Genet 93:294–298

    Article  PubMed  CAS  Google Scholar 

  • Bilousova T, Rusakov D et al (2006) Matrix metalloproteinase-7 disrupts dendritic spines in hippocampal neurons through NMDA receptor activation. J Neurochem 97:44–56

    Article  PubMed  CAS  Google Scholar 

  • Bilousova T, Dansie L et al (2009) Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. J Med Genet 46:94–102

    Article  PubMed  CAS  Google Scholar 

  • Bolduc F, Bell K et al (2008) Excess protein synthesis in Drosophila fragile X mutants impairs long-term memory. Nat Neurosci 11:1143–1145

    Article  PubMed  CAS  Google Scholar 

  • Braun K, Segal M (2000) FMRP involvement in formation of synapses among cultured hippocampal neurons. Cereb Cortex 10:1045–1052

    Article  PubMed  CAS  Google Scholar 

  • Bregman JD, Leckman JF et al (1988) Fragile X syndrome: Genetic predisposition to psychopathology. J Autism Dev Disord 18:343–354

    Article  PubMed  CAS  Google Scholar 

  • Bschor T, Lewitzka U et al (2003) Lithium augmentation in treatment-resistant depression: clinical evidence, serotonergic and endocrine mechanisms. Pharmacopsychiatry 36(Suppl 3):S230–234

    PubMed  CAS  Google Scholar 

  • Castellanos FX, Tannock R (2002) Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nat Rev Neurosci 3(8):617–628

    PubMed  CAS  Google Scholar 

  • Chang S, Bray S et al (2008) Identification of small molecules rescuing fragile X syndrome phenotypes in Drosophila. Nat Chem Biol 4:256–263

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Toth M (2001) Fragile X mice develop sensory hyperreactivity to auditory stimuli. Neuroscience 103:1043–1050

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Ona V et al (2000) Minocycline inhibits caspase-1 and caspase-3 expression and delays mortality in a transgenic mouse model of Huntington disease. Nat Med 6:797–801

    Article  PubMed  CAS  Google Scholar 

  • Chen LY, Rex CS et al (2010) Physiological activation of synaptic Rac>PAK (p-21 activated kinase) signaling is defective in a mouse model of fragile X syndrome. J Neurosci 30(33):10977–10984

    Article  PubMed  CAS  Google Scholar 

  • Choi Y, Kim H et al (2007) Minocycline attenuates neuronal cell death and improves cognitive impairment in Alzheimer's disease models. Neuropsychopharmacology 32:2393–2404

    Article  PubMed  CAS  Google Scholar 

  • Choi CH, Schoenfeld BP et al (2010) Pharmacological reversal of synaptic plasticity deficits in the mouse model of Fragile X syndrome by group II mGluR antagonist or lithium treatment. Brain Res 1380:106–119. doi:10.1016/j.brainres.2010.1011.1032

    Article  PubMed  CAS  Google Scholar 

  • Chonchaiya W, Schneider A et al (2009) Fragile x: a family of disorders. Adv Pediatr 56(1):165–186

    Article  PubMed  Google Scholar 

  • Chuang S, Zhao W et al (2005) Prolonged epileptiform discharges induced by altered group I metabotropic glutamate receptor-mediated synaptic responses in hippocampal slices of a fragile X mouse model. J Neurosci 25:8048–8055

    Article  PubMed  CAS  Google Scholar 

  • Cohen I (1995) Behavioral profiles of autistic and non autistic fragile X males. Dev Brain Dysfunct 8:252–269

    Google Scholar 

  • Comery T, Harris J et al (1997) Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. Proc Natl Acad Sci USA 94:5401–5404

    Article  PubMed  CAS  Google Scholar 

  • Conway AR, Kane MJ et al (2003) Working memory capacity and its relation to general intelligence. Trends Cogn Sci 7(12):547–552

    Article  PubMed  Google Scholar 

  • Cornish KM, Sudhalter V et al (2004a) Attention and language in fragile X. Ment Retard Dev Disabil Res Rev 10(1):11–16

    Article  PubMed  Google Scholar 

  • Cornish KM, Turk J et al (2004b) Annotation: deconstructing the attention deficit in fragile X syndrome: a developmental neuropsychological approach. J Child Psychol Psychiatry 45(6):1042–1053

    Article  PubMed  CAS  Google Scholar 

  • Curia G, Papouin T et al (2008) Downregulation of tonic GABAergic inhibition in a mouse model of fragile X syndrome. Cereb Cortex 19:1515–1520

    Article  PubMed  Google Scholar 

  • Dahlin K (2010) Effects of working memory training on reading in children with special needs. Read Writ. doi:10.1007/s11145-11010-19238-y

  • Daneman M, Merikle P (1996) Working memory and language comprehension: a meta-analysis. Psychon Bull Rev 3(4):422–433

    Article  Google Scholar 

  • Darnell JC, Fraser CE et al (2005) Kissing complex RNAs mediate interaction between the Fragile-X mental retardation protein KH2 domain and brain polyribosomes. Genes Dev 19(8):903–918

    Article  PubMed  CAS  Google Scholar 

  • Darnell JC, SJ Van Driesche C et al (2011) FMRP Stalls Ribosomal Translocation on mRNAs Linked to Synaptic Function and Autism. Cell 146(2):247–261

    Google Scholar 

  • de Diego-Otero Y, Romero-Zerbo Y et al (2008) Alpha-tocopherol protects against oxidative stress in the fragile X knockout mouse: an experimental therapeutic approach for the Fmr1 deficiency. Neuropsychopharmacology 34:1011–1026

    Article  PubMed  CAS  Google Scholar 

  • de Vries PJ (2010) Targeted treatments for cognitive and neurodevelopmental disorders in tuberous sclerosis complex. Neurotherapeutics 7(3):275–282

    Article  PubMed  Google Scholar 

  • de Vrij FM, Levenga J et al (2008) Rescue of behavioral phenotype and neuronal protrusion morphology in Fmr1 KO mice. Neurobiol Dis 31(1):127–132

    Article  PubMed  CAS  Google Scholar 

  • Destot-Wong K, Liang K et al (2009) The AMPA receptor positive allosteric modulator, S18986, is neuroprotective against neonatal excitotoxic and inflammatory brain damage through BDNF synthesis. Neuropharmacology 57:277–286

    Article  PubMed  CAS  Google Scholar 

  • D'Hooge R, Nagels G et al (1997) Mildly impaired water maze performance in male Fmr1 knockout mice. Neuroscience 76(2):367–376

    Article  PubMed  Google Scholar 

  • D'Hulst C, De Geest N et al (2006) Decreased expression of the GABAA receptor in fragile X syndrome. Brain Res 1121:238–245

    Article  PubMed  CAS  Google Scholar 

  • Dobkin C, Rabe A et al (2000) Fmr1 knockout mouse has a distinctive strain-specific learning impairment. Neuroscience 100(2):423–429

    Article  PubMed  CAS  Google Scholar 

  • Dölen G, Osterweil E et al (2007) Correction of fragile X syndrome in mice. Neuron 56:955–962

    Article  PubMed  CAS  Google Scholar 

  • Du J, Wei Y et al (2010) A kinesin signaling complex mediates the ability of GSK-3beta to affect mood-associated behaviors. Proc Natl Acad Sci USA 107(25):11573–11578

    Article  PubMed  CAS  Google Scholar 

  • el Bekay R, Romero-Zerbo Y et al (2007) Enhanced markers of oxidative stress, altered antioxidants and NADPH-oxidase activation in brains from Fragile X mental retardation 1-deficient mice, a pathological model for Fragile X syndrome. Eur J Neurosci 26:3169–3180

    Article  PubMed  Google Scholar 

  • El Idrissi A, Ding X et al (2005) Decreased GABA(A) receptor expression in the seizure-prone fragile X mouse. Neurosci Lett 377:141–146

    Article  PubMed  CAS  Google Scholar 

  • El Idrissi A, Boukarrou L et al (2009) Taurine improves congestive functions in a mouse model of fragile X syndrome. Adv Exp Med Biol 643:191–198

    Article  PubMed  CAS  Google Scholar 

  • Engel PM, Santos FH et al (2008) Are working memory measures free of socioeconomic influence? J Speech Lang Hear Res 51(6):1580–1587

    Article  PubMed  Google Scholar 

  • Erickson CA, Mullett JE et al (2009) Open-label memantine in fragile X syndrome. J Autism Dev Disord 39:1629–1635

    Google Scholar 

  • Erickson CA, Mullett JE et al (2010a) Brief report: acamprosate in fragile X syndrome. J Autism Dev Disord 40(11):1412–1416

    Article  PubMed  Google Scholar 

  • Erickson CA, Stigler KA et al (2010b) Aripiprazole in autism spectrum disorders and fragile X syndrome. Neurotherapeutics 7(3):258–263

    Article  PubMed  CAS  Google Scholar 

  • Erickson CA, Weng N et al (2010c) Open-label riluzole in fragile X syndrome. Brain Res. doi:10.1016/j.brainres.2010.1010.1108

  • Farzin F, F Scaggs, et al (2011) Reliability of Eye Tracking and Pupillometry Measures in Individuals with Fragile X Syndrome. J Autism Dev Disord. DOI: 10.1007/s10803-011-1176-2

    Google Scholar 

  • Fatemi SH, Folsom TD (2010) The role of fragile X mental retardation protein in major mental disorders.". Neuropharmacology 60:1221–1226

    Article  PubMed  CAS  Google Scholar 

  • Fatemi SH, Kneeland RE et al (2010) Fragile X mental retardation protein levels are decreased in major psychiatric disorders. Schizophr Res 124(1–3):246–247

    Article  PubMed  Google Scholar 

  • Frankland P, Wang Y et al (2004) Sensorimotor gating abnormalities in young males with fragile X syndrome and Fmr1-knockout mice. Mol Psychiatry 9:417–425

    Article  PubMed  CAS  Google Scholar 

  • Freund LS, Reiss AL et al (1993) Psychiatric disorders associated with fragile X in the young female. Pediatrics 91(2):321–329

    PubMed  CAS  Google Scholar 

  • Fry AF, Hale S (2000) Relationships among processing speed, working memory, and fluid intelligence in children. Biol Psychol 54(1–3):1–34

    Article  PubMed  CAS  Google Scholar 

  • Fulks JL, O'Bryhim BE et al (2010) Dopamine release and uptake impairments and behavioral alterations observed in mice that model fragile x mental retardation syndrome. ACS Chem Neurosci 1(10):679–690

    Article  PubMed  CAS  Google Scholar 

  • Gallagher S, Daly C et al (2004) Extracellular signal-regulated protein kinase activation is required for metabotropic glutamate receptor-dependent long-term depression in hippocampal area CA1. J Neurosci 24:4859–4864

    Article  PubMed  CAS  Google Scholar 

  • Gantois I, Bakker C et al (2001) Restoring the phenotype of fragile X syndrome: insight from the mouse model. Curr Mol Med 1:447–455

    Article  PubMed  CAS  Google Scholar 

  • Gantois I, Vandesompele J et al (2006) Expression profiling suggests underexpression of the GABA(A) receptor subunit delta in the fragile X knockout mouse model. Neurobiol Dis 21:346–357

    Article  PubMed  CAS  Google Scholar 

  • Garstang J, Wallis M (2006) Randomized controlled trial of melatonin for children with autistic spectrum disorders and sleep problems. Child Care Health Dev 32(5):585–589

    Article  PubMed  CAS  Google Scholar 

  • Gasparini F, Lingenhöhl K et al (1999) 2-Methyl-6-(phenylethynyl)-pyridine (MPEP), a potent, selective and systemically active mGlu5 receptor antagonist. Neuropharmacology 38:1493–1503

    Article  PubMed  CAS  Google Scholar 

  • Gathercole SE, Pickering SJ (2000) Working memory deficits in children with low achievements in the national curriculum at 7 years of age. Br J Educ Psychol 70(Pt 2):177–194

    Article  PubMed  Google Scholar 

  • Gathercole SE, Brown L et al (2003) Working memory assessments at school entry as longitudinal predictors of National Curriculum attainment levels. Educ Child Psychol 20:109–122

    Google Scholar 

  • Geary DC, Hoard MK et al (2004) Strategy choices in simple and complex addition: Contributions of working memory and counting knowledge for children with mathematical disability. J Exp Child Psychol 88(2):121–151

    Article  PubMed  Google Scholar 

  • Gold AB, Herrmann N et al (2010) Lithium and its neuroprotective and neurotrophic effects: potential treatment for post-ischemic stroke sequelae. Curr Drug Targets 12:243–255

    Article  Google Scholar 

  • Grauer S, Marquis K (1999) Intracerebral administration of metabotropic glutamate receptor agonists disrupts prepulse inhibition of acoustic startle in Sprague–Dawley rats. Psychopharmacology (Berl) 141:405–412

    Article  CAS  Google Scholar 

  • Gray JR, Chabris CF et al (2003) Neural mechanisms of general fluid intelligence. Nat Neurosci 6(3):316–322

    Article  PubMed  CAS  Google Scholar 

  • Griffin MO, Ceballos G et al (2010) Tetracycline compounds with non-antimicrobial organ protective properties: possible mechanisms of action. Pharmacol Res. doi:10.1016/j.phrs.2010.1010.1004

  • Gross C, Nakamoto M et al (2010) Excess phosphoinositide 3-kinase subunit synthesis and activity as a novel therapeutic target in fragile X syndrome. J Neurosci 30:10624–10638

    Article  PubMed  CAS  Google Scholar 

  • Grossman A, Elisseou N et al (2006) Hippocampal pyramidal cells in adult Fmr1 knockout mice exhibit an immature-appearing profile of dendritic spines. Brain Res 1084:158–164

    Article  PubMed  CAS  Google Scholar 

  • Gruss M, Braun K (2004) Age- and region-specific imbalances of basal amino acids and monoamine metabolism in limbic regions of female Fmr1 knock-out mice. Neurochem Int 45:81–88

    Article  PubMed  CAS  Google Scholar 

  • Gunther VK, Schafer P et al (2003) Long-term improvements in cognitive performance through computer-assisted cognitive training: a pilot study in a residential home for older people. Aging Ment Health 7(3):200–206

    Article  PubMed  CAS  Google Scholar 

  • Hagerman R, Silverman A (1991) Fragile X syndrome. Diagnosis, treatment, and research. Johns Hopkins University Press, Baltimore, MD

    Google Scholar 

  • Hagerman RJ, Murphy MA et al (1988) A controlled trial of stimulant medication in children with the fragile X syndrome. Am J Med Genet 30(1–2):377–392

    Article  PubMed  CAS  Google Scholar 

  • Hagerman RJ, Fulton MJ et al (1994) A survey of fluoxetine therapy in fragile X syndrome. Dev Brain Dysfunct 7:155–164

    Google Scholar 

  • Hagerman RJ, Berry-Kravis E et al (2009) Advances in the treatment of fragile X syndrome. Pediatrics 123(1):378–390

    Article  PubMed  Google Scholar 

  • Hagerman RJ, Hoem G et al (2010) Fragile X and autism: intertwined at the molecular level leading to targeted treatments. Mol Autism 1(1):12

    Article  PubMed  CAS  Google Scholar 

  • Hardeland R (2010) Investigational melatonin receptor agonists. Expert Opin Investig Drugs 19:747–764

    Article  PubMed  CAS  Google Scholar 

  • Hayashi M, Choi S et al (2004) Altered cortical synaptic morphology and impaired memory consolidation in forebrain- specific dominant-negative PAK transgenic mice. Neuron 42:773–787

    Article  PubMed  CAS  Google Scholar 

  • Hayashi M, Rao B et al (2007) Inhibition of p21-activated kinase rescues symptoms of fragile X syndrome in mice. Proc Natl Acad Sci USA 104:11489–11494

    Article  PubMed  CAS  Google Scholar 

  • Hessl D, Berry-Kravis E et al (2008) Prepulse inhibition in fragile X syndrome: Feasibility, reliability, and implications for treatment. Am J Med Genet B Neuropsychiatr Genet. doi:10.1002/ajmg.b.30858

  • Hessl D, Maltas S et al (2010) Toward a fragile X behavior rating scale: the aberrant behavior checklist collaborative study [abstract]. 12th International Fragile X Conference; July 21st, Detroit, MI

    Google Scholar 

  • Hinton V, Brown W et al (1991) Analysis of neocortex in three males with fragile X syndrome. Am J Med Genet 41:289–294

    Article  PubMed  CAS  Google Scholar 

  • Hjalgrim H, Jacobsen TB et al (1999) Frontal-subcortical hypofunction in the fragile X syndrome [letter]. Am J Med Genet 83(2):140–141

    Article  PubMed  CAS  Google Scholar 

  • Holmes J, Gathercole SE et al (2009) Adaptive training leads to sustained enhancement of poor working memory in children. Dev Sci 12(4):F9–15

    Article  PubMed  Google Scholar 

  • Holmes J, Gathercole SE et al (2010) Working memory deficits can be overcome: impacts of training and medication on working memory in children with ADHD. Appl Cogn Psychol 24:827–836

    Article  Google Scholar 

  • Hou L, Klann E (2004) Activation of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin signaling pathway is required for metabotropic glutamate receptor-dependent long-term depression. J Neurosci 24:6352–6361

    Article  PubMed  CAS  Google Scholar 

  • Hou L, Antion M et al (2006) Dynamic translational and proteasomal regulation of Fragile X mental retardation protein controls mGluR-dependent long-term depression. Neuron 51:441–454

    Article  PubMed  CAS  Google Scholar 

  • Huber K, Kayser M et al (2000) Role for rapid dendritic protein synthesis in hippocampal mGluR-dependent long-term depression. Science 288:1254–1257

    Article  PubMed  CAS  Google Scholar 

  • Huber K, Gallagher S et al (2002) Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci USA 99:7746–7750

    Article  PubMed  CAS  Google Scholar 

  • Ingvar M, Ambros-Ingerson J et al (1997) Enhancement by an ampakine of memory encoding in humans. Exp Neurol 146:553–559

    Article  PubMed  CAS  Google Scholar 

  • Irwin S, Patel B et al (2001) Abnormal dendritic spine characteristics in the temporal and visual cortices of patients with fragile-X syndrome: a quantitative examination. Am J Med Genet 98:161–167

    Article  PubMed  CAS  Google Scholar 

  • Irwin S, Idupulapati M et al (2002) Dendritic spine and dendritic field characteristics on layer V pyramidal neurons in the visual cortex of fragile-X knockout mice. Am J Med Genet 111:140–146

    Article  PubMed  Google Scholar 

  • Jacquemont S, Curie A et al (2011) Epigenetic modification of the FMR1 gene in fragile X syndrome is associated with differential response to the mGluR5 antagonist AFQ056. Sci Transl Med 3(64):64ra61

    Article  CAS  Google Scholar 

  • Jaeggi SM, Buschkuehl M et al (2008) Improving fluid intelligence with training on working memory. Proc Natl Acad Sci USA 105(19):6829–6833

    Article  PubMed  CAS  Google Scholar 

  • Jourdi H, Hamo L et al (2009a) BDNF mediates the neuroprotective effects of positive AMPA receptor modulators against MPP+-induced toxicity in cultured hippocampal and mesencephalic slices. Neuropharmacology 56:876–885

    Article  PubMed  CAS  Google Scholar 

  • Jourdi H, Hsu YT et al (2009b) Positive AMPA receptor modulation rapidly stimulates BDNF release and increases dendritic mRNA translation. J Neurosci 29(27):8688–8697

    Article  PubMed  CAS  Google Scholar 

  • Kane MJ, Engle RW (2002) The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: an individual-differences perspective. Psychon Bull Rev 9(4):637–671

    Article  PubMed  Google Scholar 

  • Kane MJ, Hambrick DZ et al (2005) Working memory capacity and fluid intelligence are strongly related constructs: comment on Ackerman, Beier, and Boyle (2005). Psychol Bull 131(1):66–71, author reply 72–65

    Article  PubMed  Google Scholar 

  • Karr L, Pan Y et al (2010) CB1 receptor antagonism impairs the induction of epileptiform activity by group I metabotropic glutamate receptor activation. Epilepsia 51(suppl 3):121–125

    Article  PubMed  CAS  Google Scholar 

  • Kelleher RJ 3rd, Bear MF (2008) The autistic neuron: troubled translation? Cell 135(3):401–406

    Article  PubMed  CAS  Google Scholar 

  • Kelley DJ, Davidson RJ et al (2007) The cyclic AMP cascade is altered in the fragile X nervous system. PLoS One 2(9):e931

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Markham JA et al (2008) Aberrant early-phase ERK inactivation impedes neuronal function in fragile X syndrome. Proc Natl Acad Sci USA 105(11):4429–4434

    Article  PubMed  CAS  Google Scholar 

  • Klingberg T (2009) The overflowing brain: information overload and the limits of working memory. Oxford University Press, New York, NY

    Google Scholar 

  • Klingberg T (2010) Training and plasticity of working memory. Trends Cogn Sci 14(7):317–324

    Article  PubMed  Google Scholar 

  • Klingberg T, Forssberg H et al (2002) Training of working memory in children with ADHD. J Clin Exp Neuropsychol 24(6):781–791

    Article  PubMed  Google Scholar 

  • Klingberg T, Fernell E et al (2005) Computerized training of working memory in children with ADHD–a randomized, controlled trial. J Am Acad Child Adolesc Psychiatry 44(2):177–186

    Article  PubMed  Google Scholar 

  • Knox A, Berry-Kravis E (2009) Feasibility and reproducibility of the Tests of Attentional Performance for Children (KiTAP) in Fragile X Syndrome (FXS). Ann Neurol 66:S108

    Google Scholar 

  • Koekkoek S, Yamaguchi K et al (2005) Deletion of FMR1 in Purkinje cells enhances parallel fiber LTD, enlarges spines, and attenuates cerebellar eyelid conditioning in Fragile X syndrome. Neuron 47:339–352

    Article  PubMed  CAS  Google Scholar 

  • Kooy R, D'Hooge R et al (1996) Transgenic mouse model for the fragile X syndrome. Am J Med Genet 64:241–245

    Article  PubMed  CAS  Google Scholar 

  • Kooy F, Heulens I et al (2010) The GABAA receptor as a potential target for therapy of the fragile X syndrome [abstract]. NFXF 12th International FX Conference, Detroit, MI

    Google Scholar 

  • Kramar EA, Chen LY et al (2010) BDNF upregulation rescues synaptic plasticity in middle-aged ovariectomized rats. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2010.1006.1008

  • Kramár E, Lin B et al (2004) A novel mechanism for the facilitation of theta-induced long-term potentiation by brain-derived neurotrophic factor. J Neurosci 24:5151–5161

    Article  PubMed  CAS  Google Scholar 

  • Kremen WS, Jacobsen KC et al (2007) Genetics of verbal working memory processes: a twin study of middle-aged men. Neuropsychology 21(5):569–580

    Article  PubMed  Google Scholar 

  • Kronk R, Bishop EE et al (2010) Prevalence, nature, and correlates of sleep problems among children with fragile X syndrome based on a large scale parent survey. Sleep 33(5):679–687

    PubMed  Google Scholar 

  • Kwon H, Menon V et al (2001) Functional neuroanatomy of visuospatial working memory in fragile X syndrome: relation to behavioral and molecular measures. Am J Psychiatry 158(7):1040–1051

    Article  PubMed  CAS  Google Scholar 

  • Kyllonen P, Christal R (1990) Reasoning ability is (little more than) working memory capacity?! Intelligence 14:389–433

    Article  Google Scholar 

  • Lanfranchi S, Cornoldi C et al (2009) Working memory in individuals with fragile X syndrome. Child Neuropsychol 15(2):105–119

    Article  PubMed  Google Scholar 

  • Larson J, Jessen R et al (2005) Age-dependent and selective impairment of long-term potentiation in the anterior piriform cortex of mice lacking the fragile X mental retardation protein. J Neurosci 25:9460–9469

    Article  PubMed  CAS  Google Scholar 

  • Larson J, Kim D et al (2008) Olfactory discrimination learning in mice lacking the fragile X mental retardation protein. Neurobiol Learn Mem 90:90–102

    Article  PubMed  CAS  Google Scholar 

  • Lauterborn J, Gall C (2004) Ampakines increase hippocampal and neocortical BDNF expression in a mouse model of Fragile X in vitro. Soc Neurosci Abst 116:13

    Google Scholar 

  • Lauterborn JC, Lynch G et al (2000) Positive modulation of AMPA receptors increases neurotrophin expression by hippocampal and cortical neurons. J Neurosci 20:8–21

    PubMed  CAS  Google Scholar 

  • Lauterborn J, Troung G et al (2003) Chronic elevation of brain-derived neurotrophic factor by ampkaines. J Pharmacol Exp Ther 307:297–305

    Article  PubMed  CAS  Google Scholar 

  • Lauterborn J, Rex C et al (2007) Brain-derived neurotrophic factor rescues synaptic plasticity in a mouse model of fragile X syndrome. J Neurosci 27:10685–10694

    Article  PubMed  CAS  Google Scholar 

  • Lauterborn J, Pineda E et al (2009) Ampakines cause sustained increases in brain-derived neurotrophic factor signaling at excitatory synapses without changes in AMPA receptor subunit expression. Neuroscience 159:283–295

    Article  PubMed  CAS  Google Scholar 

  • Lee A, Li W et al (2003) Control of dendritic development by the Drosophila fragile X-related gene involves the small GTPase Rac1. Dev Dis 130:5543–5552

    CAS  Google Scholar 

  • Legutko B, Li X et al (2001) Regulation of BDNF expression in primary neuron culture by LY392098, a novel AMPA receptor potentiator. Neuropharmacology 40:1019–1027

    Article  PubMed  CAS  Google Scholar 

  • Li J, Pelletier MR et al (2002) Reduced cortical synaptic plasticity and GluR1 expression associated with fragile X mental retardation protein deficiency. Mol Cell Neurosci 19:138–151

    Article  PubMed  CAS  Google Scholar 

  • Liu ZH, Chuang DM et al (2010) Lithium ameliorates phenotypic deficits in a mouse model of fragile X syndrome.". Int J Neuropsychopharmacol 14:618–630

    Article  PubMed  CAS  Google Scholar 

  • Louhivuori V, Vicario A et al (2011) BDNF and TrkB in neuronal differentiation of Fmr1-knockout mouse. Neurobiol Dis 41:469–480

    Article  PubMed  CAS  Google Scholar 

  • Luciana M, Depue R et al (1992) Facilitation of working memory in humans by a D2 dopamine receptor agonist. J Cogn Neurosci 4(1):58–68

    Article  Google Scholar 

  • Luo Y, Shan G et al (2010) Fragile x mental retardation protein regulates proliferation and differentiation of adult neural stem/progenitor cells. PLoS Genet 6(4):e1000898

    Article  PubMed  CAS  Google Scholar 

  • Lynch G, Gall CM (2006) Ampakines and the threefold path to cognitive enhancement. Trends Neurosci 29(10):554–562

    Article  PubMed  CAS  Google Scholar 

  • Lynch G, Kramar EA et al (2007) Brain-derived neurotrophic factor restores synaptic plasticity in a knock-in mouse model of Huntington's disease. J Neurosci 27(16):4424–4434

    Article  PubMed  CAS  Google Scholar 

  • Maezawa I, Jin LW (2010) Rett syndrome microglia damage dendrites and synapses by the elevated release of glutamate. J Neurosci 30(15):5346–5356

    Article  PubMed  CAS  Google Scholar 

  • Martinussen R, Hayden J et al (2005) A meta-analysis of working memory impairments in children with attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 44(4):377–384

    Article  PubMed  Google Scholar 

  • Mastergeorge AM, Au J et al (2010) Fragile X: a family of disorders. In: Nass R, Frank Y (eds) Cognitive and behavioral abnormalities of pediatric diseases. Oxford University Press, New York, pp 170–187

    Google Scholar 

  • Mazzocco MMM, Baumgardner T et al (1998) Social functioning among girls with fragile X or Turner syndrome and their sisters. J Autism Dev Disord 28(6):509–517

    Article  PubMed  CAS  Google Scholar 

  • McBride S, Choi C et al (2005) Pharmacological rescue of synaptic plasticity, courtship behavior, and mushroom body defects in a model of fragile X syndrome. Neuron 45:753–764

    Article  PubMed  CAS  Google Scholar 

  • McDonnell MN, Orekhov Y et al (2007) Suppression of LTP-like plasticity in human motor cortex by the GABAB receptor agonist baclofen. Exp Brain Res 180(1):181–186

    Article  PubMed  CAS  Google Scholar 

  • McFarlane H, Kusek G et al (2008) Autism-like behavioral phenotypes in BTBR T+tf/J mice. Genes Brain Behav 7:152–163

    Article  PubMed  CAS  Google Scholar 

  • McMillin D, Ooi M et al (2009) Antimyeloma activity of the orally bioavailable dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235. Cancer Res 69:5835–5842

    Article  PubMed  CAS  Google Scholar 

  • McNab F, Varrone A et al (2009) Changes in cortical dopamine D1 receptor binding associated with cognitive training. Science 323(5915):800–802

    Article  PubMed  CAS  Google Scholar 

  • McNaughton C, Moon J et al (2008) Evidence for social anxiety and impaired social cognition in a mouse model of fragile X syndrome. Behav Neurosci 122:293–300

    Article  PubMed  Google Scholar 

  • Meredith R, Holmgren C et al (2007) Increased threshold for spike-timing-dependent plasticity is caused by unreliable calcium signaling in mice lacking fragile X gene FMR1. Neuron 54:627–638

    Article  PubMed  CAS  Google Scholar 

  • Meredith R, de Jong R et al (2011) Functional rescue of excitatory synaptic transmission in the developing hippocampus in Fmr1-KO mouse. Neurobiol Dis 41:104–110

    Article  PubMed  CAS  Google Scholar 

  • Miller GA (1956) The magical number seven plus or minus two: some limits on our capacity for processing information. Psychol Rev 63(2):81–97

    Article  PubMed  CAS  Google Scholar 

  • Miller L, McIntosh D et al (1999) Electrodermal responses to sensory stimuli in individuals with fragile X syndrome: a preliminary report. Am J Med Genet 83:268–279

    Article  PubMed  CAS  Google Scholar 

  • Min WW, Yuskaitis CJ et al (2009) Elevated glycogen synthase kinase-3 activity in Fragile X mice: key metabolic regulator with evidence for treatment potential. Neuropharmacology 56(2):463–472

    Article  PubMed  CAS  Google Scholar 

  • Mines M, Yuskaitis C et al (2010) GSK3 influences social preference and anxiety-related behaviors during social interaction in a mouse model of fragile x syndrome and autism. PLoS One 5:e9706

    Article  PubMed  CAS  Google Scholar 

  • Mineur YS, Sluyter F et al (2002) Behavorial and neuroanatomical characterization of the Fmr1 knockout mouse. Hippocampus 12:39–46

    Article  PubMed  Google Scholar 

  • Mineur Y, Huynh L et al (2006) Social behavior deficits in the Fmr1 mutant mouse. Behav Brain Res 168:172–175

    Article  PubMed  CAS  Google Scholar 

  • Minichiello L (2009) TrkB signalling pathways in LTP and learning. Nat Rev Neurosci 10:850–860

    Article  PubMed  CAS  Google Scholar 

  • Muddashetty R, Kelić S et al (2007) Dysregulated metabotropic glutamate receptor-dependent translation of AMPA receptor and postsynaptic density-95 mRNAs at synapses in a mouse model of fragile X syndrome. J Neurosci 27:5338–5348

    Article  PubMed  CAS  Google Scholar 

  • Müller D, von Cramon Y et al (1998) D1- versus D2-receptor modulation of visuospatial working memory in humans. J Neurosci 18:2720–2728

    PubMed  Google Scholar 

  • Munir F, Cornish KM et al (2000) A neuropsychological profile of attention deficits in young males with fragile X syndrome. Neuropsychologia 38(9):1261–1270

    Article  PubMed  CAS  Google Scholar 

  • Musumeci S, Hagerman R et al (1999) Epilepsy and EEG findings in males with fragile X syndrome. Epilepsia 40:1092–1099

    Article  PubMed  CAS  Google Scholar 

  • Musumeci S, Calabrese G et al (2007) Audiogenic seizure susceptibility is reduced in fragile X knockout mice after introduction of FMR1 transgenes. Exp Neurol 203:233–240

    Article  PubMed  CAS  Google Scholar 

  • Nakamoto M, Nalavadi V et al (2007) Fragile X mental retardation protein deficiency leads to excessive mGluR5-dependent internalization of AMPA receptors. Proc Natl Acad Sci USA 104:15537–15542

    Article  PubMed  CAS  Google Scholar 

  • National Institute of Child Health and Human Development, Office of Rare Disease Research, National Institute of Mental Health, and National Institute of Neurological Disorders and Stroke (2009) Outcome measures for clinical trials in children with Fragile X syndrome – meeting summary. Bethesda Marriott Pooks Hill, Bethesda, MD. http://rarediseases.info.nih.gov/ScientificConferences.aspx?PageID=5&ID=989

  • Niaz M, Logie RH (1993) Working memory, mental capacity and science education: towards an understanding of the 'working memory overload hypothesis'. Oxf Rev Educ 19(4):511–525

    Article  Google Scholar 

  • Nosyreva E, Huber K (2006) Metabotropic receptor-dependent long-term depression persists in the absence of protein synthesis in the mouse model of fragile X syndrome. J Neurophysiol 95:3291–3295

    Article  PubMed  CAS  Google Scholar 

  • Olesen PJ, Westerberg H et al (2004) Increased prefrontal and parietal activity after training of working memory. Nat Neurosci 7(1):75–79

    Article  PubMed  CAS  Google Scholar 

  • Olmos-Serrano J, Paluszkiewicz S et al (2010) Defective GABAergic neurotransmission and pharmacological rescue of neuronal hyperexcitability in the amygdala in a mouse model of fragile X syndrome. J Neurosci 30:9929–9938

    Article  PubMed  CAS  Google Scholar 

  • Owen R, Gordon-Weeks PR (2003) Inhibition of glycogen synthase kinase 3beta in sensory neurons in culture alters filopodia dynamics and microtubule distribution in growth cones. Mol Cell Neurosci 23(4):626–637

    Article  PubMed  CAS  Google Scholar 

  • Pacey L, Heximer S et al (2009) Increased GABA(B) receptor-mediated signaling reduces the susceptibility of fragile X knockout mice to audiogenic seizures. Mol Pharmacol 76:18–24

    Article  PubMed  CAS  Google Scholar 

  • Paradee W, Melikian HE et al (1999) Fragile X mouse: strain effects of knockout phenotype and evidence suggesting deficient amygdala function. Neuroscience 94(1):185–192

    Article  PubMed  CAS  Google Scholar 

  • Paribello C (2010) Open label add on treatment trial of minocycline in patients with fragile X syndrome [abstract]. FRAXA investigators meeting Durham, NH

    Google Scholar 

  • Paylor R (2008) Pharmacological modification of behavioral responses in the fragile X mouse model [abstract]. 11th International Fragile X Conference St. Louis, Missouri

    Google Scholar 

  • Peier A, McIlwain K et al (2000) (Over)correction of FMR1 deficiency with YAC transgenics: behavioral and physical features. Hum Mol Genet 9:1145–1159

    Article  PubMed  CAS  Google Scholar 

  • Pinto D, Pagnamenta AT et al (2010) Functional impact of global rare copy number variation in autism spectrum disorders. Nature 466(7304):368–372

    Article  PubMed  CAS  Google Scholar 

  • Qin M, Kang J et al (2005) A null mutation for Fmr1 in female mice: effects on regional cerebral metabolic rate for glucose and relationship to behavior. Neuroscience 135(3):999–1009

    Article  PubMed  CAS  Google Scholar 

  • Qiu L, Lu T et al (2009) Limbic epileptogenesis in a mouse model of fragile X syndrome. Cereb Cortex 19:1504–1514

    Article  PubMed  Google Scholar 

  • Rauen KA, Schoyer L et al (2010) Proceedings from the 2009 genetic syndromes of the Ras/MAPK pathway: From bedside to bench and back. Am J Med Genet A 152A(1):4–24

    Article  PubMed  Google Scholar 

  • Restivo L, Ferrari F et al (2005) Enriched environment promotes behavioral and morphological recovery in a mouse model for the fragile X syndrome. Proc Natl Acad Sci USA 102:11557–11562

    Article  PubMed  CAS  Google Scholar 

  • Rex CS, Lauterborn JC et al (2006) Restoration of long-term potentiation in middle-aged hippocampus after induction of brain-derived neurotrophic factor. J Neurophysiol 96(2):677–685

    Article  PubMed  CAS  Google Scholar 

  • Rex C, Chen L et al (2009) Different Rho GTPase-dependent signaling pathways initiate sequential steps in the consolidation of long-term potentiation. J Cell Biol 186:85–97

    Article  PubMed  CAS  Google Scholar 

  • Richdale AL (1999) Sleep problems in autism: prevalence, cause, and intervention. Dev Med Child Neurol 41(1):60–66

    Article  PubMed  CAS  Google Scholar 

  • Richdale A (2003) A descriptive analysis of sleep behaviour in children with fragile X. J Intellect Dev Disabil 28:135–144

    Article  Google Scholar 

  • Romero-Zerbo Y, Decara J et al (2009) Protective effects of melatonin against oxidative stress in Fmr1 knockout mice: a therapeutic research model for the fragile X syndrome. J Pineal Res 46(2):224–234

    Article  PubMed  CAS  Google Scholar 

  • Rudelli R, Brown W et al (1985) Adult fragile X Syndrome. Clinico-neuropathologic findings. Acta Neuropathol 67:289–295

    Article  PubMed  CAS  Google Scholar 

  • Rueda N, Florez J et al (2008) Chronic pentylenetetrazole but not donepezil treatment rescues spatial cognition in Ts65Dn mice, a model for Down syndrome. Neurosci Lett 433(1):22–27

    Article  PubMed  CAS  Google Scholar 

  • Sabaratnam M, Vroegop P et al (2001) Epilepsy and EEG findings in 18 males with fragile X syndrome. Seizure 10:60–63

    Article  PubMed  CAS  Google Scholar 

  • Selby L, Zhang C et al (2007) Major defects in neocortical GABAergic inhibitory circuits in mice lacking the fragile X mental retardation protein. Neurosci Lett 412:227–232

    Article  PubMed  CAS  Google Scholar 

  • Shang Y, Wang H et al (2009) Fragile X mental retardation protein is required for chemically-induced long-term potentiation of the hippocampus in adult mice. J Neurochem 111:635–646

    Article  PubMed  CAS  Google Scholar 

  • Sharma A, Hoeffer C et al (2010) Dysregulation of mTOR signaling in fragile X syndrome. J Neurosci 30:694–702

    Article  PubMed  CAS  Google Scholar 

  • Silverman J, Tolu S et al (2010) Repetitive self-grooming behavior in the BTBR mouse model of autism is blocked by the mGluR5 antagonist MPEP. Neuropsychopharmacology 35:976–989

    Article  PubMed  CAS  Google Scholar 

  • Simmons D, Rex C et al (2009) Up-regulating BDNF with an ampakine rescues synaptic plasticity and memory in Huntington's disease knockin mice. Proc Natl Acad Sci USA 106:4906–4911

    Article  PubMed  CAS  Google Scholar 

  • Singhal NK, Srivastava G et al (2010) Melatonin or silymarin reduces maneb- and paraquat-induced Parkinson's disease phenotype in the mouse. J Pineal Res. doi:10.1111/j.1600-1079X.2010.00819.x

  • Solanto M (2002) Dopamine dysfunction in AD/HD: integrating clinical and basic neuroscience research. Behav Brain Res 130:65–71

    Article  PubMed  CAS  Google Scholar 

  • Spearman C (1927) Psychology down the ages. Macmillan, London

    Google Scholar 

  • Staubli U, Perez Y et al (1994a) Centrally active modulators of glutamate (AMPA) receptors facilitate the induction of LTP in vivo. Proc Natl Acad Sci USA 91:11158–11162

    Article  PubMed  CAS  Google Scholar 

  • Staubli U, Rogers G et al (1994b) Facilitation of glutamate receptors enhances memory. Proc Natl Acad Sci USA 91:777–781

    Article  PubMed  CAS  Google Scholar 

  • Suß H, Oberauer K et al (2002) Working-memory capacity explains reasoning ability – and a little bit more. Intelligence 20:261–288

    Article  Google Scholar 

  • Suvrathan A, Hoeffer C et al (2010) Characterization and reversal of synaptic defects in the amygdala in a mouse model of fragile X syndrome. Proc Natl Acad Sci USA 107:11591–11596

    Article  PubMed  CAS  Google Scholar 

  • Swanson HL, Sachse-Lee C (2001a) Mathematical problem solving and working memory in children with learning disabilities: both executive and phonological processes are important. J Exp Child Psychol 79(3):294–321

    Article  PubMed  CAS  Google Scholar 

  • Swanson HL, Sachse-Lee C (2001b) A subgroup analysis of working memory in children with reading disabilities: domain-general or domain-specific deficiency? J Learn Disabil 34(3):249–263

    Article  PubMed  CAS  Google Scholar 

  • Torrioli MG, Vernacotola S et al (2008) A double-blind, parallel, multicenter comparison of L-acetylcarnitine with placebo on the attention deficit hyperactivity disorder in fragile X syndrome boys. Am J Med Genet A 146(7):803–812

    PubMed  Google Scholar 

  • Turk J (1998) Fragile X syndrome and attentional deficits. J Appl Res Intellect Disabil 11:175–191

    Article  Google Scholar 

  • Ure J, Baudry M et al (2006) Metabotropic glutamate receptors and epilepsy. J Neurol Sci 247:109

    Article  CAS  Google Scholar 

  • Utari A, Chonchaiya W et al (2010) Side effects of minocycline treatment in patients with fragile X syndrome and exploration of outcome measures. Am J Intellect Dev Disabil 115(5):433–443

    Article  PubMed  Google Scholar 

  • van Galen EJ, Ramakers GJ (2005) Rho proteins, mental retardation and the neurobiological basis of intelligence. Prog Brain Res 147:295–317

    Article  PubMed  CAS  Google Scholar 

  • van't Hooft I, Andersson K et al (2003) Attention and memory training in children with acquired brain injuries. Acta Paediatr 92(8):935–940

    Article  PubMed  Google Scholar 

  • Venkitaramani DV, Aldridge GM et al (2010) Rescue of fragile X syndrome metabolic and behavioral phenotypes by lithium [abstract]. Society for Neuroscience, San Diego, CA, Abstr #: 757.12

    Google Scholar 

  • Ventura R, Pascucci T et al (2004) Object recognition impairment in Fmr1 knockout mice is reversed by amphetamine: involvement of dopamine in the medial prefrontal cortex. Behav Pharmacol 15:433–442

    Article  PubMed  CAS  Google Scholar 

  • Volk L, Pfeiffer B et al (2007) Multiple Gq-coupled receptors converge on a common protein synthesis-dependent long-term depression that is affected in fragile X syndrome mental retardation. J Neurosci 27:11624–11634

    Article  PubMed  CAS  Google Scholar 

  • Vollrath B, Duron S et al (2010) Developing inhibitors of p21-activated kinase (PAK) for the treatment of Fragile X mental retardation. Soc Neurosci Abst 757.2

    Google Scholar 

  • Wada A (2009) Lithium and neuropsychiatric therapeutics: neuroplasticity via glycogen synthase kinase-3beta, beta-catenin, and neurotrophin cascades. J Pharmacol Sci 110:14–28

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Wu L et al (2008a) FMRP acts as a key messenger for dopamine modulation in the forebrain. Neuron 59:634–647

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Wu LJ et al (2008b) Roles of calcium-stimulated adenylyl cyclase and calmodulin-dependent protein kinase IV in the regulation of FMRP by group I metabotropic glutamate receptors. J Neurosci 28(17):4385–4397

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Kim S et al (2010a) Roles of fragile X mental retardation protein in dopaminergic stimulation-induced synapse-associated protein synthesis and subsequent alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-4-propionate (AMPA) receptor internalization. J Biol Chem 285:21888–21901

    Article  PubMed  CAS  Google Scholar 

  • Wang LW, Berry-Kravis E et al (2010b) Fragile X: leading the way for targeted treatments in autism. Neurotherapeutics 7(3):264–274

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Berry-Kravis E et al (in press) Arbaclofen treatment is associated with global behavioral improvement in fragile X syndrome (FXS: results of a randomized, controlled phase II trial. J Dev Behav Pediatr

    Google Scholar 

  • Waung M, Huber K (2009) Protein translation in synaptic plasticity: mGluR-LTD, Fragile X. Curr Opin Neurobiol 19:319–326

    Article  PubMed  CAS  Google Scholar 

  • Weiler I, Irwin S et al (1997) Fragile X mental retardation protein is translated near synapses in response to neurotransmitter activation. Proc Natl Acad Sci USA 94:5395–5400

    Article  PubMed  CAS  Google Scholar 

  • Weiler I, Spangler C et al (2004) Fragile X mental retardation protein is necessary for neurotransmitter-activated protein translation at synapses. Proc Natl Acad Sci USA 101:17504–17509

    Article  PubMed  CAS  Google Scholar 

  • Weng N, Weiler IJ et al (2008) Early-phase ERK activation as a biomarker for metabolic status in fragile X syndrome. Am J Med Genet B Neuropsychiatr Genet 147B(7):1253–1257

    Article  PubMed  CAS  Google Scholar 

  • Westerberg H, Klingberg T (2007) Changes in cortical activity after training of working memory – a single-subject analysis. Physiol Behav 92(1–2):186–192

    Article  PubMed  CAS  Google Scholar 

  • Wilson B, Cox C (2007) Absence of metabotropic glutamate receptor-mediated plasticity in the neocortex of fragile X mice. Proc Natl Acad Sci USA 104:2454–2459

    Article  PubMed  CAS  Google Scholar 

  • Wirojanan J, Jacquemont S et al (2009) The efficacy of melatonin for sleep problems in children with autism, fragile X syndrome, or autism and fragile X syndrome. J Clin Sleep Med 5(2):145–150

    PubMed  Google Scholar 

  • Wisniewski K, Segan S et al (1991) The Fra(X) syndrome: neurological, electrophysiological, and neuropathological abnormalities. Am J Med Genet 38:476–480

    Article  PubMed  CAS  Google Scholar 

  • Yan QJ, Asafo-Adjei PK et al (2004) A phenotypic and molecular characterization of the fmr1-tm1Cgr fragile X mouse. Genes Brain Behav 3(6):337–359

    Article  PubMed  CAS  Google Scholar 

  • Yan Q, Rammal M et al (2005) Suppression of two major Fragile X Syndrome mouse model phenotypes by the mGluR5 antagonist MPEP.". Neuropharmacology 49:1053–1066

    Article  PubMed  CAS  Google Scholar 

  • Yuskaitis C, Beurel E et al (2010a) Evidence of reactive astrocytes but not peripheral immune system activation in a mouse model of Fragile X syndrome. Biochim Biophys Acta 1802:1006–1012

    Article  PubMed  CAS  Google Scholar 

  • Yuskaitis C, Mines M et al (2010b) Lithium ameliorates altered glycogen synthase kinase-3 and behavior in a mouse model of fragile X syndrome. Biochem Pharmacol 79:632–646

    Article  PubMed  CAS  Google Scholar 

  • Zalfa F, Eleuteri B et al (2007) A new function for the fragile X mental retardation protein in regulation of PSD-95 mRNA stability. Nat Neurosci 10(5):578–587

    Article  PubMed  CAS  Google Scholar 

  • Zeier Z, Kumar A et al (2009) Fragile X mental retardation protein replacement restores hippocampal synaptic function in a mouse model of fragile X syndrome. Gene Ther 16:1122–1129

    Article  PubMed  CAS  Google Scholar 

  • Zhao W, Bianchi R et al (2004) Extracellular signal-regulated kinase 1/2 is required for the induction of group I metabotropic glutamate receptor-mediated epileptiform discharges. J Neurosci 24:76–84

    Article  PubMed  CAS  Google Scholar 

  • Zhao M, Toyoda H et al (2005) Deficits in trace fear memory and long-term potentiation in a mouse model for fragile X syndrome. J Neurosci 25:7385–7392

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Mental Health (NIMH) Grant MH082042 (JL) in addition to NIH grants HD036071 (RH), HD02274 (RH); DE019583, DA024854, AG032119 (RH), AG032115; National Center for Resources UL1RR024146; Health and Human Services Administration of Developmental Disabilities Grant 90DD05969.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randi Hagerman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hagerman, R., Lauterborn, J., Au, J., Berry-Kravis, E. (2012). Fragile X Syndrome and Targeted Treatment Trials. In: Denman, R. (eds) Modeling Fragile X Syndrome. Results and Problems in Cell Differentiation, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21649-7_17

Download citation

Publish with us

Policies and ethics