Skip to main content

Abstract

“Intelligent activity may reasonably be regarded as the key note of mammalian progress” (Romer 1962). This progress became possible with the acquisition of a neocortex, with its great analytic, associative and synthetic potential. Other mammalian characteristics, such as improvements in the circulation and in temperature regulation and, in most mammals, the long gestation period, giving birth to live young, and the development of nursing, with concomitant care and training of the young (Romer 1962), are conditional for the development, imprinting and functioning of a complicated brain. The main characteristics of the mammalian brain all are dependent on the presence of a neocortex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aas JA (1989) Subcortical projections to the pontine nuclei in the cat. J Comp Neurol 282:331–354

    CAS  PubMed  Google Scholar 

  • Abbie AA (1934) The brain stem and cerebellum of Echidna. Philos Trans R Soc (Lond) Ser B 224:1–74

    Google Scholar 

  • Abbie AA (1940) Cortical lamination in Monotremata. J Comp Neurol 72:429–467

    Google Scholar 

  • Abeles M, Goldstein MH Jr (1970) Functional architecture in cat primary auditory cortex: columnar organization and organization according to depth. J Neurophysiol 33:172–187

    CAS  PubMed  Google Scholar 

  • Abrahams VC, Hilton SM, Malcolm JL (1962) Sensory connections to the hypothalamus and midbrain, and their role in the reflex activation of the defence reaction. J Physiol (Lond) 164:1–16

    CAS  Google Scholar 

  • Achenbach KE, Goodman DC (1968) Cerebellar projection to pons, medulla and spinal cord in the albino rat. Brain Behav Evol 1:43–57

    Google Scholar 

  • Adams JC (1979) Ascending projections to the inferior colliculus. J Comp Neurol 183:519–538

    CAS  PubMed  Google Scholar 

  • Adams JC (1983) Cytology of periolivary cells and the organization of their projections in the cat. J Comp Neurol 215:275–289

    CAS  PubMed  Google Scholar 

  • Adams JC, Mugnaini E (1990) Immunocytochemical evidence for inhibitory and disinhibitory circuits in the superior olive. Hearing Res 49:281–298

    CAS  Google Scholar 

  • Adams JC, Warr WB (1976) Origins of axons in the cat’s acoustic striae determined by injection of horseradish peroxidase into several tracts. J Comp Neurol 170:107–122

    CAS  PubMed  Google Scholar 

  • Addens JL, Kurotsu T (1936) Die Pyramidenbahnen von Echidna. Proc Kon Acad Wetensch Amsterdam 34:3–12

    Google Scholar 

  • Adolphs R, Tranel D, Damasio H, Damasio AR (1995) Fear and the human amygdala. J Neurosci 15:5879–5891

    CAS  PubMed  Google Scholar 

  • Aggleton JP (1986) Description of the amygdalo-hippocampal interconnections in the macaque monkey. Exp Brain Res 64:515–526

    CAS  PubMed  Google Scholar 

  • Aggleton JP (1992) The functional effects of amygdala lesions in humans: a comparison with findings from monkeys. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory and mental dysfunction. Wiley-Liss, New York, pp 485–504

    Google Scholar 

  • Aggleton JP, Mishkin M (1984) Projections of the amygdala to the thalamus in the cynomolgus monkey. J Comp Neurol 222:56–68

    CAS  PubMed  Google Scholar 

  • Aggleton JP, Burton MJ, Passingham RE (1980) Cortical and subcortical afferents to the amygdala of the rhesus monkey (Macaca mulatta). Brain Res 190:347–368

    CAS  PubMed  Google Scholar 

  • Aggleton JP, Petrides M, Iversen SD (1981) Differential effects of amygdaloid lesions on conditioned taste aversion learning by rats. Physiol Behav 27:397–400

    CAS  PubMed  Google Scholar 

  • Ahlsén G, Lindström S, Sybirska E (1978) Subcortical axon collaterals of principal cells in the lateral geniculate body of the cat. Brain Res 156:106–109

    PubMed  Google Scholar 

  • Aitkin L, Nelson J, Farrington M, Swann S (1994) The morphological development of the inferior colliculus in a marsupial, the Northern quoll (Dasyurus hallucatus). J Comp Neurol 343:532–541

    CAS  PubMed  Google Scholar 

  • Aitkin LM, Kenyon CE, Philpott P (1981) The representation of the auditory and somatosensory systems in the external nucleus of the cat inferior colliculus. J Comp Neurol 196:25–40

    CAS  PubMed  Google Scholar 

  • Akagi Y (1978) The localization of the motor neurons innervating the extraocular muscles in the oculomotor nuclei of the cat and rabbit, using horseradish peroxidase. J Comp Neurol 181:745–762

    CAS  PubMed  Google Scholar 

  • Akaike T (1992) The tectorecipient zone in the inferior olivary nucleus in the rat. J Comp Neurol 32:398–414

    Google Scholar 

  • Akers RM, Killackey HP (1979) Segregation of cortical and trigeminal afferents to the ventrobasal complex of the neonatal rat. Brain Res 161:527–532

    CAS  PubMed  Google Scholar 

  • Albers FJ (1990) Structure and organization of the superior colliculus of the rat. Thesis, University of Nijmegen

    Google Scholar 

  • Albers FJ, Meek J (1991) Dendritic and synaptic properties of collicular neurons: a quantitative light and electron microscopical study of Golgi-impregnated cells. Anat Rec 231:524–537

    CAS  PubMed  Google Scholar 

  • Albin RL, Aldridge JW, Young AB, Gilman S (1989) Feline subthalamic nucleus neurons contain glutamate-like but not GABA-like or glycine-like immunoactivity. Brain Res 491:185–188

    CAS  PubMed  Google Scholar 

  • Albright BC, Haines DE (1978) Dorsal column nuclei in a prosimian primate (Galago senegalensis). II. Cuneate and lateral cuneate nuclei: morphology and primary afferent fibers from cervical and upper thoracic spinal segments. Brain Behav Evol 15:165–184

    CAS  PubMed  Google Scholar 

  • Albus JS (1971) A theory of cerebellar function. Math Biosci 10:25–61

    Google Scholar 

  • Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271

    CAS  PubMed  Google Scholar 

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    CAS  PubMed  Google Scholar 

  • Alheid GF, Heimer L (1988) New perspectives in basal fore-brain organization of special relevance for neuropsychiatrie disorders: the striatopallidal, amygdaloid, and corticopetal components of substantia innominata. Neuroscience 27:1–39

    CAS  PubMed  Google Scholar 

  • Alheid GF, de Olmos JS, Beltramino CA (1995) Amygdala and extended amygdala. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic, San Diego, pp 495–578

    Google Scholar 

  • Allen WF (1923a) Origin and distribution of the tracts solitarius in the guinea pig. J Comp Neurol 35:171–204

    Google Scholar 

  • Allen WF (1923b) Origin and destination of the secondary visceral fibers in the guinea-pig. J Comp Neurol 35:275–312

    Google Scholar 

  • Allison AC (1953) The morphology of the olfactory system in the vertebrates. Biol Rev 28:195–244

    Google Scholar 

  • Alonso A, Kohler C (1982) Evidence for separate projections of hippocampal pyramidal and non-pyramidal neurons to different parts of the septum in the rat brain. Neurosci Lett 31:209–214

    CAS  PubMed  Google Scholar 

  • Alstermark B, Kümmel, Tantisira B (1987) Monosynaptic raphe spinal and reticulospinal projection to forelimb motoneurones in cats. Neurosci Lett 74:286–290

    CAS  PubMed  Google Scholar 

  • Amaral DG (1986) Amygdalohippocampal and amygdalocortical projections in the primate brain. In: Ben-Ari Y, Schwarcz R (eds) Excitatory amino acids and epilepsy. Plenum, New York, pp 3–17

    Google Scholar 

  • Amaral DG (1987) Memory: anatomical organization of candidate brain regions. In: Mountcastle VB, Plum F, Geiger SR (eds) The nervous system. American Physiological Society, Bethesda, pp 211–294 (Handbook of physiology, vol 5, part 1)

    Google Scholar 

  • Amaral DG, Cowan WM (1980) Subcortical afferents to the hippocampal formation in the monkey. J Comp Neurol 189:573–591

    CAS  PubMed  Google Scholar 

  • Amaral DG, Insausti R (1998) The entorhinal cortex of the monkey. IV. Topographical and laminar organization of cortical afferents. In preparation

    Google Scholar 

  • Amaral DG, Kurz J (1985) An analysis of the origins of the cholinergic and non-cholinergic septal projections to the hippocampal formation of the rat. J Comp Neurol 240:37–59

    CAS  PubMed  Google Scholar 

  • Amaral DG, Price JL (1984) Amygdalo-cortical projections in the monkey (Macaca fascicularis). J Comp Neurol 230:465–496

    CAS  PubMed  Google Scholar 

  • Amaral DG, Veazy RB, Cowan WM (1982) Some observations on hypothalamo-amygdaloid connections in the monkey. Brain Res 252:13–27

    CAS  PubMed  Google Scholar 

  • Amaral DG, Insausti R, Cowan WM (1988) The entorhinal cortex of the monkey. I. Cytoarchitectonic organization. J Comp Neurol 264:326–355

    Google Scholar 

  • Amaral DG, Ishizuka N, Claiborne B (1990) Neurons, numbers and the hippocampal network. Prog Brain Res 83:1–11

    CAS  PubMed  Google Scholar 

  • Amaral DG, Insausti R, Witter MP (1998) The entorhinal cortex of the monkey. VI. Projections from the hippocampus and subicular complex. In preparation

    Google Scholar 

  • Amaral DG, Price JL, Pitkänen A, Carmichael ST (1992) Anatomical organization of the primate amygdaloid complex. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss, New York, pp 1–66

    Google Scholar 

  • Andersen RA, Knight PL, Merzenich MM (1980) The thalamocortical and corticothalamic connections of AI, AII, and the anterior auditory field (AAF) in the cat: evidence for two largely segregated systems of connections. J Comp Neurol 194:663–701

    CAS  PubMed  Google Scholar 

  • Andersson G, Oscarsson O (1978) Climbing fiber microzones in the cerebellar vermis and their projection to different groups of cells in the lateral vestibular nucleus. Exp Brain Res 32:565–579

    CAS  PubMed  Google Scholar 

  • Angaut P (1970) The ascending projections of the nucleus interpositus posterior of the cat cerebellum. An experimental anatomical study using silver impregnation methods. Brain Res 24:377–394

    CAS  PubMed  Google Scholar 

  • Angaut P, Bowsher D (1965) Cerebello-rubral connexions in the cat. Nature 208:1002

    CAS  PubMed  Google Scholar 

  • Antonetty CM, Webster KE (1975) The organisation of the spinotectal projection. An experimental study in the rat. J Comp Neurol 163:449–467

    CAS  PubMed  Google Scholar 

  • Apkarian AV, Hodge CJ (1989a) Primate spinothalamic pathways: I. A quantitative study of the cells of origin of the spinothalamic pathway. J Comp Neurol 288:447–473

    CAS  PubMed  Google Scholar 

  • Apkarian AV, Hodge CJ (1989b) Primate spinothalamic pathways: III. Thalamic terminations of the dorsolateral and ventral spinothalamic pathways. J Comp Neurol 288:493–511

    CAS  PubMed  Google Scholar 

  • Apkarian AV, Hodge CJ (1989c) Primate spinothalamic pathways: III. Thalamic terminations of the dorsolateral and ventral spinothalamic pathways. J Comp Neurol 288:493–511

    CAS  PubMed  Google Scholar 

  • Araki M, McGeer PL, McGeer EG (1984) Presumptive γ-aminobutyric acid pathways from the midbrain to the superior colliculus studied by a combined horseradish peroxidase,-y-aminobutyric acid transaminase pharmaco-histochemical method. Neuroscience 13:433–439

    CAS  PubMed  Google Scholar 

  • Ariëns Kappers CU (1909) The phylogenesis of the palaeocortex and archi-cortex compared with the evolution of the visual neo-cortex. Arch Neurol Psychiatr (London) 4:161–173

    Google Scholar 

  • Ariëns-Kappers CU, Huber GC, Crosby E (1936) The comparative anatomy of the nervous system of vertebrates, including man, 2 vols (English edition) New York: Macmillan Co

    Google Scholar 

  • Arikuni T, Kubota K (1986) The organization of prefrontocaudate projections and their laminar origin in the macaque monkey: a retrograde study using HRP gel. J Comp Neurol 244:429–510

    Google Scholar 

  • Armand J (1982) The origin, course and terminations of corticospinal fibers in various mammals. Prog Brain Res 57:329–360

    CAS  PubMed  Google Scholar 

  • Armand J, Holstege G, Kuypers HGJM (1985) Differential corticospinal projections in the cat. An autoradiographic tracing study. Brain Res 343:351–355

    CAS  PubMed  Google Scholar 

  • Armstrong DM, Schild RF (1979) Spino-olivary neurones in the lumbosacral cord of the cat demonstrated by retrograde transport of horseradish peroxidase. Brain Res 168:176–179

    CAS  PubMed  Google Scholar 

  • Armstrong DM, Schild RF (1980) Location in the spinal cord of neurones projecting directly to the inferior olive in the cat. In: Courville J (ed) The inferior olive. Anatomy and physiology. Raven, New York, pp 125–144

    Google Scholar 

  • Armstrong DM, Campbell NC, Edgley SA, Schild RF, Trott JR (1982) Investigations of the olivocerebellar and spinoolivary pathways. In: Palay SL, Chan-Palay V (eds) The cerebellum — new vistas. Exp Brain Res Suppl 6:195–232

    Google Scholar 

  • Armstrong DM, Saper CB, Levey A, Wainer BH, Terry RD (1983) Distribution of cholinergic neurons in rat brain: demonstrated by the immunocytochemical localization of choline acetyltransferase. J Comp Neurol 216:53–68

    CAS  PubMed  Google Scholar 

  • Armstrong E, Schleicher A, Omran H, Curtis M, Zilles K (1995) The ontogeny of human gyrification. Cerebral Cortex 5:56–63

    CAS  PubMed  Google Scholar 

  • Arnsten AFT, Goldman-Rakic PS (1984) Selective prefrontal cortical projections to the region of the locus coeruleus and raphe nuclei in the rhesus monkey. Brain Res 306:9–18

    CAS  PubMed  Google Scholar 

  • Arvidsson J (1982) Somatotopic organization of vibrissae afferents in the trigeminal sensory nuclei of the rat studied by transganglionic transport of HRP. J Comp Neurol 211:84–92

    CAS  PubMed  Google Scholar 

  • Arvidsson J, Thomander L (1984) An HRP study of the central course of sensory intermediate and vagal fibers in peripheral facial nerve branches in the cat. J Comp Neurol 223:35–45

    CAS  PubMed  Google Scholar 

  • Asanuma C, Thach WT, Jones EG (1983a) Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey. Brain Res Rev 5:237–265

    Google Scholar 

  • Asanuma C, Thach WT, Jones EG (1983b) Anatomical evidence for segregated focal groupings of efferent cells and their terminal ramifications in the cerebellothalamic pathway of the monkey. Brain Res Rev 5:267–297

    Google Scholar 

  • Asanuma H (1975) Recent developments in the study of the columnar arrangement of neurons in the motor cortex. Physiol Rev 55:143–156

    CAS  PubMed  Google Scholar 

  • Asanuma H (1987) Cortical motor columns. In: Adelman G (ed) Encyclopedia of neuroscience, vol I. Birkhäuser, Boston, pp 281–282

    Google Scholar 

  • Asanuma H, Rosen I (1973) Spread of mono-and polysynaptic connections within cat’s motor cortex. Exp Brain Res 16:507–520

    CAS  PubMed  Google Scholar 

  • Aschoff A, Ostwald J (1987) Different origins of cochlear efferents in some bat species, rats, and guinea pigs. J Comp Neurol 264:56–72

    CAS  PubMed  Google Scholar 

  • Aschoff A, Oswald J (1988) Distribution of cochlear efferents and olivocollicular neurons in the brainstem of rat and guinea pig. A double labeling study with fluorescent tracers. Exp Brain Res 71:241–251

    CAS  PubMed  Google Scholar 

  • Aston-Jones G, Shipley MT, Grzanna R (1995) The locus coeruleus, A5 and A7 noradrenergic cell groups. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic, New York, pp 183–213

    Google Scholar 

  • Augustine JR, DesChamps EG, Ferguson JG Jr (1981) Functional organization of the oculomotor nucleus in the baboon. Am J Anat 161:393–403

    CAS  PubMed  Google Scholar 

  • Aumann TD, Rawson JA, Finkelstein DI, Hörne MK (1994) Projections from the lateral and interposed cerebellar nuclei to the thalamus of the rat: a light and electron microscopic study using single and double anterograde labelling. J Comp Neurol 349:165–181

    CAS  PubMed  Google Scholar 

  • Avendano C, Juretschke MA (1980) The pretectal region of the cat: a structural and topographical study with stereotaxic coordinates. J Comp Neurol 193:69–88

    CAS  PubMed  Google Scholar 

  • Avendano C, Price JL, Amaral DG (1983) Evidence for an amygdaloid projection to premotor cortex but not to motor cortex in the monkey. Brain Res 264:111–117

    CAS  PubMed  Google Scholar 

  • Azizi SA, Woodward DJ (1987) Inferior olivary nuclear complex of the rat: morphology and comments on the principles of organization within the olivocerebellar system. J Comp Neurol 263:467–484

    CAS  PubMed  Google Scholar 

  • Azizi SA, Burne RA, Woodward DJ (1985) The auditory corticopontocerebellar projection in the rat: inputs to the paraflocculs and mid-vermis. An anatomical and physiological study. Exp Brain Res 59:36–49

    CAS  PubMed  Google Scholar 

  • Bagley C (1922) Cortical motor mechanism of the sheep brain. Arch Neurol Psychiat 7:417–453

    Google Scholar 

  • Baile CA, McLaughlin CL, Della-Fera MA (1986) Role of cholecystokinin and opioid peptides in control of food intake. Physiol Rev 66:172–230

    CAS  PubMed  Google Scholar 

  • Baizer JS, Whitney JF, Bender DB (1991) Bilateral projections from the parabigeminal nucleus to the superior colliculus in monkey. Exp Brain Res 86:467–470

    CAS  PubMed  Google Scholar 

  • Baizer JS, Desimone R, Ungerleider LG (1993) Comparison of subcortical connections of inferior temporal and posterior parietal cortex in monkeys. Vis Neurosci 10:59–72

    CAS  PubMed  Google Scholar 

  • Baker J, Gibson A, Mower G, Robinson F, Glickstein M (1983) Cat visual corticopontine cells project to the superior colliculus. Brain Res 265:227–232

    CAS  PubMed  Google Scholar 

  • Baker R (1986) Brainstem neurons are peculiar for oculomotor organization. Prog Brain Res 64:257–271

    CAS  PubMed  Google Scholar 

  • Baker R, Highstein SM (1975) Physiological identification of interneurons and motoneurons in the abducens nucleus. Brain Res 83:292–298

    Google Scholar 

  • Balaban CD (1984) Olivo-vestibular and cerebello-vestibular connections in albino rabbits. Neuroscience 12:129–149

    CAS  PubMed  Google Scholar 

  • Balaban CD (1988) Distribution of inferior olivary projections to the vestibular nuclei of albino rats. Neuroscience 24:119–134

    CAS  PubMed  Google Scholar 

  • Baleydier C, Magnin M, Cooper HM (1990) Macaque accessory optic system: II. connections with the pretectum. J Comp Neurol 302:405–416

    CAS  PubMed  Google Scholar 

  • Bandler R, Carrive P, Zhang SP (1991) Integration of somatic and autonomic reactions within the midbrain periaqueductal grey: Viscerotopic, somatotopic and functional organization. Prog Brain Res 87:269–305

    CAS  PubMed  Google Scholar 

  • Barber RP, Phelps PE, Houser CR, Crawford GD, Salvaterra PM, Vaughn JE (1984) The morphology and distribution of neurons containing choline acetyltransferase in the adult rat spinal cord: an immunocytochemical study. J Comp Neurol 229:329–346

    CAS  PubMed  Google Scholar 

  • Bard P (1928) A diencephalic mechanism for the expression of rage with special reference to the synpathetic nervous system. Am J Physiol 84:490–515

    Google Scholar 

  • Bard P (1929) The central representation of the sympathetic nervous system as indicated by certain physiologic observations. Arch Neurol Psychiatry 22:230–246

    Google Scholar 

  • Baron G, Stephan H, Frahm HD (1996) Comparative neurobiology in chiroptera, vol 1. Birkhäuser, Basel

    Google Scholar 

  • Barone R, Doucet J (1964) Recherches sur la morphologie et la topographie de la substance grise dans le bulbe rachidien du boeuf. Ann Biol Anim Bioch Biophys 4:307–343

    Google Scholar 

  • Barrett RT, Bao X, Miselis RR, Altschuler SM (1994) Brain stem localization of rodent esophageal premotor neurons revealed by transneuronal passage of pseudo-rabies virus. Gastroenterology 107:883–885

    Google Scholar 

  • Batini C, Buisseret-Delmas C, Corvisier J (1976) Horseradish peroxidase localization of masticatory muscle motoneurons in cat. J Physiol (Paris) 72:301–309

    CAS  Google Scholar 

  • Batton RRI, Jayaraman A, Ruggiero D, Carpenter MB (1977) Fastigial efferent projections in the monkey: an auto-radiographic study. J Comp Neurol 174:281–306

    PubMed  Google Scholar 

  • Bauchot R (1959) Etude des structures cytoarchitectoniques du diencéphale de Talpa europaea (Insectivora Talpidae). Acta Anat 39:90–140

    CAS  PubMed  Google Scholar 

  • Bauchot R (1963) L’architectonique comparée, qualitative et quantitative, du diencéphale des insectivores. Mammalia 27[Suppl l]:1–400

    Google Scholar 

  • Baude A, Nusser Z, Roberts JDB, Mulvihil E, McIlinney J, Somogyi (1993) The metabotropic glutamate receptor (mGluRalpha) is concentrated at perisynaptic membrane of neuronal subpopulations as detected by immunogold reaction. Neuron 11:771–787

    CAS  PubMed  Google Scholar 

  • Bayer SA (1980) Quantitative 3H-thymidine radiographic analyses of neurogenesis in the rat amygdala. J Comp Neurol 194:845–875

    CAS  PubMed  Google Scholar 

  • Bayer SA, Altman J (1987) Directions in neurogenetic gradients and patterns of anatomical connections in the telence-phalon. Prog Neurobiol 29:57–106

    CAS  PubMed  Google Scholar 

  • Beach TG, McGeer EG (1984) The distribution of substance P in the primate basal ganglia: an immunohistochemical study of baboon and human brain. Neuroscience 13:29–52

    CAS  PubMed  Google Scholar 

  • Beccari N (1943) Neuroglia comparata. Sansoni Edizione Scientifiche, Firenze

    Google Scholar 

  • Bechterew W (1899) Die Leitungsbahnen im Gehirn und Ruckenmark. Verlag Arthur Georgi, Leipzig

    Google Scholar 

  • Beckstead RM (1979) An autoradiographic examination of corticocortical and subcortical projections of the mediodorsal-projection (prefrontal) cortex in the rat. J Comp Neurol 184:43–62

    CAS  PubMed  Google Scholar 

  • Beckstead RM (1983) A reciprocal axonal connection between the subthalamic nucleus and the neostriatum in the cat. Brain Res 275:137–142

    CAS  PubMed  Google Scholar 

  • Beckstead RM, Cruz CJ (1986) Striatal axons to the globus pallidus entopeduncular nucleus and substantia nigra come mainly from separate cell populations in the cat. Neuroscience 19:147–158

    CAS  PubMed  Google Scholar 

  • Beckstead RM, Frankfurter A (1982) The distribution and some morphological features of substantia nigra neurons that project to the thalamus, superior colliculus and pedunculopontine nucleus in the monkey. Neuroscience 7:2377–2388

    CAS  PubMed  Google Scholar 

  • Beckstead RM, Frankfurter A (1983) A direct projection from the retina to the intermediate gray layer of the superior colliculus demonstrated by anterograde transport of horseradish peroxidase in monkey, cat and rat. Exp Brain Res 52:261–268

    CAS  PubMed  Google Scholar 

  • Beckstead RM, Norgren R (1979) An autoradiographic examination of the central distribution of the trigeminal, facial, glossopharyngeal, and vagal nerves in the monkey. J Comp Neurol 184:455–472

    CAS  PubMed  Google Scholar 

  • Beckstead RM, Domesick VB, Nauta WJH (1979) Efferent connections of the substantia nigra and ventral tegmental area in the rat. Brain Res 175:191–217

    CAS  PubMed  Google Scholar 

  • Beckstead RM, Morse JR, Norgren R (1980) The nucleus of the solitary tract in the monkey: projections to the thalamus and brain stem nuclei. J Comp Neurol 190:259–282

    CAS  PubMed  Google Scholar 

  • Behan M (1982) A quantitative analysis of the ipsilateral retinocollicular projection in the cat: an EM degeneration and EM autoradiographic study. J Comp Neurol 206:253–258

    CAS  PubMed  Google Scholar 

  • Behbehani MM (1995) Functional characteristics of the midbrain periaqueductal gray. Prog Neurobiol 46:575–605

    CAS  PubMed  Google Scholar 

  • Beitz AJ (1982) The organization of afferent projections to the midbrain periaqueductal gray of the rat. Neuroscience 7:133–159

    CAS  PubMed  Google Scholar 

  • Beiford GR, Killackey HP (1978) Anatomical correlates of the forelimb in the ventrobasal complex and the cuneate nucleus of the neonatal rat. Brain Res 158:450–455

    Google Scholar 

  • Beiford GR, Killackey HP (1979) Vibrissae representation in subcortical trigeminal centers of the neonatal rat. J Comp Neurol 183:305–322

    Google Scholar 

  • Ben-Ari Y, le Gal la Salle G, Champagnat JC (1974) Lateral amygdala unit activity. EEG Clin Neurophysiol 37:449–461

    CAS  Google Scholar 

  • Benevento LA, Ebner FF (1970) Pretectal, tectal, retinal and cortical projections to thalamic nuclei of the opossum in stereotaxic coordinates. Brain Res 18:171–175

    CAS  PubMed  Google Scholar 

  • Benevento LA, Standage GP (1983) The organization of projections of the retinorecipient and nonretinorecipient nuclei of the pretectal complex and layers of the superior colliculus to the lateral pulvinar and medial pulvinar in the macaque monkey. J Comp Neurol 217:307–336

    CAS  PubMed  Google Scholar 

  • Benevento LA, Rezak M, Santos-Anderson R (1977) An autoradiographic study of the projections of the pretectum in the rhesus monkey (Macaca mulatta): evidence for sensorimotor links to the thalamus and oculomotor nuclei. Brain Res 127:197–218

    CAS  PubMed  Google Scholar 

  • Beninato M, Spencer RF (1986) A cholinergic projection to the rat superior colliculus demonstrated by retrograde transport of horseradish peroxidase and choline acetyltransferase immunohistochemistry. J Comp Neurol 253:525–538

    CAS  PubMed  Google Scholar 

  • Bennett GJ, Seltzer Z, Lu GW, Nishikawa N, Dubner R (1983) The cells of origin of the dorsal column postsynaptic projection in the lumbosacral enlargements of cats and monkeys. Somatosens Res 1:131–149

    CAS  PubMed  Google Scholar 

  • Benson CG, Potashner SJ (1990) Retrograde transport of [3H]glycine from the cochlear nucleus to the superior olive in the guinea pig. J Comp Neurol 296:415–426

    CAS  PubMed  Google Scholar 

  • Bentivoglio M, Kuypers HGJM (1982) Divergent axon collaterals from rat cerebellar nuclei to diencephalon, mesencephalon, medulla oblongata and cervical cord. Exp Brain Res 46:339–356

    CAS  PubMed  Google Scholar 

  • Beran RL, Martin GF (1971) Reticulospinal fibers of the opossum. J Comp Neurol 141:453–466

    CAS  PubMed  Google Scholar 

  • Berbel PJ (1988) Cytology of medial and dorso-medial cerebral cortices in lizards: a Golgi study. In: Schwerdtfeger WK, Smeets WJAJ (eds) The forebrain of reptiles. Karger, Basel, pp 12–19

    Google Scholar 

  • Berbel PJ, Martinez-Guijarro FJ, Lopez-Garcia C (1987). Intrinsic organization of the medial cerebral cortex of the lizard Lacerta pityusensis: a Golgi study. J Morphol 194:275–286

    Google Scholar 

  • Berendse HW, Groenewegen HJ (1990) Organization of the thalamostriatal projections in the rat, with special emphasis on the ventral striatum. J Comp Neurol 299:187–228

    CAS  PubMed  Google Scholar 

  • Berendse HW, Groenewegen HJ (1991) Restricted cortical termination fields of the midline and intralaminar thalamic nuclei in the rat. Neuroscience 42:73–102

    CAS  PubMed  Google Scholar 

  • Berendse HW, Groenewegen HJ, Lohman AHM (1992a) Compartmental distribution of ventral striatal neurons projecting to the mesencephalon in the rat. J Neurosci 12:2079–2103

    CAS  PubMed  Google Scholar 

  • Berendse HW, Galis-de Graaf Y, Groenewegen HJ (1992b) Topographical organization relationship with ventral striatal compartments of prefrontal corticostriatal projections in the rat. J Comp Neurol 316:314–347

    CAS  PubMed  Google Scholar 

  • Berger AJ (1979) Distribution of carotid sinus nerve afferent fibers to solitary tract nuclei of the cat using transganglionic transport of horseradish peroxidase. Neurosci Lett 14:153–158

    CAS  PubMed  Google Scholar 

  • Berk ML, Finkelstein JA (1981) Afferent projections to the preoptic area and hypothalamic regions in the rat brain. Neuroscience 6:1601–1624

    CAS  PubMed  Google Scholar 

  • Berkley KJ (1975) Different targets of different neurons in nucleus gracilis of the cat. J Comp Neurol 163:285–303

    CAS  PubMed  Google Scholar 

  • Berkley KJ (1980) Spatial relationships between the terminations of somatic sensory and motor patwhays in the rostral brain stem of cats and monkeys. I. Ascending somatic sensory inputs to the lateral diencephalon. J Comp Neurol 193:283–317

    CAS  PubMed  Google Scholar 

  • Berkley KJ (1983) Spatial relationships between the terminations of somatic sensory motor pathways in the rostral brainstem of cats and monkeys. II. Cerebellar projections compared with those of the ascending somatic sensory pathways in lateral diencephalon. J Comp Neurol 220:229–251

    CAS  PubMed  Google Scholar 

  • Berkley KJ (1986) Specific somatic sensory relays in the mammalian diencephalon. Rev Neurol 142:283–290

    CAS  PubMed  Google Scholar 

  • Berkley KJ, Hand PJ (1978a) Efferent projections of the gracile nucleus in the cat. Brain Res 153:263–283

    CAS  PubMed  Google Scholar 

  • Berkley KJ, Hand PJ (1978b) Projections to inferior olive of the cat. II. Comparisons of input from the gracile, cuneate and the spinal trigeminal nuclei. J Comp Neurol 180:253–264

    CAS  PubMed  Google Scholar 

  • Berkley KJ, Mash DC (1978) Somatic sensory projections to the pretectum in the cat. Brain Res 158:445–449

    CAS  PubMed  Google Scholar 

  • Berkley KJ, Blomqvist A, Pelt A, Flink R (1980) Differences in the collateralization of neuronal projections from the dorsal column nuclei and lateral cervical nucleus to the thalamus and tectum in the cat: an anatomical study using two different double-labeling techniques. Brain Res 202:273–291

    CAS  PubMed  Google Scholar 

  • Berman N (1977) Connections of the pretectum in the cat. J Comp Neurol 174:227–254

    CAS  PubMed  Google Scholar 

  • Bernard J-F, Alden M, Besson J-M (1993) The organization of the efferent projections from the pontine parabrachial area to the amygdaloid complex: a Phaseolus vulgaris leucoagglutinin (PHA-L) study in the rat. J Comp Neurol 329:201–229

    CAS  PubMed  Google Scholar 

  • Bevan MD, Smith AD, Bolam P (1996) The substantia nigra as a site of synaptic integration of functionally diverse information arising from the ventral pallidum and the globus pallidus in the rat. Neuroscience 75:5–12

    CAS  PubMed  Google Scholar 

  • Bhatnagar HP, Frahm HD, Stephan H (1990) The megachiropteran pineal organ: a comparative mophological and volumetric investigation with special emphasis on the remarkably large pineal of Dobsonia praedatrix. J Anat 168:143–166

    CAS  PubMed  Google Scholar 

  • Bickford ME, Hall WC (1989) Collateral projections of predorsal bundle cells of the superior colliculus in the rat. J Comp Neurol 283:86–106

    CAS  PubMed  Google Scholar 

  • Bickford ME, Hall WC (1992) The nigral projection to predorsal bundle cells in the superior colliculus of the rat. J Comp Neurol 319:11–33

    CAS  PubMed  Google Scholar 

  • Biedenbach MA, De Vito JL (1980) Origin of the pyramidal tract determined with horseradish peroxidase. Brain Res 193:1–17

    CAS  PubMed  Google Scholar 

  • Biedenbach MA, De Vito JL, Brown AC (1986) Pyramidal tract of the cat: axon size and morphology. Exp Brain Res 61:303–310

    CAS  PubMed  Google Scholar 

  • Bieger D, Hopkins DA (1987) Viscerotopic representation of the upper alimentary tract in the medulla oblongata in the rat: The nucleus ambiguus. J Comp Neurol 262:546–562

    CAS  PubMed  Google Scholar 

  • Bigar F (1980) De efferente verbindingen van de cerebellaire schors in the kat. Een onderzoek naar de corticonucleaire en corticovestibulaire projekties door middel van retrograad axonaal transport van mierikswortel peroxidase (HRP). Thesis

    Google Scholar 

  • Bishop GA, Ho RH (1985) The distribution and origin of serotonin immunoreactivity in the rat cerebellum. Brain Res 331:195–207

    CAS  PubMed  Google Scholar 

  • Bishop GA, McCrea RA, Kitai ST (1976) A horseradish peroxidase study of the cortico-olivary projection in the cat. Brain Res 116:306–311

    CAS  PubMed  Google Scholar 

  • Bishop GH (1959) The relation between nerve fiber size and sensory modality: phylogenetic implications of the afferent innervation of cortex. J Nerv Mental Dis 128:89–114

    CAS  Google Scholar 

  • Bjaalie JG, Brodai P (1983) Distribution in area 17 of neurons projecting to the pontine nuclei: a quantitative study in the cat with retrograde transport of HRP-WGA. J Comp Neurol 221:289–303

    CAS  PubMed  Google Scholar 

  • Björkeland M (1983) Projections from dorsal column nuclei and spinal cord to pontine nuclei in cat. Neurosci Lett [Suppl] 14:S30

    Google Scholar 

  • Björkeland M, Boivie J (1984a) An anatomical study of the projections from the dorsal column nuclei to the midbrain in cat. Anat Embryol (Berl) 170:29–43

    Google Scholar 

  • Björkeland M, Boivie J (1984b) The termination of spinome-sencephalic fibers in the cat. An experimental anatomical study. Anat Embryol (Berl) 170:265–277

    Google Scholar 

  • Björklund A, Skagerberg G (1979) Evidence for a major spinal cord projection from the diencephalic All dopamine cell group in the rat using transmitter-specific fluorescent retrograde tracing. Brain Res 177:170–175

    PubMed  Google Scholar 

  • Björklund A, Moore RY, Nobin A, Stenevi U (1973) The organization of tubero-hypophyseal and reticulo-infundibular catecholamine neuron systems in the rat brain. Brain Res 51:171–191

    PubMed  Google Scholar 

  • Blackstad TW (1967) Cortical gray matter — a correlation of light and electron microscopic data. In: Hydén H (ed) The NEURON. Elsevier, Amsterdam, pp 49–118

    Google Scholar 

  • Blackstad TW, Kjaerheim A (1961) Special axo-dendritic synapses in the hippocampal cortex. Electron and light microscopic studies on the layer of mossy fibers. J Comp Neurol 117:133–159

    CAS  PubMed  Google Scholar 

  • Blackstad T, Brodai A, Walberg F (1951) Some observations on normal and degeneration terminal boutons in the inferior olive of the cat. Acta Anat (Basel) 11:461–477

    CAS  Google Scholar 

  • Blanchard CD, Blanchard RJ (1972) Innate and conditioned reactions to threat in rats with amygdaloid lesions. J Comp Physiol Psychol 81:281–290

    CAS  PubMed  Google Scholar 

  • Blanks RH, Giolli RA, Pham SV (1982) Projections of the medial terminal nucleus of the accessory optic system upon pretectal nuclei in the pigmented rat. Exp Brain Res 48:228–237

    CAS  PubMed  Google Scholar 

  • Blanks RHI, Palay S (1978) The location and form of efferent vestibular neurons in rat. Anat Rec 190:34

    Google Scholar 

  • Blanks RHI, Clarke RJ, Lui F, Giolli RA, Van Pham S, Torigoe Y (1995) Projections of the lateral terminal accessory optic nucleus of the common marmoset (Callithrix jacchus). J Comp Neurol 354:511–532

    CAS  PubMed  Google Scholar 

  • Blaustein JD (1992) Cytoplasmic estrogen receptors in rat brain: immunocytochemical evidence using three antibodies with distinct epitopes. Endocrinology 131:1336–1342

    CAS  PubMed  Google Scholar 

  • Bledsoe SCJ, Snead CR, Helfert RH, Prasad V, Wenthold RJ, Altschuler RA (1990) Immunocytochemical and lesion studies support the hypothesis that the projection from the medial nucleus of the trapezoid body to the lateral superior olive is glycinergic. Brain Res 517:189–194

    PubMed  Google Scholar 

  • Blomqvist A (1980) Gracilo-diencephalic relay cells: a quantitative study in the cat using retrograde transport of horseradish peroxidase. J Comp Neurol 193:1087–1125

    Google Scholar 

  • Bobillier R, Seguin S, Petitjean F, Salvert D, Touret M, Jouvet M (1976) The raphe nuclei of the cat brain stem: a topographical atlas of their efferent projections as revealed by autoradiography. Brain Res 113:449–486

    CAS  PubMed  Google Scholar 

  • Bobillier P, Seguin S, Degueurce A, Lewis BD, Pujol J-F (1979) The efferent connections of the nucleus raphe centralis superior in the rat as revealed by autoradiography. Brain Res 166:1–8

    CAS  PubMed  Google Scholar 

  • Bodian D (1939) Studies on the diencephalon of the Virginia opossum. Part I. The nuclear pattern in the adult. J Comp Neurol 71:259–324

    Google Scholar 

  • Boeijinga PH, van Groen T (1984) Inputs from the olfactory bulb and olfactory cortex to the entorhinal cortex in the cat. Exp Brain Res 57:40–48

    CAS  PubMed  Google Scholar 

  • Boesten AJP, Voogd J (1975) Projections of the dorsal column nuclei and the spinal cord on the inferior olive in the cat. J Comp Neurol 161:215–238

    CAS  PubMed  Google Scholar 

  • Boivie J (1971) The termination in the thalamus and the zona incerta of fibres from the dorsal column nuclei (DCN) in the cat. An experimental study with silver impregnation methods. Brain Res 28:459–490

    CAS  PubMed  Google Scholar 

  • Boivie J (1978) Anatomical observations on the dorsal column nuclei, their thalamic projection and the cytoarchitecture of some somatosensory thalamic nuclei in the monkey. J Comp Neurol 178:17–48

    CAS  PubMed  Google Scholar 

  • Boivie J (1979) An anatomical reinvestigation of the termination of the spinothalamic tract in the monkey. J Comp Neurol 186:343–370

    CAS  PubMed  Google Scholar 

  • Boivie J (1980) Thalamic projections from lateral cervical nucleus in monkey. A degeneration study. Brain Res 198:13–26

    CAS  PubMed  Google Scholar 

  • Boivie J (1988) Projections from the dorsal column nuclei and the spinal cord to the red nucleus in cat. Behav Brain Res 28:75–79

    CAS  PubMed  Google Scholar 

  • Boivie J, Grant G, Albe-Fessard D, Levante A (1975) Evidence for a projection to the thalamus from the external cuneate nucleus in the monkey. Neurosci Lett 1:3–8

    CAS  PubMed  Google Scholar 

  • Bojsen-Moller F (1975) Demonstration of terminalis, olfactory, trigeminal and perivascular nerves in the rat nasal septum. J Comp Neurol 15:245–256

    Google Scholar 

  • Bok ST (1928) Der Einfluss in den Furchen und Windungen auftretenden Krümmungen der Grosshirnrinde auf die Rindenarchitektur. Z Ges Neurol Psychiat 121:682–750

    Google Scholar 

  • Bolam JP, Izzo PN, Graybiel AM (1988) Cellular substrate of the histochemically defined striosome/matrix system of the caudate nucleus: a combined Golgi and immunocytochemical study in cat and ferret. Neuroscience 24:853–875

    CAS  PubMed  Google Scholar 

  • Bok ST (1928) Das Rückenmark. In: von Mollendorf (ed) Handbuch der mikroskopischen Anatomie des Menschen, vol 4. Springer, Berlin

    Google Scholar 

  • Bolk L (1906) Das Cerebellum der Saugetiere. Fisher, Haarlem

    Google Scholar 

  • Bolk L, Göppert E, Kallius E, Lubosch E (1938) Handbuch der vergleichenden Anatomie den Wirbeltiere. Urban and Schwarzenberg, Berlin

    Google Scholar 

  • Bowman JP, Sladek JRF (1973) Morphology of the inferior olivary complex of the rhesus monkey (Macaca mulatta). J Comp Neurol 152:299–316

    CAS  PubMed  Google Scholar 

  • Botchkina GI, Morin LP (1995) Specialized neuronal and glial contributions to development of the hamster lateral geniculate complex and circadian visual system. J Neurosci 15(l/l):190–201

    CAS  PubMed  Google Scholar 

  • Bouyer JJ, Park DH, Joh TH, Pickel VM (1984) Chemical and structural analysis of the relation between cortical inputs and tyrosine hydroxylase-containing terminals in rat neostriaum. Brain Res 302:267–275

    CAS  PubMed  Google Scholar 

  • Braak E, Braak H (1993) The new monodendritic neuronal type within the adult human cerebellar granule cell layer shows calretinin-immunoreactivity. Neurosci Lett 154:199–202

    CAS  PubMed  Google Scholar 

  • Braak H (1976) On the striate area of the human isocortex. A Golgi-and pigmentarchitectonic study. J Comp Neurol 166:341–364

    CAS  PubMed  Google Scholar 

  • Braak H (1980) Architectonics of the human telecephalic cortex. Springer, Berlin Heidelberg New York (Studies of brain function, vol 4)

    Google Scholar 

  • Braak H, Braak E (1983) Neuronal types in the basolateral amygdaloid nuclei of man. Brain Res Bull 11:349–365

    CAS  PubMed  Google Scholar 

  • Bradford R, Parnavelas JG, Lieberman AR (1977) Neurons in layer I of the developing occipital cortex of the rat. J Comp Neurol 176:121–132

    CAS  PubMed  Google Scholar 

  • Bradley O (1903) On the development and homology of the mammalian cerebellar fissures. J Anat Physiol 37:112–130

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bradley O (1904) The mammalian cerebellum: its lobes and fissures. J Anat Physiol 38:448–475

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bradshaw J, Rogers L (1993) The evolution of lateral asymmetries, language, tool use and intellect. Academic, New York

    Google Scholar 

  • Braitenberg V (1974) Thoughts on the cerebral cortex. J Theor Biol 46:421–447

    CAS  PubMed  Google Scholar 

  • Braitenberg V, Atwood RP (1958) Morphological observations on the cerebellar cortex. J Comp Neurol 109:1–33

    CAS  PubMed  Google Scholar 

  • Brauer K, Schober W (1970) Katalog der Säugetieregehirne. Fischer, Jena

    Google Scholar 

  • Brauer K, Schober W (1976) Katalog der Säugetiergehirne. VEB Gustav Fischer, Jena. Supplement 2

    Google Scholar 

  • Brauer K, Schober W (1982) Identification of geniculo-tectal relay neurons in the rat’s ventral lateral geniculate nucleus. Exp Brain Res 45:84–88

    CAS  PubMed  Google Scholar 

  • Brawer JR, Morest DK, Kane EC (1974) The neuronal architecture of the cochlear nucleus of the cat. J Comp Neurol 155:251–300

    CAS  PubMed  Google Scholar 

  • Breathnach AS (1953) The olfactory tubercle, prepyriform cortex, and precommissural region of the porpoise (Phocaena phocaeca). J Anat (Lond) 87:96–113

    CAS  Google Scholar 

  • Breathnach AS (1960) The cetacean central nervous system. Biol Rev Cambr Philos Soc 35:187–230

    Google Scholar 

  • Brining SK, Smith DV (1996) Distribution and synaptology of glossopharyngeal afferent nerve terminals in the nucleus of the solitary tract of the hamster. J Comp Neurol 365:556–574

    CAS  PubMed  Google Scholar 

  • Broadwell RD (1975) Olfactory relationships of the telencephalon and diencephalon in the rabbit. I. An autoradio-graphic study of the efferent connections of the main and accessory olfactory bulb. J Comp Neurol 163:329–346

    CAS  PubMed  Google Scholar 

  • Broadwell RD, Bleier R (1976) A cytoarchitectonic atlas of the mouse hypothalamus. J Comp Neurol 167:315–340

    CAS  PubMed  Google Scholar 

  • Broca P (1878) Anatomie comparJe des circonvolutions cJrJbrales: le grand lobe limbique et la scissure limbique dans la série des mammif. Près Rev Anthropol 1:385–498

    Google Scholar 

  • Brockhaus H (1938) Zur normalen und pathologischen Anatomie des Mandelkerngebietes. J Psychol Neurol 49:1–136

    Google Scholar 

  • Brodai A (1940) Experimentelle Untersuchungen über die olivo-cerebellare Lokalisation. Z Ges Neurol Psychiat 169:1–153

    Google Scholar 

  • Brodai A (1957) The reticular formation of the brain stem. Anatomical aspects and functional correlations. The Henderson trust lectures, vol XVIII. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Brodai A (1974) Anatomy of the vestibular nuclei and their connections. In: Kornhuber HH (ed) Handbook of sensory physiology, vol 6. Springer, Berlin Heidelberg New York, pp 239–352

    Google Scholar 

  • Brodai A (1984) The vestibular nuclei in the macaque monkey. J Comp Neurol 227:252–266

    Google Scholar 

  • Brodai A, Gogstad AC (1954) Rubro-cerebellar connection. An experimental study in the cat. Anat Rec 118:455–486

    Google Scholar 

  • Brodai A, Pompeiano O (1957) The vestibular nuclei in the cat. J Anat 91:438–454

    Google Scholar 

  • Brodai A, Szabo T, Torvik A (1956) Corticofugal fibers to sensory trigeminal nuclei and nucleus of solitary tract. J Comp Neurol 106:527–552

    Google Scholar 

  • Brodai P (1968a) The corticopontine projection in the cat. I. Exp Brain Res 5:210–234

    Google Scholar 

  • Brodai P (1968b) The corticopontine projections in the cat. Arch Ital Biol 106:310–332

    Google Scholar 

  • Brodai P (1971) The corticopontine projection in the cat. II. Projection from the orbital gyrus. J Comp Neurol 142:141–152

    Google Scholar 

  • Brodai P (1972) The corticopontine projection from the visual cortex in the cat. II. The projection from areas 18 and 19. Brain Res 39:319–335

    Google Scholar 

  • Brodai P (1978) The corticopontine projection in the rhesus monkey. Origin and principles of organization. Brain 101:251–283

    Google Scholar 

  • Brodai P (1982) Further observations on the cerebellar projections from the pontine nuclei and the nucleus reticularis tegmenti pontis in the rhesus monkey. J Comp Neurol 204:44–55

    Google Scholar 

  • Brodai P (1987) Organization of cerebropontocerebellar connections as studied with anterograde and retrograde transport of HRP-WGA in the cat. In: Liss AR (ed) New concepts in cerebellar neurobiology. Liss, New York, pp 151–182

    Google Scholar 

  • Brodai P, Brodai A (1981) The olivocerebellar projection in the monkey. Experimental studies with the method of retrograde tracing of horseradish peroxidase. J Comp Neurol 201:375–393

    Google Scholar 

  • Brodai P, Dietrichs E, Walberg F (1986) Do pontocerebellar mossy fibres give off collaterals to the cerebellar nuclei? An experimental study in the cat with implantation of crystalline HRP-WGA. Neurosci Res 4:12–24

    Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Groszhirnrinde. Barth, Leipzig

    Google Scholar 

  • Broere G (1971) Corticofugal fibers in some mammals. An experimental study in which special attention is paid to the cortico-spinal system. Proefschrift. De Kempenaer, Oegstgeest

    Google Scholar 

  • Brookover C (1914) The nervus terminalis in adult man. J Comp Neurol 24:131–135

    Google Scholar 

  • Brown AG, Fyffe REW (1981) Form and function of dorsal horn neurones with axons ascending the dorsal columns in cat. J Physiol (Lond) 321:31–47

    CAS  Google Scholar 

  • Brown AG (1981) Organization in the spinal cord. The anatomy and physiology of identified neurones. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Brown JT, Chan-Palay V, Palay SL (1977) A study of afferent input to the inferior olivary complex in the rat by retrograde axonal transport of horseradish peroxidase. J Comp Neurol 176:1–22

    CAS  PubMed  Google Scholar 

  • Brown JW (1987) The nervus terminalis in insectivorous bat embryos and notes on its presence during human ontogeny. Ann NY Acad Sci 519:184–200

    CAS  PubMed  Google Scholar 

  • Brown LT (1974) Corticorubral projections in the rat. J Comp Neurol 154:149–167

    CAS  PubMed  Google Scholar 

  • Brown PB, Fuchs JL, Tapper DN (1975) Parametric studies of dorsal horn neurons responding to tactile stimulation. J Neurophysiol 38:19–25

    CAS  PubMed  Google Scholar 

  • Brown TH, Zador AM (1990) Hippocampus. In: Shepherd GM (ed) The synaptic organization of the brain, 3rd edn. Oxford University Press, New York-Oxford, pp 346–388

    Google Scholar 

  • Brownell WE (1982) Cochlear transduction: an integrative model and review. Hear Res 6:335–360

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brugge JF, Reale RA (1985) Auditory cortex. In: Peters A, Jones EG (eds) Association and auditory cortices. Plenum, New York, pp 229–271 (Cerebral cortex, vol 4)

    Google Scholar 

  • Brunner H (1919) Die zentralen Kleinhirnkerne bei den Säugetieren. Arb Neur Inst Wien Univ 22:200–277

    Google Scholar 

  • Bruns V, Schmiessek E (1980) Cochlear innervation in the greater horseshoe bat. Demonstration of an acoustic fovea. Hear Res 3:27–43

    CAS  PubMed  Google Scholar 

  • Bryan RN, Trevino DL, Coulter JD, Willis WD (1973) Location and somatotopic organization of the cells of origin of the spino-cervical tract. Exp Brain Res 17:177–189

    CAS  PubMed  Google Scholar 

  • Bryan RN, Coulter JD, Willis WD (1974) Cells of origin of the spinocervical tract in the monkey. Exp Neurol 42:574–586

    CAS  PubMed  Google Scholar 

  • Buchanan SL, Thompson RH, Maxwell BL, Powell DA (1994) Efferent connections of the medial prefrontal cortex in the rabbit. Exp Brain Res 100:469–483

    CAS  PubMed  Google Scholar 

  • Bucher VM, Bürgi SM (1950) Some observations on the fiber connections of the di-and mesencephalon in the rat. I. Fiber connections of the tectum opticum. J Comp Neurol 93:139–172

    CAS  PubMed  Google Scholar 

  • Bugbee NM, Goldman-Rakic PS (1983) Columnar organization of corticocortical projections in squirrel and rhesus monkeys: similarity of column width in species differing in cortical volume. J Comp Neurol 220:355–364

    CAS  PubMed  Google Scholar 

  • Buhl EH, Schwerdtfeger WK, Germroth P (1989) New anatomical approaches to reveal afferent and efferent hippo-campal circuitry. In: Chan-Palay V, Köhler C (eds) The hippocampus — new vistas. Liss, New York, pp 71–83 (Neurology and neurobiology, vol 52)

    Google Scholar 

  • Buisseret-Delmas C (1988) Sagittal organization of the olivocerebellonuclear pathway in the rat. I. Connections with the nucleus fastigii and the nucleus vestibularis lateralis. Neurosci Res 5:475–493

    CAS  PubMed  Google Scholar 

  • Buisseret-Delmas C, Angaut P (1993) The cerebellar olivocorticonuclear connections in the rat. Progr Neurobiol 40:63–87

    CAS  Google Scholar 

  • Bull MS, Berkley KJ (1984) Differences in the neurons that project from the dorsal column nuclei to the diencephalon, pretectum, and tectum in the cat. Somatosens Res 1:281–300

    CAS  PubMed  Google Scholar 

  • Bull MS, Mitchell SK, Berkley KJ (1990) Convergent inputs to the inferior olive from the dorsal column nuclei and pretectum in the cat. Brain Res 525:1–10

    CAS  PubMed  Google Scholar 

  • Buma P, Nieuwenhuys R (1987) Ultrastructural demonstration of oxytocin and vasopressin release sites in the neural lobe and median eminence of the rat by tannic acid and immunogold methods. Neurosci Lett 74:151–157

    CAS  PubMed  Google Scholar 

  • Buma P, Veening J, Hafmans T, Joosten H, Nieuwenhuys R (1992) Ultrastructure of the periaqueductal grey matter of the rat: an electron microscopical and horseradish peroxidase study. J Comp Neurol 319:519–535

    CAS  PubMed  Google Scholar 

  • Burde RM, Loewy AD (1980) Central origin of oculomotor parasympathetic neurons in the monkey. Brain Res 198:434–439

    CAS  PubMed  Google Scholar 

  • Burde RM, Parelman JJ, Luskin M (1982) Lack of unity of Edinger-Westphal nucleus projections to the ciliary ganglion and spinal cord: a double-labeling approach. Brain Res 249:379–382

    CAS  PubMed  Google Scholar 

  • Burgi S (1957) Das tectum opticum. Seine Verbindungen bei der Katze und seine Bedeutung beim Menschen. Dtsch Z Nervenheilkd 176S:701–729

    Google Scholar 

  • Burian M, Gstoettner W, Zundritsch R (1989) Saccular afferent fibers to the cochlear nucleus in the guinea pig. Arch Otorhinolaryngol 246:238–241

    CAS  PubMed  Google Scholar 

  • Burian M, Zundritsch R, Mayr R (1991) The origin of the vestibulo-cochlear projection in the guinea pig. Neurosci Lett 122:163–166

    PubMed  Google Scholar 

  • Burkitt AN (1938) The external morphology of the brain of Notoryctes typhlops. R Acad Sci Amsterdam, Proc Sect Sci 41:921–933

    Google Scholar 

  • Burne RA, Mihailoff GA, Woodward DV (1978) Visual corticopontine input to the paraflocculus: a combined autoradiographic and horseradish peroxidase study. Brain Res 143:139–146

    CAS  PubMed  Google Scholar 

  • Burne RA, Azizi SA, Mihailoff GA, Woodward DJ (1981) The tectopontine projection in the rat with comments on visual pathways to the basilar pons. J Comp Neurol 202:287–307

    CAS  PubMed  Google Scholar 

  • Burstein H, Dado RJ, Giesler GJ (1990) The cells of origin of the spinothalamic tract of the rat: a quantitative reexamination. Brain Res 511:329–337

    CAS  PubMed  Google Scholar 

  • Burstein R (1996) Somatosensory and visceral input to the hypothalamus and limbic system. Prog Brain Res 107:257–267

    CAS  PubMed  Google Scholar 

  • Burstein R, Cliffer KD, Giesler GJ Jr (1987) Direct somatosensory projections from the spinal cord to the hypothalamus and telencephalon. J Neurosci 7:4159–4164

    CAS  PubMed  Google Scholar 

  • Burstein R, Falkowsky O, Borsook D, Strassman A (1996) Distinct lateral and medial projections of the spinohypothalamic tract of the rat. J Comp Neurol 373:549–574

    CAS  PubMed  Google Scholar 

  • Burton H, Craig ADJ (1979) Distribution of trigeminothalamic projection cells in cat and monkey. Brain Res 161:515–521

    CAS  PubMed  Google Scholar 

  • Burton H, Craig AD (1983) Spinothalamic projection in cat, raccoon and monkey. A study based on anterograde transport of horseradish peroxidase. In: Macchi G, Rustioni A, Spreafico R (eds) Somatosensory integration in the Thalamus. Elsevier, Amsterdam, pp 17–42

    Google Scholar 

  • Burton H, Craig AD, Poulos DA, Molt JT (1979) Efferent projections from temperature sensitive recording loci within the marginal zone of the nucleus caudalis of the spinal trigeminal zone of the nucleus caudalis of the spinal complex in the cat. J Comp Neurol 183:753–778

    CAS  PubMed  Google Scholar 

  • Busch HFM (1957) Les connexions entre la moelle epiniere et le thalamus chez le chat. Psychiatr Neurol 80:305–307

    CAS  Google Scholar 

  • Busch HFM (1961) White matter in the brain stem of the cat. Thesis, University of Leiden

    Google Scholar 

  • Butcher LL (1995) Cholinergic neurons and networks. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic, San Diego, pp 1003–1015

    Google Scholar 

  • Butcher LL, Semba K (1989) Reassessing the cholinergic basal forebrain: nomenclature schemata and concepts. Trends Neurosci 12:483–485

    CAS  PubMed  Google Scholar 

  • Butler AB (1994) The evolution of the dorsal thalamus of jawed vertebrates, including mammals — cladistic analysis and a new hypothesis. Brain Res Rev 19:29–65

    CAS  PubMed  Google Scholar 

  • Büttner-Ennever JA (1977) Pathways from the pontine reticular formation to structures controlling horizontal and vertical eye movements in the monkey. In: Baker R, Berthoz A (eds) Control of gaze by brainstem neurons. Elsevier/North Holland, New York, pp 89–98

    Google Scholar 

  • Büttner-Ennever JA (1979) Organization of reticular projections onto oculomotor motoneurons. In: Granit R, Pompeiano O (eds) Reflex control of posture and movement. Prog Brain Res 50:619-630

    Google Scholar 

  • Büttner-Ennever JA, Büttner U (1978) A cell group associated with vertical eye movements in the rostral mesencephalic reticular formation of the monkey. Brain Res 151:31–47

    PubMed  Google Scholar 

  • Büttner-Ennever JA, Akert K (1981) Medial rectus subgroups of the oculomotor nucleus and their abducens internuclear input in the monkey. J Comp Neurol 197:17–27

    PubMed  Google Scholar 

  • Büttner-Ennever JA, Horn AKE (1996) Pathways from cell groups of the paramedian tracts to the floccular region. Ann NY Acad Sci 1:532–540

    Google Scholar 

  • Buxton DF, Goodman DC (1967) Motor function and the corticospinal tracts in rat and raccoon. J Comp Neurol 129:341–360

    CAS  PubMed  Google Scholar 

  • Cabana T, Martin GF (1986) The adult organization and development of the rubrospinal tract. An experimental study using the orthograde transport of WGA-HRP in the North-American Opossum. Dev Brain Res 30:1–11

    Google Scholar 

  • Cabrai RJ, Johnson JI (1971) The organization of mechano-receptive projections in the ventrobasal thalamus of the sheep. J Comp Neurol 141:17–36

    Google Scholar 

  • Cabrera B, Portillo F, Pasaro R, Delgad-Garcia JM (1988) Location of motoneurons and internuclear neurons within the rat abducens nucleus by means of horseradish peroxidase and fluorescent double labeling. Neurosci Lett 87:1–6

    CAS  PubMed  Google Scholar 

  • Cadusceau J, Roger M (1985) Afferent projections to the superior colliculus in the rat, with special attention to the deep layers. J Hirnforsch 26:667–681

    Google Scholar 

  • Cadusceau J, Roger M (1991) Cortical and subcortical connections of the pars compacta of the anterior pretectal nucleus in the rat. Neurosci Res 12:83–100

    Google Scholar 

  • Caffe AR, Hawkins RK, De Zeeuw CI (1996) Coexistence of choline acetyltransferase and GABA in axon terminals in the dorsal cap of the rat inferior olive. Brain Res 724:136–140

    CAS  PubMed  Google Scholar 

  • Caicedo A, Herbert H (1993) Topography of descending projections from the inferior colliculus to auditory brainstem nuclei in the rat. J Comp Neurol 328:377–392

    CAS  PubMed  Google Scholar 

  • Cajal P (1917) Nuevo estudio del encéfalo de los reptiles. Trab Lab Invest Biol Univ Madrid 15:83–99

    Google Scholar 

  • Cajal P (1922) El cerebro de los batracios. In: Libro en honor de D. Santiago Ramon Y Cajal, Tomo 1. Madrid, pp 13-59

    Google Scholar 

  • Cajal Ramon Y S (1909) Histologie du système nerveux de l’homme et des vertèbres, vol. 1. Maloine, Paris

    Google Scholar 

  • Cajal Ramon Y S (1911) Histologie du système nerveux. Maloine, Paris, 39. Reprint 1972: Consejo Sup Invest Cient Inst Ramon Y Cajal

    Google Scholar 

  • Cajal SR (1893) Neue Darstellung vom histologischen Bau des Centralnervensystems. Arch Anat Physiol Anat Abt (Lpz):319-428

    Google Scholar 

  • Cajal SR (1922) Studien über die Sehrinde der Katze. J Psychol Neurol (Lpz) 29:161–181

    Google Scholar 

  • Calford MB, Aitken LM (1983) Ascending projections to the medial geniculate body of the cat: evidence for multiple, parallel auditory pathways through thalamus. J Neurosci 3:2365–2380

    CAS  PubMed  Google Scholar 

  • Calleja C (1893) La Region Olfatoria del Cerebro. N Moya, Madrid

    Google Scholar 

  • Campbell B, Ryzen M (1953) The nuclear anatomy of the diencephalon of Sorex cinereus. J Comp Neurol 99:1–22

    CAS  PubMed  Google Scholar 

  • Campbell CBG, Hayhow WR (1971) Primary optic pathways in the echidna, Tachyglossus aculeatus: an experimental degeneration study. J Comp Neurol 143:119–136

    CAS  PubMed  Google Scholar 

  • Campbell CBG, Hayhow WR (1972) Primary optic pathways in the duckbill platypus, Ornithorhynchus anatinus: an experimental degeneration study. J Comp Neurol 145:195–208

    CAS  PubMed  Google Scholar 

  • Campbell G, Lieberman AR (1985) The olivary pretectal nucleus: experimental anatomical studies in the rat. Phil T Roy Soc Lond B 310:573–609

    CAS  Google Scholar 

  • Canedo A, Towe AL (1986) Pattern of pyramidal tract collateralization to medial thalamus, lateral hypothalamus and red nucleus in the cat. Exp Brain Res 61:585–596

    CAS  PubMed  Google Scholar 

  • Canteras NS, Swanson LW (1992) Projections of the ventral subiculum to the amygdala, septum, and hypothalamus: a PHAL anterograde tract-tracging study in the rat. J Comp Neurol 324:180–194

    CAS  PubMed  Google Scholar 

  • Canteras NS, Shammah-Lagnado SJ, Silva BA, Ricardo JA (1990) Afferent connections of the subthalamic nucleus: a combined retrograde and anterograde horseradish peroxidase study in the rat. Brain Res 513:43–59

    CAS  PubMed  Google Scholar 

  • Canteras NS, Simerly RB, Swanson LW (1994) Organization of projections from the ventromedial nucleus of the hypothalamus: a Phaseolus vulgaris-leucoagglutinin study in the rat. J Comp Neurol 348:41–79

    CAS  PubMed  Google Scholar 

  • Canteras NS, Simerly RB, Swanson LW (1995) Organization of projections from the medial nucleus of the amydala: a PHAL study in the rat. J Comp Neurol 360:213–245

    CAS  PubMed  Google Scholar 

  • Carleton S, Carpenter MB (1984) Distribution of primary vestibular fibers in the brainstem and cerebellum of the monkey. Brain Res 294:281–298

    CAS  PubMed  Google Scholar 

  • Carleton SC, Carpenter MB (1983) Afferent and efferent connections of the medial, inferior and lateral vestibular nuclei in cat and monkey. Brain Res 278:29–61

    CAS  PubMed  Google Scholar 

  • Carlsen J, Zaborsky L, Heimer L (1985) Cholinergic projection form the basal forebrain to the basolateral amygdaloid complex: a combined retrograde fluorescent and immunohistochemical study. J Comp Neurol 234:155–167

    CAS  PubMed  Google Scholar 

  • Carlson M, Welt C (1981) The somatic sensory cortex: SmI in prosimian primates. In: Woolsey CN (ed) Cortical sensory organization, vol 1. Humana, Clifton, pp 1–27

    Google Scholar 

  • Carman JB, Cowan WM, Powell TPS (1963) The organization of the cortico-striate connexions in the rabbit. Brain 86:525–562

    CAS  PubMed  Google Scholar 

  • Carman JB, Cowan WM, Powell TPS, Webster KE (1965) A bilateral corticostriate projection. J Neurol Neurosurg Psychiat 28:71–77

    CAS  PubMed  Google Scholar 

  • Carmichael ST, Clugnet M-C, Price JL (1994) Central olfactory connections in the macaque monkey. J Comp Neurol 346:403–434

    CAS  PubMed  Google Scholar 

  • Carpenter MB, Cowie RJ (1985) Transneuronal transport in the vestibular and auditory systems of the squirrel monkey and the arctic ground squirrel. I. Vestibular system. Brain Res 358:249–263

    CAS  PubMed  Google Scholar 

  • Carpenter MB, Peter P (1972) Nigrostriatal and nigrothalamic fibers in the rhesus monkey. J Comp Neurol 144:93–117

    CAS  PubMed  Google Scholar 

  • Carpenter MB, Stein BM, Shriver JE (1968) Central projections of spinal dorsal roots in the monkey. II. Lower thoracic, lumbosacral and coccygeal dorsal roots. Am J Anat 123:75–118

    CAS  PubMed  Google Scholar 

  • Carpenter MB, Stein BM, Peter P (1972) Primary vestibulocerebellar fibers in the monkey: distribution of fibers arising from distinctive cell groups of the vestibular ganglia. Am J Anat 135:221–249

    CAS  PubMed  Google Scholar 

  • Carpenter MB, Nakano K, Kim R (1976) Nigrothalamic projections in the monkey demonstrated by autoradiographic technics. J Comp Neurol 165:401–416

    CAS  PubMed  Google Scholar 

  • Carpenter MB, Batton RR, Carleton SC, Keller JT (1981a) Interconnections and organization of pallidal and subthalamic nucleus neurons in the monkey. J Comp Neurol 197:579–603

    CAS  PubMed  Google Scholar 

  • Carpenter MB, Carleton SC, Keller JT, Conte P (1981b) Connections of the sub-thalamic nucleus in the monkey. Brain Res 224:1–29

    CAS  PubMed  Google Scholar 

  • Carpenter MB, Chang L, Pereira AB, Hersh LB, Bruce G, Wu JY (1987) Vestibular and cochlear efferent neurons in the monkey identified by immunocytochemical methods. Brain Res 408:275–280

    CAS  PubMed  Google Scholar 

  • Carstens E, Trevino DL (1978a) Laminar origins of spinothalamic projections in the cat as determined by the retrograde transport of horseradish peroxidase. J Comp Neurol 182:161–165

    CAS  PubMed  Google Scholar 

  • Carstens E, Trevino DL (1978b) Anatomical and physiological properties of ipsilaterally projecting spinothalamic neurons in the second cervical segment of the cat’s spinal cord. J Comp Neurol 182:167–184

    CAS  PubMed  Google Scholar 

  • Casagrande VA, Harting JK, Hall WC, Diamond IT (1972) Superior colliculus of the tree shrew: a structural and functional subdivision into superficial and deep layers. Science 177:444–447

    CAS  PubMed  Google Scholar 

  • Casseday JH, Covey E, Vater M (1988) Connections of the superior olivary complex in the rufous horseshoe bat Rhinolophus rouxi. J Comp Neurol 278:313–329

    CAS  PubMed  Google Scholar 

  • Casseday JH, Kobler JB, Isbey SF, Covey E (1989) Central acoustic tract in an echolocating bat: an extralemniscal auditory pathway to the thalamus. J Comp Neurol 287:247–259

    CAS  PubMed  Google Scholar 

  • Catsman-Berrevoets CE, Kuypers HGJM (1976) Cells of origin of cortical projections to dorsal column nuclei, spinal cord and bulbar medial reticular formation in the rhesus monkey. Neurosci Lett 3:245–252

    CAS  PubMed  Google Scholar 

  • Catsman-Berrevoets CE, Kuypers HGJM, Lemon RN (1979) Cells of origin of the frontal projections to magnocellular and parvocellular red nucleus and superior colliculus in cynomolgus monkey. An HRP study. Neurosci Lett 12:41–46

    Google Scholar 

  • Catsman-Berrevoets CE, Kuypers HGJM (1981) A search for corticospinal collaterals to thalamus and mesencephalon by means of multiple retrograde fluorescent tracers in cat and rat, frontal projections to magnocellular and parvocellular red nucleus and superior colliculus in cynomolgus monkey: an HRP study. Neurosci Lett 12:41–46

    Google Scholar 

  • Caughell KA, Flumerfelt BA (1977) The organisation of the cerebellorubral projection: an experiment study in the rat. J Comp Neurol 176:295–306

    CAS  PubMed  Google Scholar 

  • Cazin L, Magnin M, Lannou J (1982) Non-cerebellar visual afferents to the vestibular nuclei involving the prepositus hypoglossal complex: an autoradiographic study in the rat. Exp Brain Res 48:309–313

    CAS  PubMed  Google Scholar 

  • Chan-Palay V (1977) Cerebellar dentate nucleus. Organization, cytology and transmitter. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Charara A, Parent A (1994) Brainstem dopaminergic, cholinergic and serotoninergic afferents to the pallidum in the squirrel monkey. Brain Res 640:155–170

    CAS  PubMed  Google Scholar 

  • Cheema SS, Rustioni A, Whitsel BL (1984) Light and electron microscopic evidence for a direct corticospinal projection to superficial laminae of the dorsal horn in cats and monkeys. J Comp Neurol 225:276–290

    CAS  PubMed  Google Scholar 

  • Chen S, Hillman DE (1993) Colocalization of neurotransmitters in the deep cerebellar nuclei. J Neurocytol 22:81–91

    CAS  PubMed  Google Scholar 

  • Chesselet MF, Graybiel AM (1986) Striatal neurons expressing somatostatin-like immuno-reactivity: evidence for a peptidergic interneuronal system in the cat. Neuroscience 17:547–571

    CAS  PubMed  Google Scholar 

  • Chevalier G, Thierry AM, Shibazaki T, FJger J (1981) Evidence for a GABAergic inhibitory nigrotectal pathway in the rat. Neurosci Lett 21:67–70

    CAS  PubMed  Google Scholar 

  • Chi JG, Dooling EC, Gilles FH (1977) Gyral development of the human brain. Ann Neurol 1:86–93

    CAS  PubMed  Google Scholar 

  • Childs JA, Gale K (1983) Neurochemical evidence for a nigrotegmental GABAergic projection. Brain Res 258:109–114

    CAS  PubMed  Google Scholar 

  • Cholley B, Wassef M, Arsenio-Nunes L, Brehier A, Sotelo C (1989) Proximal trajectory of the brachium conjunctivum in rat fetuses and its early association with the parabrachial nucleus. A study combining in vitro HRP anterograde axonal tracing and immunocytochemistry. Dev Brain Res 45:185–202

    CAS  Google Scholar 

  • Christ JF (1969) Derivation and boundaries of the hypothalamus, with atlas of hypothalamic grisea. In: Haymaker W, Anderson E, Nauta WJH (eds) The hypothalamus. Thomas, Springfield, pp 13–60

    Google Scholar 

  • Chronister RB, DeFrance J (1979) Organization of projection neurons of the hippocampus. Exp Neurol 66:509–523

    CAS  PubMed  Google Scholar 

  • Cipolloni PB, Peters A (1983) The termination of callosal fibres in the auditory cortex of the rat. A combined Golgielectron microscope and degeneration study. J Neurocytol 12:713–726

    CAS  PubMed  Google Scholar 

  • Cireillo J, Calaresu FR (1980a) Monosynaptic pathway from cardiovascular neurons in the nucleus tractus solitarii to the paraventricular nucleus in the cat. Brain Res 193:529–533

    Google Scholar 

  • Ciriello J, Calaresu FR (1980b) Autoradiographuc study of ascending projections from cardiovascular sites in the nucleus tractus solitarii in the cat. Brain Res 180:448–453

    Google Scholar 

  • Ciriello J, Caverson MM (1984) Direct pathway from neurons in the ventrolateral medulla relaying cardiovascular afferent information to the supraoptic nucleus in the cat. Brain Res 292:221–228

    CAS  PubMed  Google Scholar 

  • Clarke J (1851) Researches into the structure of the spinal cord. Philos Trans R Soc Lond (Biol) 1:607–621

    Google Scholar 

  • Clarke J (1859) Further researches on the gray substance of the spinal cord. Philos Trans R Soc Lond (Biol) 149:437–467

    Google Scholar 

  • Cleland BG, Dubin MW, Levick WR (1971) Sustained and transient neurones in the cat’s retina and lateral geniculate nucleus. J Physiol (Lond) 217:473–496

    CAS  Google Scholar 

  • Clendenin M, Ekerot C-F, Oscarsson O, Rosen I (1974a) The lateral reticular nucleus in the cat. I. Mossy fibre distribution in cerebellar cortex. Exp Brain Res 21:473–486

    CAS  PubMed  Google Scholar 

  • Clendenin M, Ekerot C-F, Oscarsson O, Rosen I (1974b) The lateral reticular nucleus in the cat. II. Organization of component activated from bilateral ventral flexor reflex tract (bVFRT). Exp Brain Res 21:487–500

    CAS  PubMed  Google Scholar 

  • Clendenin M, Ekerot C-F, Oscarsson O, Rosen I (1974c) The lateral reticular nucleus in the cat. III. Organization of component activated from ipsilateral forelimb tract. Exp Brain Res 21:501–513

    CAS  PubMed  Google Scholar 

  • Clezy JKA, Dennis BJ, Kerr DIB (1961) A degeneration study of the somaesthetic afferent systems in the marsupial phalanger, Trichosurus vulpecula. Aust J Exp Biol 39:19–28

    CAS  Google Scholar 

  • Cliffer KD, Giesler GJJ (1989) Postsynaptic dorsal column pathway of the rat. III. Distribution of ascending afferent fibers. J Neurosci 9:3146–3168

    CAS  PubMed  Google Scholar 

  • Cliffer KD, Willis WD (1994) Distribution of the postsynaptic dorsal column projection in the cuneate nucleus of monkeys. J Comp Neurol 345:84–93

    CAS  PubMed  Google Scholar 

  • Cliffer KD, Burstein R, Giesler GJJ (1991) Distributions of spinothalamic, spinohypothalamic, and spinotelencephalic fibers revealed by anterograde transport of PHA-L in rats. J Neurosci 11:852–868

    CAS  PubMed  Google Scholar 

  • Coggeshall RE (1973) Unmyelinated fibers in the ventral root. Brain Res 57:229–233

    CAS  PubMed  Google Scholar 

  • Coleman JR, Clerici WJ (1987) Sources of projections to subdivisions of the inferior colliculus in the rat. J Comp Neurol 262:215–226

    CAS  PubMed  Google Scholar 

  • Colonnier ML (1966) The structural design of the neocortex. In: Eccles JC (ed) Brain and conscious experience. Springer, Berlin Heidelberg New York, pp 1–23

    Google Scholar 

  • Condé F, Condé H (1982) The rubro-olivary tract in the cat, as demonstrated with the method of retrograde transport of horseradish peroxidase. Neuroscience 7:715–724

    PubMed  Google Scholar 

  • Condé H (1966) Analyse electrophysiologique de la voie dentato-rubrothalamique chez le chat. J Physiol (Paris) 58:218–219

    Google Scholar 

  • Conley M, Friederich-Ecsy B (1993) Functional organization of the ventral lateral geniculate complex of the tree shrew (Tupaia belangeri): II. connections with the cortex. J Comp Neurol 328:21–42

    CAS  PubMed  Google Scholar 

  • Conley M, Fitzpatrick D, Diamond IT (1984) The laminar organization of the lateral geniculate body and the striate cortex in the three shrew (Tupiaia glis). J Neurosci 4:171–197

    CAS  PubMed  Google Scholar 

  • Connolly CJ (1950) External morphology of the primate brain. Thomas, Springfield

    Google Scholar 

  • Connor JR, Peters A (1984) Vasoactive intestinal polypeptide immunoreactive neurons in rat visual cortex. Neuroscience 4:1027–1044

    Google Scholar 

  • Conrad LC, Pfaff DW (1976) Autoradiographic tracing of nucleus accumbens efferents in the rat. Brain Res 113:589–596

    CAS  PubMed  Google Scholar 

  • Contreras RJ, Beckstead RM, Norgren R (1982) The central projections of the trigeminal, facial, glossopharyngeal and vagus nerves: an autoradiographic study in the rat. J Auton Nerv Syst 6:303–322

    CAS  PubMed  Google Scholar 

  • Contreras RJ, Gomez MM, Norgren R (1980) Central origins of cranial nerve parasympathetic neurons in the rat. J Comp Neurol 190:373–394

    CAS  PubMed  Google Scholar 

  • Coolen LJMM (1995) The neural organization of sexual behavior in tha male rat; a functional neuroanatomical Fos-study. PhD thesis, University of Nijmegen, the Netherlands

    Google Scholar 

  • Cooper HM (1986) The accessory optic system in a Prosimian primate (microcebus murinus): evidence for a direct retinal projection to the medial terminal nucleus. J Comp Neurol 249:28–47

    CAS  PubMed  Google Scholar 

  • Cooper HM, Magnin M (1987) Accessory optic system of an anthropoid primate, the gibbon (Hylobates concolor): evidence of a direct retinal input to the medial terminal nucleus. J Comp Neurol 259:467–482

    CAS  PubMed  Google Scholar 

  • Cooper HM, Baleydier C, Magnin M (1990) Macaque accessory optic system: I. Definition of the medial terminal nucleus. J Comp Neurol 302:394–404

    CAS  PubMed  Google Scholar 

  • Cooper HM, Herbin M, Nevo E (1993a) Ocular regression conceals adaptive progression of the visual system in a blind subterranean mammal. Nature 361:156–159

    CAS  PubMed  Google Scholar 

  • Cooper HM, Herbin M, Nevo E (1993b) Visual system of a naturally microphthalmic mammal: the blind mole rat, Spalax ehrenbergi. J Comp Neurol 328:313–350

    CAS  PubMed  Google Scholar 

  • Cooper LL, Dostrovsky JO (1985) Projection from dorsal column nuclei to dorsal mesencephalon. J Neurophysiol 53:183–200

    CAS  PubMed  Google Scholar 

  • Cooper S, Sherrington CS (1940) Gower’s tract and spinal border cells. Brain 63:123–134

    Google Scholar 

  • Coote JH, Hilton SM, Zbrozyna AW (1973) The pontomedullary area integrating the defence reaction in the cat and its influence on muscle blood flow. J Physiol (Lond) 229:257–274

    CAS  Google Scholar 

  • Corvisier J, Hardy O (1993) Distribution of synaptic terminals from prepositus neurones on the collicular maps. Neuroreport 4:511–514

    CAS  PubMed  Google Scholar 

  • Cotter JR, Pierson Pentney RJ (1979) Retinofugal projections of nonecholocating (Pteropus giganteus) and Echolocating (Myotis lucifugus) bats. J Comp Neurol 184:381–400

    CAS  PubMed  Google Scholar 

  • Cottle MK (1964) Degeneration studies of primary afferents of IXth and Xth cranial nerves in the cat. J Comp Neurol 122:329–346

    CAS  PubMed  Google Scholar 

  • Coulter JD, Jones EG (1977) Differential distribution of corticospinal projections from individual cytoarchitectonic fields in the monkey. Brain Res 129:335–340

    CAS  PubMed  Google Scholar 

  • Courville J (1966a) Rubrobulbar fibres to the facial nucleus and the lateral reticular nucleus (nucleus of the lateral funiculus). An experimental study in the cat with silver impregnation methods. Brain Res 1:317–337

    CAS  PubMed  Google Scholar 

  • Courville J (1966b) Somatotopical organization of the projection from the nucleus interpositus anterior of the cerebellum to the red nucleus. An experimental study in the cat with silver impregnation methods. Exp Brain Res 2:191–215

    CAS  PubMed  Google Scholar 

  • Courville J, Brodai A (1966) Rubrocerebellar connections in the cat. An experimental study with silver impregnation methods. J Comp Neurol 126:471–486

    CAS  PubMed  Google Scholar 

  • Courville J, Otabe S (1974) The rubro-olivary projection in the macaque: an experimental study with silver impregnation methods. J Comp Neurol 158:479–491

    CAS  PubMed  Google Scholar 

  • Covey E, Casseday JH (1986) Connectional basis for frequency representation in the nuclei of the lateral lemniscus of the bat Eptesicus fuscus. J Neurosci 6:2926–2940

    CAS  PubMed  Google Scholar 

  • Covey E, Casseday JH (1991) The monaural nuclei of the lateral lemniscus in an echolocating bat: parallel pathways for analyzing temporal features of sound. J Neurosci 11:3456–3470

    CAS  PubMed  Google Scholar 

  • Cowie RJ, Holstege G (1993) Dorsal mesencephalic projections to pons, medulla, and spinal cord in the cat: limbic and non-limbic components. J Comp Neurol 319:536–559

    Google Scholar 

  • Cowan RL, Wilson CJ (1994) Spontaneous firing patterns and axonal projections of single corticostriatal neurons in the rat medial agranular cortex. J Neurophysiol 71:17–32

    CAS  PubMed  Google Scholar 

  • Cowan RL, Wilson CJ, Emson PC, Heizmann CW (1990) Parvalbumin-containing GABAergic interneurons in the rat neostriatum. J Comp Neurol 302:197–205

    CAS  PubMed  Google Scholar 

  • Cozzi MG, Rosa P, Greco A et al (1989) Immunohistochemical localization of secretogranin II in the rat cerebellum. Neuroscience 28:423–441

    CAS  PubMed  Google Scholar 

  • Craig AD (1978) Spinal and medullary input to the lateral cervical nucleus. J Comp Neurol 181:729–743

    PubMed  Google Scholar 

  • Craig AD (1991) Spinal distribution of ascending lamina I axons anterograde labeled with Phaseolus vulgaris leucoagglutinin (PHA-L) in the cat. J Comp Neurol 313:377–393

    CAS  PubMed  Google Scholar 

  • Craig AD (1995) Distribution of brainstem projections from spinal lamina I neurons in the cat and the monkey. J Comp Neurol 361:225–248

    CAS  PubMed  Google Scholar 

  • Craig AD (1996) An ascending general homeostatic afferent pathway originating in lamina I. Prog Brain Res 107:225–242

    CAS  PubMed  Google Scholar 

  • Craig AD, Broman J, Blomqvist A (1992) Lamina I spinocervical tract terminations in the medial part of the lateral cervical nucleus in the cat. J Comp Neurol 322:99–110

    CAS  PubMed  Google Scholar 

  • Craig AD, Bushneil MC, Zhang E-T, Blomqvist A (1995) A thalamic nucleus specific for pain and temperature sensation. Nature 372:770–773

    Google Scholar 

  • Craig ADJ, Burton H (1981) Spinal and medullary lamina I projection to nucleus submedius in medial thalamus: a possible pain center. J Neurophysiol 45:443–466

    PubMed  Google Scholar 

  • Craig ADJ, Linington AJ, Kniffki KD (1989) Cells of origin of spinothalamic tract projections to the medial and lateral thalamus in the cat. J Comp Neurol 289:568–585

    PubMed  Google Scholar 

  • Crick F (1982) Do dendritic spines twitch? Trends Neurosci 5:44–46

    Google Scholar 

  • Crick F (1984) Function of the thalamic reticular complex: the searchlight hypothesis. Proc Natl Acad Sci USA 81:4586–4590

    CAS  PubMed  Google Scholar 

  • Crosby EC, Humphrey T (1939) Studies on the vertebrate telencephalon. I. The nuclear configuration of the olfactory and accessory olfactory formations and of the nucleus olfactorius anterior of certain reptiles, birds and mammals. J Comp Neurol 71:121–213

    Google Scholar 

  • Crosby EC, Humphrey T (1941) Studies of the vertebrate telencephalon. II. The nuclear pattern of the anterior olfactory nucleus, tuberculum of olfactorium and the amygdaloid complex in adult man. J Comp Neurol 74:309–352

    Google Scholar 

  • Crosby EC, Humphrey T, Lauer EW (1962) Correlative anatomy of the nervous system. MacMillan, New York

    Google Scholar 

  • Crosby EC, Humprey T (1941) Studies of the vertebrate telencephalon. II. The nuclear pattern of the anterior olfactory nucleus, tuberculum olfactorium and the amygdaloid complex in adult man. J Comp Neurol 74:309–352

    Google Scholar 

  • Crosby EC, Humphrey T (1944) Studies of the vertebrate telencephalon. III. The amygdaloid complex in the shrew (Blarina brevicauda). J Comp Neurol 81:285–305

    Google Scholar 

  • Crosby EC, Woodburne RT (1940) The comparative anatomy of the preoptic area and the hypothalamus. Res Publ Assoc Res Nerv Ment Dis 20:52–169

    Google Scholar 

  • Crouch RL (1934) The nuclear configuration of the hypothalamus and subthalamus of Macacus rhesus. J Comp Neurol 59:431–449

    Google Scholar 

  • Cruce JAF (1977) An autoradiographic study of the descending connections of the mammillary nuclei of the rat. J Comp Neurol 176:631–644

    CAS  PubMed  Google Scholar 

  • Crutcher KA, Humbertson AOJ (1978) The organization of monoamine neurons within the brainstem of the North American Opossum (Didelphis virginiana). J Comp Neurol 179:195–222

    CAS  PubMed  Google Scholar 

  • Crutcher KA, Humbertson AO, Martin GF (1978) The origin of brainstem-spinal pathways in the North American Opossum (Didelphis virginiana). Studies using the horseradish peroxidase method. J Comp Neurol 179:169–194

    CAS  PubMed  Google Scholar 

  • Cucchiaro JB, Bickford ME, Sherman SM (1991) A GABAergic method. J Comp Neurol 179:169–194

    Google Scholar 

  • Culberson JL, Brushart TM (1989) Somatotopy of digital nerve projections to the cuneate nucleus in the monkey. Somatosens Mot Res 6:319–330

    CAS  PubMed  Google Scholar 

  • Cummings JF, Petras JM (1977) The origin of spinocerebellar pathways. I. The nucleus cervicalis centralis of the cranial cervical spinal cord. J Comp Neurol 173:655–692

    CAS  PubMed  Google Scholar 

  • Cunningham ETJ, Miselis RR, Sawchenko PE (1994) The relationship of efferent projections from the area postrema to vagal motor and brain stem catecholamine-containing cell groups: an axonal transport and immunohistochemical study in the rat. Neuroscience 58:635–648

    PubMed  Google Scholar 

  • Cynader M, Berman N (1972) Receptive-field organization of monkey superior colliculus. J Neurophysiol 35:187–201

    CAS  PubMed  Google Scholar 

  • Czeiger D, White EL (1993) Synapses of extrinsic and intrinsic origin made by callosal projection neurons in mouse visual cortex. J Comp Neurol 330:502–513

    CAS  PubMed  Google Scholar 

  • Dahlstrom A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand [Suppl] 62(232):1–55

    Google Scholar 

  • Dahlstrom A, Fuxe K (1965) Evidence for the existence of monoamine neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron systems. Acta Physiol Scand Suppl 64(247): 1–36

    Google Scholar 

  • Daniel H, Billard JM, Angaut P, Batini C (1987) The interposito-rubrospinal system. Anatomical tracing of a motor control pathway in the rat. Neurosci Res 5:87–112

    CAS  PubMed  Google Scholar 

  • Darian-Smith J (1973) The trigeminal system. In: Iggi A (ed), Handbook of sensory physiology. Somatosensory system. Springer, Berlin Heidelberg New York, pp 271–314

    Google Scholar 

  • Dart AM, Gordon G (1973) Some properties of spinal connections of the cat’s dorsal column nuclei which do not involve the dorsal columns. Brain Res 58:61–68

    CAS  PubMed  Google Scholar 

  • Davenport HA, Ranson SW (1930) The red nucleus and adjacent cell groups. A topographic study in the cat and in the rabbit. Arch Neurol Psychiat 24:257–266

    Google Scholar 

  • Davis PJ, Nail BS (1984) On the location and size of laryngeal motoneurons in the cat and rabbit. J Comp Neurol 230:13–32

    CAS  PubMed  Google Scholar 

  • Davis BJ, Macrides F, Youngs WM, Schneider SP, Rosene DL (1978) Efferents and centrifugal afferents of the main and accessory olfactory bulbs in the hamster. Brain Res Bull 3:59–72

    CAS  PubMed  Google Scholar 

  • Davis M (1992a) The role of the amygdala in conditioned fear. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss, New York, pp 255–306

    Google Scholar 

  • Davis M (1992b) The role of the amygdala in fear and anxiety. Annu Rev Neurosci 15:353–375

    CAS  PubMed  Google Scholar 

  • DeFelipe J, Farinas J (1992) The pyramidal neuron of the cerebral cortex: morphological and chemical characteristics of the synaptic input. Prog Neurobiol 39:563–607

    Google Scholar 

  • DeFelipe J, Conley M, Jones EG (1986) Long-range focal collateralization of axons arising from corticocortical cells in monkey sensory-motor cortex. J Neurosci 6:3749–3766

    Google Scholar 

  • DeFelipe J, Hendry SHC, Jones EG (1989) Synapses of double bouquet cells in monkey cerebral cortex visualized by calbindin immunoreactivity. Brain Res 503:49–54

    Google Scholar 

  • DeFelipe J, Hendry SHC, Hashikawa T, Molinari M, Jones EG (1990) A microcolumnar structure of monkey cerebral cortex revealed by immunocy to chemical studies of double bouquet cell axons. Neuroscience 37:655–673

    Google Scholar 

  • de Graaf AS (1967) Anatomical aspects of the cetacean brain stem. Thesis, University of Leiden, pp 1-169

    Google Scholar 

  • Dekker JJ (1981) Anatomical evidence for direct fiber projections from the cerebellar nucleus interpositus to rubrospinal neurons. A quantitative EM study in the rat combining anterograde and retrograde intra-axonal tracing methods. Brain Res 205:229–244

    CAS  PubMed  Google Scholar 

  • DeLong MR, Georgopoulos AP (1981) Motor functions of the basal ganglia. In: Brookhart JM, Mountcastle VB, Brooks VB (eds) Handbook of physiology, sect 1: the nervous system, vol 2: motor control, part 2. American Physiological Society, Bethesda, pp 1017–1061

    Google Scholar 

  • Demole V (1927A) Structure et connexion des noyeaux denteles du cervelet. I. Schweiz Arch Psychiat u Neurol 20:271–294

    Google Scholar 

  • Demole V (1927b) Structure et connexion des noyeaux dentelés du cervelet. II. Schweiz Arch Psychiat u Neurol 21:73–110

    Google Scholar 

  • Demski LS (1993) terminal nerve complex. Acta Anat 148:81–95

    CAS  PubMed  Google Scholar 

  • Demski LS, Schwanzel-Fukuda M (1987) The terminal nerve (nervus terminalis): structure, function and evolution. Ann NY Acad Sci 519:469

    Google Scholar 

  • Demski LS, Ridgway SH, Schwanzel-Fukuda M (1990) The terminal nerve of dolphins: gross structure, histology and luteinizing-hormone-releasing hormone immunocytochemistry. Brain Behav Evol 36:249–261

    CAS  PubMed  Google Scholar 

  • Deniau JM, Chevalier G (1992) The lamellar organization of the rat substantia nigra pars reticulata: distribution of projection neurons. Neuroscience 46:361–377

    CAS  PubMed  Google Scholar 

  • Deniau JM, Menetrey A, Thierry AM (1994) Indirect nucleus accumbens input to the pre-frontal cortex via the substantia nigra pars reticulata: a combined anatomical and electrophysiological study in the rat. Neuroscience 61:533–545

    CAS  PubMed  Google Scholar 

  • de Olmos JS (1972) The amygdaloid projection field in the rat as studied with the cupric-silver method. In: Eleftheriou BE (ed) The neurobiology of the amygdala. Plenum, New York, pp 145–204

    Google Scholar 

  • de Olmos JS (1990) Amygdaloid nuclear gray complex. In: Paxinos G (ed) The human nervous system. Academic, San Diego, pp 583–750

    Google Scholar 

  • de Olmos JS, Ingram WR (1972) The projection field of the stria terminalis in the rat brain. An experimental study. J Comp Neurol 146:303–334

    PubMed  Google Scholar 

  • de Olmos JS, Hardy H, Heimer L (1978) The afferent connections of the main and the accessory bulb formations in the rat: an experimental HRP study. J Comp Neurol 181:213–244

    PubMed  Google Scholar 

  • de Olmos JS, Alheid GF, Beltramino CA (1985) Amygdala. In: Paxinos G (ed) The rat nervous system, vol 1. Academic, Sydney, pp 223–334

    Google Scholar 

  • Desban M, Gauchy C, Glowinski J, Kernel M-L (1995) Heterogeneous topographical distribution of the striatonigral and striatopallidal neurons in the matrix compart-ment of the cat caudate nucleus. J Comp Neurol 352:117–133

    CAS  PubMed  Google Scholar 

  • Desban M, Kernel ML, Glowinski J, Gauchy C (1993) Spatial organization of patch and matrix compartments in the rat striatum. Neuroscience 57:661–671

    CAS  PubMed  Google Scholar 

  • Deschênes M, Labelle A, Landry P (1979) Morphological characterization of slow and fast pyramidal tract cells in the cat. Brain Res 178:251–274

    PubMed  Google Scholar 

  • DeVito JL, Anderson ME (1982) An autoradiographic study of efferent connections of the globus pallidus in macaque mulatta. Exp Brain Res 46:107–117

    Google Scholar 

  • De Wied D (1987) Neuropeptides and behavior. In: Adelman G (ed) Encyclopedia of neuroscience, vol 2. Birkhäuser, Boston, pp 839–841

    Google Scholar 

  • De Zeeuw CI, Wentzel P, Mugnaini E (1993) Fine structure of the dorsal cap of the inferior olive and its GABAergic and non-GABAergic input from the nucleus prepositus hypoglossi in rat and rabbit. J Comp Neurol 327:63–82

    PubMed  Google Scholar 

  • De Zeeuw CI, Gerrits NM, Voogd J, Leonard CS, Simpson JI (1994) The rostral dorsal cat and ventrolateral outgrowth of the rabbit inferior olive receive a GABAergic input from dorsal group Y and the ventral dentate nucleus. J Comp Neurol 341:420–432

    PubMed  Google Scholar 

  • De Zeeuw CI, Lang EJ, Sugihara I, Ruigrok TJH, Eisenman LM, Mugnaini E, Llinas R (1996) Morphological correlates of bilateral synchrony in the rat cerebellar cortex. J Neurosci 16:3412–3426

    PubMed  Google Scholar 

  • Diamond IT, Hall WC (1969) Evolution of neocortex. Science 164:251–262

    CAS  PubMed  Google Scholar 

  • Diamond IT, Conley M, Fitzpatrick D, Raczkowski D (1991) Evidence for separate pathways within the tecto-geniculate projection in the tree shrew. Proc Natl Acad Sci USA 88:1315–1319

    CAS  PubMed  Google Scholar 

  • Diao YC, Wang YK, Xiao YM (1983) Representation of the binocular visual field in the superior colliculus of the albino rat. Exp Brain Res 52:67–72

    CAS  PubMed  Google Scholar 

  • Diepen RBWFM (1941) The hypothalamic nuclei and their ontogenetic development in ungulates (Ovis aries). Thesis, University of Amsterdam, the Netherlands

    Google Scholar 

  • Dietrichs E, Haines DE (1989) Interconnections between hypothalamus and cerebellum. Anat Embryol (Berl) 179:207–220

    CAS  Google Scholar 

  • Dietrichs E, Walberg F (1983) Cerebellar cortical afferents from the red nucleus in the cat. Exp Brain Res 50:353–358

    CAS  PubMed  Google Scholar 

  • Dietrichs E, Walberg F (1987) Cerebellar nuclear afferents — where do they originate? A re-evaluation of the projections from some lower brain stem nuclei. Anat Embryol 177:165–172

    CAS  PubMed  Google Scholar 

  • Dietrichs E, Wiklund L, Haines DE (1992) The hypothalamocerebellar projection in the rat: origin and transmitter. Arch Ital Biol 130:203–211

    CAS  PubMed  Google Scholar 

  • DiFiglia M, Aronin N (1982) Ultrastructural features of immunoreactive somatostatin neurons in the rat caudate nucleus. J Neuroscience 2:1267–1274

    Google Scholar 

  • DiFiglia M, Pasik P, Pasik T (1976) A Golgi study of neuronal types in the neo-striatum of monkeys. Brain Res 114:245–256

    Google Scholar 

  • Dillon LS (1962) Comparative studies of the brain in the Macropodidae. Contribution to the phylogeny of the mammalian brain. J Comp Neurol 120:43–52

    Google Scholar 

  • Dinopoulos A, Papadopoulos GC, Michaloudi H, Parnavelas JG, Uylings HBM, Karamanlidis AN (1987) Claustrum in the hedgehog (Erinaceus europaeus) brain: cytoarchitec-ture and connections with cortical and subcortical structures. J Comp Neurol 316:187–205

    Google Scholar 

  • Divac I (1975) Magnocellular nuclei of the basal forebrain project to neocortex, brain stem, and olfactory bulb: review of some functional correlates. Brain Res 93:385–398

    CAS  PubMed  Google Scholar 

  • Dobbins EG, Feldman JL (1995) Differential innervation of protruder and retractor muscles of the tongue in rat. J Comp Neurol 357:376–394

    CAS  PubMed  Google Scholar 

  • Dom R, Falls W, Martin GF (1973) The motor nucleus of the facial nerve in the opossum (Didelphis marsupialis virginiana). Its organization and connections. J Comp Neurol 152:373–402

    CAS  PubMed  Google Scholar 

  • Dong K, Rahman HA (1992) The retrograde fluorescence double labeling study of the cat’s optic nerve cell which has a bifurcating axon. Kaibogaku Zasshi 67:207–213

    CAS  PubMed  Google Scholar 

  • Donoghue JP, Herkenham M (1986) Neostriatal projections from individual cortical fields conform to histochemically distinct striatal compartments in the rat. Brain Res 365:397–403

    CAS  PubMed  Google Scholar 

  • Doré L, Jacobson CD, Hawkes R (1990) Organization and post-natal development of zebrin II antigenic compartmentation in the cerebellar vermis of the grey opossum, Monodelphis domestica. J Comp Neurol 291:431–449

    PubMed  Google Scholar 

  • Douglas RJ, Martin KAC (1990) Neocortex. In: Shepherd GM (ed) The synaptic organization of the brain, 3rd edn. Oxford University Press, New York-Oxford, pp 389–438

    Google Scholar 

  • Dow RS (1942) The evolution and anatomy of the cerebellum. Biol Rev 17:179–220

    Google Scholar 

  • Dräger UC, Hubel DH (1974) Responses to visual stimulation and relationship between visual, auditory, and somatosensory inputs in mouse superior colliculus. J Neurophysiol 38:690–713

    Google Scholar 

  • Dräger UC, Hubel DH (1976) Topography of visual and somatosensory projections to mouse superior colliculus. J Neurophysiol 39:91–101

    PubMed  Google Scholar 

  • Dräger UC, Olsen JF (1980) Origins of crossed and uncrossed retinal projections in pigmented and albino mice. J Comp Neurol 191:383–412

    PubMed  Google Scholar 

  • Dreher B, Sefton AJ, Ni SYK, Nisbett G (1985) The morphology, number, distribution and central projections of class I retinal ganglion cells in albino and hooded rats. Brain Behav Evol 26:10–48

    CAS  PubMed  Google Scholar 

  • Drooglever Fortuyn AB (1912) Die Ontogenie der Kerne des Zwischenhirns beim Kaninchen. Arch Anat Physiol Anat Abt 36:303–352

    Google Scholar 

  • Druga R (1970) Neocortical projections on the amygdala (an experimental study with the Nauta method). J Hirnforsch 11:467–476

    CAS  Google Scholar 

  • Druga R, Syka J (1984) Projections from auditory structures to the superior colliculus in the rat. Neurosci Lett 45:247–252

    CAS  PubMed  Google Scholar 

  • Dubé L, Smith AD, Bolam JP (1988) Identification of synaptic terminals of thalamic or cortical origin in contact with distinct medium-size spiny neurons in the rat neo-striatum. J Comp Neurol 267:455–471

    PubMed  Google Scholar 

  • Dubé MG, Xu B, Crowley WR, Kalra PS, Kalra SP (1994) Evidence that neuropeptide Y is a physiological signal for normal food intake. Brain Res 646:341–344

    PubMed  Google Scholar 

  • Dulce Madeira M, Lieberman AR (1995) Sexual dimorphism in the mammalian limbic system. Prog Neurobiol 45:275–333

    Google Scholar 

  • Dum RP, Strick PL (1992) Medial wall motor areas and skeletomotor control. Curr Opin Neurobiol 2:836–839

    CAS  PubMed  Google Scholar 

  • Durand J (1989) Intracellular study of oculomotor neurons in the rat. Neuroscience 30:639–649

    CAS  PubMed  Google Scholar 

  • Ebbesson SOE, Voneida TJ (1969) The cytoarchitecture of the pallium in the tegu lizard (Tupinambis nigropunctatus). Brain Behav Evol 2:431–466

    Google Scholar 

  • Ebner FF (1969) A comparison of primitive forebrain organization in metatherian and eutherian mammals. Ann NY Acad Sci 167:241–257

    Google Scholar 

  • Ebner FF, Colonnier M (1975) Synaptic patterns in the visual cortex of turtles: an electron microscopic study. J Comp Neurol 160:51–80

    CAS  PubMed  Google Scholar 

  • Eccles J (1984) The cerebral neocortex: a theory of its operation. In: Jones EG, Peters A (eds) Functional properties of cortical cells. Plenum, New York, pp 1–36 (Cerebral cortex, vol 2)

    Google Scholar 

  • Eccles JC, Ito M, Szentagothai J (1967) The cerebellum as a neuronal machine. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Edinger L (1889) Vergleichende Entwicklungsgeschichte und anatomische Studien im Bereiche des Centralnervensys-tems. 2) Über die Fortsetzung der hinteren Rückenmarks-wurzeln zum Gehirn. Anat Anz 4:121–128

    Google Scholar 

  • Edinger L (1908a) The relations of comparative anatomy to comparative psychology. J Comp Neurol Psychol 18:437–457

    Google Scholar 

  • Edinger L (1908b) Vorlesungen über den Bau der nervösen Zentralorgane des Menschen und der Tiere. II. Vergleichende Anatomie des Gehirns. Vogel, Leipzig

    Google Scholar 

  • Edinger T (1948) Evolution of the horse brain. Memoir Series of the Geological Society of America (Memoir 25). Waverly, Baltimore

    Google Scholar 

  • Edinger T (1966) Brains from 40 million years of camelid history. In: Hassler R, Stephan H (eds) Evolution of the forebrain: phylogenesis and ontogenesis of the forebrain. Thieme, Stuttgart, pp 153–161

    Google Scholar 

  • Edley SM, Graybiel AM (1983) The afferent and efferent connections of the feline nucleus tegmenti pedunculopontinus, pars compacta. J Comp Neurol 217:187–215

    CAS  PubMed  Google Scholar 

  • Edmunds SM, Parnavelas JG (1982) Retzius-Cajal cells: an ultrastructural study in the developing visual cortex of the rat. J Neurocytol 11:427–446

    CAS  PubMed  Google Scholar 

  • Edwards SB (1972) The ascending and descending projections of the red nucleus in the cat: an experimental study using an autoradiographic tracing method. Brain Res 48:45–63

    CAS  PubMed  Google Scholar 

  • Edwards SB (1977) The commissural projection of the superior colliculus in the cat. J Comp Neurol 173:23–40

    CAS  PubMed  Google Scholar 

  • Edwards SB (1980) Deep cell layers of superior colliculus, vol 6. In: Hobson JA, Brazier MAB (eds) The reticular formation revisited: specifying function for a nonspecific system. International Brain Research Organization, New York, pp 193–209

    Google Scholar 

  • Edwards SB, Rosenquist AC, Palmer LA (1974) An autoradiographic study of ventral lateral geniculate projections in the cat. Brain Res 72:282–287

    CAS  PubMed  Google Scholar 

  • Edwards SB, Ginsburgh CL, Henkel CK, Stein BE (1979) Soures of subcortical projections to the superior colliculus in the cat. J Comp Neurol 184:309–330

    CAS  PubMed  Google Scholar 

  • Einstein G, Fitzpatrick D (1991) Distribution and morphology of area 17 neurons that project to the cat’s extrastriate cortex. J Comp Neurol 303:132–149

    CAS  PubMed  Google Scholar 

  • Eisenman LM, Hawkes R (1993) Antigenic compartmentation in the mouse cerebellar cortex: Zebrin and HNK-1 reveal a complex, overlapping molecular topography. J Comp Neurol 335:586–605

    CAS  PubMed  Google Scholar 

  • Ekerot C-F, Larson B (1979a) The dorsal spino-olivocerebellar system in the cat. I. Functional organization and termination in the anterior lobe. Exp Brain Res 36:201–218

    CAS  PubMed  Google Scholar 

  • Ekerot C-F, Larson B (1979b) The dorsal spinoolivocerebellar system in the cat. II. Somatotopical organization. Exp Brain Res 36:219–232

    CAS  PubMed  Google Scholar 

  • Ekerot CF, Larson B, Oscarsson O (1979) Information carried by the spinocerebellar paths. In: Granit R, Pompeiano O (eds) Reflex control of posture and movement. North Holland/Elsevier, Amsterdam, pp 79–90

    Google Scholar 

  • Elhanany E, White EL (1990) Intrinsic circuitry: synapses involving the local axon collaterals of corticocortical projection neurons in the mouse primary somatosensory cortex. J Comp Neurol 291:43–54

    CAS  PubMed  Google Scholar 

  • Elliot Smith G (1898) The brain in the Edentata. Trans Linn Soc Lond Ser 2 (Zool) 7:277–394

    Google Scholar 

  • Elliot Smith G (1903) Notes on the morphology of the cerebellum. J Anat Physiol 37:329–332

    PubMed Central  Google Scholar 

  • Elliot-Smith G (1899) The brain in the Edentata. Trans Linn Soc Lond Sec Ser 7:277–394

    Google Scholar 

  • Elliot-Smith G (1900) On the morphology of the brain in the mammalia, with special reference to that of lemurs, recent and extinct. Trans Linn Soc 8:319–432

    Google Scholar 

  • Elliot-Smith G (1902) The primary subdivision of the mammalian cerebellum. J Anat (Lond) 36:381–385

    Google Scholar 

  • Elliot Smith G (1908) The cerebral cortex in Lepidosiren, with comparative notes on the interpretation of certain features of the forebrain in other vertebrates. Anat Anz 33:513–540

    Google Scholar 

  • Elverland HH (1977) Descending connections between superior olivary and cochlear nuclear complexes in the cat studied by autoradiographic and horseradish peroxidase methods. Exp Brain Res 27:397–412

    CAS  PubMed  Google Scholar 

  • Enevoldson TP, Gordon G (1984) Spinally projecting neurons in the dorsal column nuclei: distribution, dendritic trees and axonal projections. A retrograde HRP study in the cat. Exp Brain Res 54:538–550

    CAS  PubMed  Google Scholar 

  • Enevoldson TP, Gordon G (1989a) Postsynaptic dorsal column neurons in the cat: a study with retrograde transport of horseradish peroxidase. Exp Brain Res 75:611–620

    CAS  PubMed  Google Scholar 

  • Enevoldson TP, Gordon G (1989b) Spinocervical neurons and dorsal horn neurons projecting to the dorsal column nuclei through the dorsolateral fascicle: a retrograde HRP study in the cat. Exp Brain Res 75:621–630

    CAS  PubMed  Google Scholar 

  • English AWJT, Lennard PR (1985) Anatomical organization of long ascending propriospinal neurons in the cat spinal cord. J Comp Neurol 240:349–358

    CAS  PubMed  Google Scholar 

  • Epema AH (1990) “Connections” of the vestibular nuclei in the rabbit. Doctoral thesis

    Google Scholar 

  • Epema AH, Gerrits NM, Voogd J (1988) Commissural and intrinsic connections of the vestibular nuclei in the rabbit: A retrograde labeling study. Exp Brain Res 71:129–146

    CAS  PubMed  Google Scholar 

  • Erickson RP, Jane A, Waite R, Diamond IT (1964) Single neuron investigation of sensory thalamus of the opossum. J Neurophysiol 27:1026–1047

    CAS  PubMed  Google Scholar 

  • Essick CR (1907) The corpus pontobulbare — a hitherto undescribed nuclear mass in the human. Am J Anat 7:1101

    Google Scholar 

  • Evarts EV, Thach WT (1969) Motor mechanism of the CNS: cerebrocerebellar inter-relations. Annu Rev Physiol 31:451–498

    CAS  PubMed  Google Scholar 

  • Evinger C (1988) Extraocular motor nuclei: location, morphology and afferents. In: Buttner-Ennever (ed) Neuroanatomy of the oculomotor system, chap 3. Elsevier Science, Amsterdam, pp 81–117

    Google Scholar 

  • Evinger C, Graf WM, Baker R (1987) An extra-and intracellular HRP analysis of the organization of extraocular motoneurons and internuclear neurons in the guinea pig and rabbit. J Comp Neurol 262:429–445

    CAS  PubMed  Google Scholar 

  • Ezure K, Graf W (1984) A quantitative analysis of the spatial organization of the vestibulo-ocular reflexes in lateraland frontal-eyed animals-II. Neuronal networks underlying vestibulo-oculomotor coordination. Neuroscience 12:95–109

    CAS  PubMed  Google Scholar 

  • Fairén A, Valverde F (1979) Specific thalamo-cortical afferents and their presumptive targets in the visual cortex. A Golgi study. Prog Brain Res 51:419–438

    PubMed  Google Scholar 

  • Fairén A, Valverde F (1980) A specialized type of neuron in the visual cortex of cat: a Golgi and electron microscope study of chandelier cells. J Comp Neurol 194:761–779

    PubMed  Google Scholar 

  • Fairén A, DeFelipe J, Regidor J (1984) Nonpyramidal neurons: general account. In: Peters A, Jones EG (eds) Cellular components of the cerebral cortex. Plenum, New York, pp 201–254 (Cerebral cortex, vol 1)

    Google Scholar 

  • Falk D (1982) Mapping fossil endocasts. In: Armstrong E, Falk D (eds) Primate brain evolution: methods and concepts. Plenum, New York, pp 217–226

    Google Scholar 

  • Fallon JH, Moore RY (1978) Catecholamine innervation of the basal forebrain. IV. Topography of the dopamine projection to the neostriatum. J Comp Neurol 180:545–580

    CAS  PubMed  Google Scholar 

  • Faugier-Grimaud S, Ventre J (1989) Anatomic connections of inferior parietal cortex (area 7) with subcortical structures related to vestibulo-ocular function in monkey (Macaca fascicularis). J Comp Neurol 280:1–14

    CAS  PubMed  Google Scholar 

  • Faull RLM (1978) The cerebellofugal projections in the brachium conjunctivum of the rat. II. The ipsilateral and contralateral descending pathways. J Comp Neurol 178:519–536

    CAS  PubMed  Google Scholar 

  • Faull RLM, Mehler WR (1978) The cells of origin of nigrotectal, nigrothalamic and nigrostriatal projections in the rat. Neuroscience 3:989–1002

    CAS  PubMed  Google Scholar 

  • Feldman ML (1984) Morphology of the neocortical pyramidal neuron. In: Peters A, Jones EG (eds) Cellular components of the cerebral cortex. Plenum, New York, pp 123–200 (Cerebral cortex, vol 1)

    Google Scholar 

  • Feldman ML, Harrison JM (1969) The projection of the acoustic nerve to the ventral cochlear nucleus of the rat. A Golgi Study. J Comp Neurol 137:267–294

    CAS  PubMed  Google Scholar 

  • Feldman ML, Peters A (1978) The forms of non-pyramidal neurons in the visual cortex of the rat. J Comp Neurol 179:761–794

    CAS  PubMed  Google Scholar 

  • Feldman SG, Kruger L (1980) An axonal transport study of the ascending projection of medial lemniscal neurons in the rat. J Comp Neurol 192:427–454

    CAS  PubMed  Google Scholar 

  • Feldon S, Feldon P, Kruger L (1970) Topography of the retinal projection upon the superior colliculus of the cat. Vision 10:135–143

    CAS  Google Scholar 

  • Feiten DL, Crutcher KA (1979) Neuronal vascular relationships in the raphe nuclei, locus coeruleus, and substantia nigra in primates. Am J Anat 155:467–482

    Google Scholar 

  • Feiten D, Laties A, Carpenter M (1974) Localization of monoamine-containing cell bodies in the squirrel monkey brain. Am J Anat 139:153–166

    Google Scholar 

  • Ferraro A, Barrera SE (1935) The nuclei of the posterior funiculi in Macacus rhesus. Arch Neurol Psychiat (Chic) 33:262–275

    Google Scholar 

  • Ferrier D (1876) The functions of the brain. Smith, London Elder

    Google Scholar 

  • Filimonoff IN (1965) On the so-called rhinencephalon in the dolphin. J Hirnforsch 8:1–23

    Google Scholar 

  • Fisher M (1983) Neuron-glia interactions and glial enzyme expression in the mouse cerebellum. Int Soc Dev Neurosci Abstr Salt Lake City, Utah

    Google Scholar 

  • Fitzpatrick D, Itoh K, Diamond IT (1983) The laminar organization of the lateral geniculate body and the striate cortex in the squirrel monkey (Saimiri sciureus). J Neurosci 3:673–702

    CAS  PubMed  Google Scholar 

  • Fitzpatrick D, Lund JS, Blasdel GG (1985) Intrinsic conenctions of macaque striate cortex: afferent and efferent connections of lamina 4C. J Neurosci 5:3329–3349

    CAS  PubMed  Google Scholar 

  • FitzPatrick KA, Imig TJ (1978) Projections of auditory cortex upon the thalamus and midbrain in the owl monkey. J Comp Neurol 177:537–556

    Google Scholar 

  • FitzPatrick KA, Imig TJ (1982) Organization of auditory connections. The primate auditory cortex. In: Woolsey CN (ed) Cortical sensory organization, vol 3. Humana, Clifton, New Jersey, pp 71–109

    Google Scholar 

  • Fénelon G, François C, Percheron G, Yelnik J (1990) Topographic distribution of pallidal neurons projecting to the thalamus in macaques. Brain Res 520:27–35

    PubMed  Google Scholar 

  • Flaherty AW, Graybiel AM (1993) Output architecture of the primate putamen. J Neurosci 13:3222–3232

    CAS  PubMed  Google Scholar 

  • Flanagan-Cato LM, McEwen BS (1995) Pattern of Fos and Jun expression in the female rat forebrain after sexual behavior. Brain Res 673:53–60

    CAS  PubMed  Google Scholar 

  • Flatau E, Jacobsohn L (1899) Handbuch der Anatomie und vergleichende Anatomie des Centralnervensystems der Säugetiere. I. Makroskopischer Teil. Karger, Berlin

    Google Scholar 

  • Fleischhauer K (1974) On different patterns of dendritic bundling in the cerebral cortex of the cat. Z Anat Entw Gesch 143:115–126

    Google Scholar 

  • Fleischhauer K, Petche H, Wittkowski W (1972) Vertical bundles of dendrites in the neocortex. Z Anat Entw Gesch 136:213–223

    CAS  Google Scholar 

  • Flindt-Egebak P, Moller HU (1984) Topographical arrangements of feline motor cortical projections onto the pretectum. Neurosci Lett 52:85–89

    CAS  PubMed  Google Scholar 

  • Flink R, Westman J (1985) Convergence on the same neurons in the feline ventrobasal thalamus of terminals from the dorsal column and the lateral cervical nuclei: an ultrastructural study combining orthograde degeneration and ante-rograde axonal transport of lectin conjugated horseradish peroxidase. Neurosci Lett 61:243–248

    CAS  PubMed  Google Scholar 

  • Flood S, Jansen J (1961) On the cerebellar nuclei in the cat. Acta Anat 46:52–72

    CAS  PubMed  Google Scholar 

  • Flores A (1911) Die Myeloarchitektonik und die Myelogenie des Cortex Cerebri beim Igel (Erinacaeus europaeus). J Psychol Neurol (Lpz) 17:215–247

    Google Scholar 

  • Floris A, Dino M, Jacobowitz DM, Mugnaini E (1994) The unipolar brush cells of the rat cerebellar cortex and cochlear nucleus are calretinin-positive: a study by light and electron microscopic immunocytochemistry. Anat Embryol (Berl) 189:495–520

    CAS  Google Scholar 

  • Flumerfelt BA, Caughell KA (1978) A horseradish peroxidase study of the cerebellorubral pathway in the rat. Exp Neurol 58:95–101

    CAS  PubMed  Google Scholar 

  • Flumerfelt BA, Otabe S, Courville J (1973) Distinct projections to the red nucleus from the dentate and interposed nuclei in the monkey. Brain Res 50:408–414

    CAS  PubMed  Google Scholar 

  • Fonnum F, Storm-Mathisen J, Divac I (1981) Biochemical evidence for glutamate as neurotransmitter in corticostriatal and corticothalamic fibres in rat brain. Neuroscience 6:863–873

    CAS  PubMed  Google Scholar 

  • Fox CA, Rafols JA (1975) The radial fibers in the globus pallidus. J Comp Neurol 159:177–200

    CAS  PubMed  Google Scholar 

  • Fox CA, Hillman DE, Siegesmund KA, Dutta CR (1967) The primate cerebellar cortex: a golgi and electron microscopic study. Prog Brain Res 25:174–225

    CAS  PubMed  Google Scholar 

  • Fox CA, Rafols JA, Cowan WM (1975) Computer measurements of axis cylinder dia-meters of radial fibers and “comb” bundle fibers. J Comp Neurol 159:201–224

    CAS  PubMed  Google Scholar 

  • Fox MW, Inman O (1966) Persistence of Retzius-Cajal cells in developing dog brain. Brain Res 3:192–194

    CAS  PubMed  Google Scholar 

  • Frahm HD, Stephan H, Stephan M (1982) Comparison of brain structure volumes in Insectivora and Primates. I. Neocortex. J Hirnforsch 23:375–389

    CAS  PubMed  Google Scholar 

  • Francois C, Percheron G, Yelnik J (1984) Localization of nigrostriatal, nigro-thalamic and nigrotectal neurons in ventricular coordinates in macaques. Neuroscience 13:61–76

    CAS  PubMed  Google Scholar 

  • Frankfurter A, Weber JT, Royce GJ, Strominger NL, Harting JK (1976) An autoradiographic analysis of the tecto-olivary projection in primates. Brain Res 118:245–257

    CAS  PubMed  Google Scholar 

  • Frederickson CJ, Trune DR (1986) Cytoarchitecture and sac-cular innervation of nucleus Y in the mouse. J Comp Neurol 252:302–322

    CAS  PubMed  Google Scholar 

  • Freund TF, Martin KAC, Smith AD, Somogyi P (1983) Glutamate decarboxylase-immunoreactive terminals of Golgiimpregnated axoaxonic cells and of presumed basket cells in synaptic contact with pyramidal neurons of the cat’s visual cortex. J Comp Neurol 221:263–278

    CAS  PubMed  Google Scholar 

  • Freund TF, Powell JF, Smith AD (1984) Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines. Neuroscience 13:1189–1215

    CAS  PubMed  Google Scholar 

  • Friant M (1944) Le cerveau des Pangolins arboricoles d’Afrique. Rev Zool Bot Afr 38:104–109

    Google Scholar 

  • Friauf E, Herbert H (1985) Topographical organization of facial motoneurons to individual pinna muscles in rat (Rattus rattus) and bat (Rousettus aegyptiacus). J Comp Neurol 240:161–170

    CAS  PubMed  Google Scholar 

  • Friedman DP, Bachevalier J, Ungerleider LG, Mishkin M (1987) Widespread projections to layer I of primate cortex. Soc Neurosci Abstr 13:251

    Google Scholar 

  • Frisina RD, O’Neill WE, Zettel ML (1989) Functional organization of mustached bat inferior colliculus: II. Connections of the FM2 region. J Comp Neurol 284:85–107

    CAS  PubMed  Google Scholar 

  • Fritschy J-M, Grzanna R (1989) Immunohistochemical analysis of the neurotoxic effects of DSP-4 identifies two populations of noradrenergic axon terminals. Neuroscience 30:181–197

    CAS  PubMed  Google Scholar 

  • Fritschy JM, Grzanna R (1990) Demonstration of two separate descending noradrenergic pathways to the rat spinal cord: evidence for an intragriseal trajectory of locus coeruleus axons in the superficial layers of the dorsal horn. J Comp Neurola 291:553–582

    CAS  Google Scholar 

  • Frost DO, Caviness VS (1980) Radial organization of thalamic projections to the neocortex in the mouse. J Comp Neurol 194:369–393

    CAS  PubMed  Google Scholar 

  • Frotscher M, Zimmer J (1983) Commissural fibers terminate on non-pyramidal neurons in the guinea pig hippocampus — a combined Golgi/EM degeneration study. Brain Res 265:289–293

    CAS  PubMed  Google Scholar 

  • Frotscher M, Léránth CS, Lubbers K, Oertel WH (1984) Commissural afferents innervate glutamate decarboxylase immunoreactive non-pyramidal neurons in the guinea pig hippocampus. Neurosci Lett 46:137–143

    CAS  PubMed  Google Scholar 

  • Fujito Y, Imai T, Aoki M (1991) Monosynaptic excitation of mononeurons innervating forelimb muscles following stimulation of the red nucleus in cats. Neurosci Lett 127:137–140

    CAS  PubMed  Google Scholar 

  • Fukushima K, Pitts NG, Peterson BW (1978) Direct excitation of neck motoneurons by interstitiospinal fibers. Exp Brain Res 33:565–581

    CAS  PubMed  Google Scholar 

  • Fukushima T, Kerr FWL (1979) Organization of trigeminothalamic tracts and other thalamic afferent systems of the brainstem in the rat: presence of gelatinosa neurons with thalamic connections. J Comp Neurol 183:169–184

    CAS  PubMed  Google Scholar 

  • Fukuyama U (1940) Über eine substantielle Verschmelzung des roten Kerns mit den Nebenokulomotorius-Kernen (Bechterew and Darkschewitsch) bei Affen. Arb Anat Inst Kaiserl Jpn Univ Sendai 23:1–122

    Google Scholar 

  • Fuller GN, Burger PC (1990) Nervus terminalis (cranial nerve zeor) in the adult human. Clin Neuropathol 9:279–283

    CAS  PubMed  Google Scholar 

  • Fulwiler CE, Saper CB (1984) Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Res Rev 7:229–259

    Google Scholar 

  • Furuya N, Markham CH (1981) Arborization of axons in oculomotor nucleus identified by vestibular stimulation and intra-axonal injection of horseradish peroxidase. Exp Brain Res 43:289–303

    CAS  PubMed  Google Scholar 

  • Fuse G (1912) Die innere Abteilung des Kleinhirnstiels (Meynert, IAK) und der Deiterssche Kern. Hirnanatom Inst Univ Zurich VI29-267

    Google Scholar 

  • Fuse G (1936) Das gewundene Grau oder der Olivenkern des vorderen Zweihügels, nucleus olivaris corporis quadrigemini anterioris, bei Mensch und Tier. Arb Anat Inst Kaiserl Jpn 19:49–486

    Google Scholar 

  • Fuse G (1937) Ein neuer Versuch zur Unterteilung des Nucleus ruber tegmenti bei den Karnivoren und zur phylogenetischen Bewertung seiner Entwicklung unter Berücksichtigung der an Karnivoren und Affen gewonnen Ergebnisse. Arb Anat Inst Kaiserl Jpn Univ Sendai 20:123–188

    Google Scholar 

  • Fuster JM (1991) The prefrontal cortex and its relation to behavior. Prog Brain Res 87:201–211

    CAS  PubMed  Google Scholar 

  • Fuxe K, Hokfelt T (1969) Catecholamines in the hypothalamus and the pituitary gland. In: Ganong WF, Martini L (eds) Frontiers in neuroendocrinology. Oxford University Press, Oxford, pp 47–96

    Google Scholar 

  • Gabbott PLA, Martin KAC, Whitteridge D (1987) Connections between pyramidal neurons in layer 5 of cat visual cortex (area 17). J Comp Neurol 259:364–381

    CAS  PubMed  Google Scholar 

  • Gacek RR (1974) Localization of neurons supplying the extraocular muscles in the kitten using horseradish peroxidase. Exp Neurol 44:381–403

    CAS  PubMed  Google Scholar 

  • Galabov P, Davidof M (1976) On the vegatative network of guinea pig thoracic spinal cord. Histochemistry 47:247–255

    CAS  PubMed  Google Scholar 

  • Gamrani H, Ontoniente B, Seguela P, Geffard M, Calas A (1986) Gamma-aminobutyric acid-immunoreactivity in the rat hippocampus. A light and electron microscopic study with anti-GABA antibodies. Brain Res 364:30–38

    CAS  PubMed  Google Scholar 

  • Ganchrow D (1978) Intratrigeminal and thalamic projections of nucleus caudalis in the squirrel monkey (Saimiri sciureus): a degeneration and autoradiographic study. J Comp Neurol 178:281–312

    CAS  PubMed  Google Scholar 

  • Gans A (1924) Beitrag zur Kenntnis des Aufbaus des Nucleus Dentatus aus zwei Teilen namentlich auf Grund von Untersuchungen mit der Eisenreaktion. Z Ges Neurol Psychiat 93:750–755

    Google Scholar 

  • Garcia-Rill E, Skinner RD (1987) The mesencephalic locomotor region. II. Projections to reticulospinal neurons. Brain Res 411:13–20

    CAS  PubMed  Google Scholar 

  • Garey LJ, Webster WR (1989) Functional morphology in the inferior colliculus of the marmoset. Hear Res 38:67–79

    CAS  PubMed  Google Scholar 

  • Garver D, Sladek JRJ (1975) Monoamine distribution in primate brain. I. Catecholamine-containing perikarya in the brain stem of Macaca speciosa. J Comp Neurol 159:289–304

    CAS  PubMed  Google Scholar 

  • Gaskell WH (1886) On the structure, distribution and function of the nerves which innervate the visceral and vascular systems. J Physiol 7:1–81

    CAS  PubMed  Google Scholar 

  • Gaskell WH (1889) On the relation between the structure, function, distribution and origin of the cranial nerves: together with a theory of the origin of the nervous system of vertebrata. J Physiol 10:153–211

    CAS  PubMed  Google Scholar 

  • Gayer NS, Faull RLM (1988) Connections of the paraflocculus of the cerebellum with the superior colliculus in the rat brain. Brain Res 449:253–270

    CAS  PubMed  Google Scholar 

  • Geeraedts LMG, Nieuwenhuys R, Veening JG (1990a) Medial forebrain bundle of the rat: III. Cytoarchitecture of the rostral (telencephalic) part of the medial forebrain bundle bed nucleus. J Comp Neurol 294:507–536

    CAS  PubMed  Google Scholar 

  • Geeraedts LMG, Nieuwenhuys R, Veening JG (1990b) Medial forebrain bundle of the rat: VI. Cytoarchitecture of the caudal (lateral hypothalamic) part of the medial forebrain bundle bed nucleus. J Comp Neurol 294:537–568

    CAS  PubMed  Google Scholar 

  • Geffard M, Buijs RM, Seguela P, Pool CW, Le Moel M (1984) First demonstration of highly specific and sensitive antibodies against dopamine. Brain Res 294:161–165

    CAS  PubMed  Google Scholar 

  • Geis GS, Wurster RD (1980)) Horseradish peroxidase localization of cardiac vagal preganglionic somata. Brain Res 1820:19–30

    Google Scholar 

  • Gellman R, Houk JC, Gibson AR (1983) Somatosensory properties of the inferior olive of the cat. J Comp Neurol 215:228–243

    CAS  PubMed  Google Scholar 

  • Geniec P, Morest DK (1971) The neuronal architecture of the human posterior colliculus. A study with the Golgi method. Acta Otolaryngol [Suppl] 295:1–33

    CAS  Google Scholar 

  • Gerfen CR (1984) The neostriatal mosaic: compartmentalization of cortico-striatal input and striatonigral output systems. Nature 311:461–464

    CAS  PubMed  Google Scholar 

  • Gerfen CR (1990) The neostriatal mosaic: striatal patchmatrix organization is related to cortical lamination. Science 246:385–388

    Google Scholar 

  • Gerfen CR (1992) The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Annu Rev Neurosci 15:285–320

    CAS  PubMed  Google Scholar 

  • Gerfen CR, Staines WA, Arbuthnott GW, Fibiger HC (1982) Crossed connections of the substantia nigra in the rat. J Comp Neurol 207:283–303

    CAS  PubMed  Google Scholar 

  • Gerrits NM (1990) 26. Vestibular nuclear complex. In: Paxinos G (ed) The human nervous system. Academic, London, pp 863–888

    Google Scholar 

  • Gerrits NM (1994) Vestibular and cerebellar connections subserving eye movements. In: Delgado-Garcia JM, Godaux E, Vidal P-P (eds) Information processing underlying gaze control. Pergamon, Oxford, pp 341–350

    Google Scholar 

  • Gerrits NM, Voogd J (1982) The climbing fiber projection to the flocculus and adjacent paraflocculus in the cat. Neuroscience 7:2971–2991

    CAS  PubMed  Google Scholar 

  • Gerrits NM, Voogd J (1987) The projection of the nucleus reticularis tegmenti pontis and adjacent regions of the pontine nuclei to the central cerebellar nuclei in the cat. J Comp Neurol 258:52–69

    CAS  PubMed  Google Scholar 

  • Gerrits NM, Voogd J, Magras IN (1985a) Vestibular afferents of the inferior olive and the vestibulo-olivo-cerebellar climbing fiber path-way to the flocculus in the cat. Brain Res 332:325–336

    CAS  PubMed  Google Scholar 

  • Gerrits NM, Voogd J, Nas WSC (1985b) Cerebellar and olivary projections of the external and rostral internal cuneate nuclei in the cat. Exp Brain Res 57:239–255

    CAS  PubMed  Google Scholar 

  • Gerrits NM, Epema AH, Van Linge A, Dalm E (1989) The primary vestibulocerebellar projection in the rabbit: absence of primary afferents in the flocculus. Neurosci Lett 290:262–277

    Google Scholar 

  • Ghez C (1975) Input-output relations of the red nucleus in the cat. Brain Res 98:93–118

    CAS  PubMed  Google Scholar 

  • Ghosh S, Fyffe REW, Porter R (1988) Morphology of neurons in area 4gamma of the cat’s cortex studied with intracellular injection of HRP. J Comp Neurol 269:290–312

    Google Scholar 

  • Giesler GJ, Spiel HR, Willis WD (1981) Organization of spinothalamic tract axons within the rat spinal cord. J Comp Neurol 195:243–252

    PubMed  Google Scholar 

  • Giesler GJJ, Menetrey D, Basbaum AI (1979) Differential origins of spinothalamic tract projections to medial and lateral thalamus in the rat. J Comp Neurol 184:107–126

    PubMed  Google Scholar 

  • Giesler GJJ, Nahin RL, Madsen AM (1984) Postsynaptic dorsal column pathway of the rat. I. Anatomical studies. J Neurophysiol 51:260–275

    PubMed  Google Scholar 

  • Giesler GJJ, Miller LR, Madsen AM, Katter JT (1987) Evidence for the existence of a lateral cervical nucleus in mice, guinea pigs, and rabbits. J Comp Neurol 263:106–112

    PubMed  Google Scholar 

  • Giesler GJJ, Bjorkeland M, Xu Q, Grant G (1988) Organization of the spinocervicothalamic pathway in the rat. J Comp Neurol 268:223–233

    PubMed  Google Scholar 

  • Gilbert CD (1992) Horizontal integration and cortical dynamics. Neuron 9:1–13

    CAS  PubMed  Google Scholar 

  • Gilbert CD, Wiesel TN (1979) Morphology and intracortical projections of functionally identified neurons in cat visual cortex. Nature 280:120–125

    CAS  PubMed  Google Scholar 

  • Gilbert PW (1947) The origin and development of the extrinsic ocular muscles in the domestic cat. J Morphol 81:151–193

    CAS  PubMed  Google Scholar 

  • Giménez-Amaya JM, Graybiel AM (1990) Compartmental origins of the striatopallidal projection in the primate. Neuroscience 34:111–126

    PubMed  Google Scholar 

  • Giolli RA (1963) An experimental study of the accessory optic system in the cynomolgus monkey. J Comp Neurol 121:89–99

    CAS  PubMed  Google Scholar 

  • Giolli RA, Greel DJ (1973) The primary optic projections in pigmented and albino guinea pigs: an experimental degeneration study. Brain Res 55:25–39

    CAS  PubMed  Google Scholar 

  • Giolli RA, Guthrie MD (1969) The primary optic projections in the rabbit. An experimental degeneration study. J Comp Neurol 136:99–126

    CAS  PubMed  Google Scholar 

  • Giolli RA, Towns LC, Takahashi TT, Karamanlidis AN, Williams DD (1978) An autoradiographic study of the projections of visual cortical area 1 to the thalamus, pretectum and superior colliculus of the rabbit. J Comp Neurol 180:743–752

    CAS  PubMed  Google Scholar 

  • Giolli RA, Blanks RHI, Torigoe Y (1984) Pretectal and brain stem projections of the medial terminal nucleus of the accessory optic system of the rabbit and rat as studied by anterograde and retrograde neuronal tracing methods. J Comp Neurol 227:228–251

    CAS  PubMed  Google Scholar 

  • Giolli RA, Blanks RHI, Torigoe Y, Williams DD (1985) Projections of medial terminal accessory optic nucleus, ventral tegmental nuclei, and substantia nigra of rabbit and rat as studied by retrograde axonal transport of horseradish peroxidase. J Comp Neurol 232:99–116

    CAS  PubMed  Google Scholar 

  • Giolli RA, Torigoe Y, Blanks RHI, McDonald HM (1988) Projections of the dorsal and lateral terminal accessory optic nuclei and of the interstitial nucleus of the superior fasciculus (posterior fibers) in the rabbit and rat. J Comp Neurol 277:608–620

    CAS  PubMed  Google Scholar 

  • Giolli RA, Torigoe Y, Clarke RJ, Blanks RHI, Fallon JH (1992) GABAergic and non-GABAergic projections of accessory optic nuclei, including the visual tegmental relay zone, to the nucleus of the optic tract and dorsal terminal accessory optic nucleus in rat. J Comp Neurol 319:349–358

    CAS  PubMed  Google Scholar 

  • Giovanelli Barilari M, Kuypers HG (1969) Propriospinal fibers interconnecting the spinal enlargements in the cat. Brain Res 14:321–330

    CAS  PubMed  Google Scholar 

  • Glendenning KK, Masterton RB (1983) Acoustic chiasm, efferent projection of the lateral superior olive. J Neurosci 3:1521–1537

    CAS  PubMed  Google Scholar 

  • Glendenning KK, Masterton RB, Baker BN, Wenthold RJ (1991) Acoustic chiasm. Ill: Nature, distribution, and sources of afferents to the lateral superior olive in the cat. J Comp Neurol 310:377–400

    CAS  PubMed  Google Scholar 

  • Glezer II, Jacobs MS, Morgane PJ (1988) Implications of the “initial brain” concept for brain evolution in Cetacea. Behav Brain Sci 11:75–116

    Google Scholar 

  • Glickstein M, May JG III, Mercier BE (1982) Corticopontine projection in the macaque: the distribution of labelled cortical cells after large injections of horseradish peroxidase in the pontine nuclei. J Comp Neurol 235:343–359

    Google Scholar 

  • Glickstein M, Kralj-Hans I, Legg C, Mercier B, Ramna-Rayan M, Vaudano E (1992) The organisation of fibres within the rat basis pedunculi. Neurosci Lett 135:75–79

    CAS  PubMed  Google Scholar 

  • Globus A, Scheibel AB (1967) Pattern and field in cortical structure: the rabbit. J Comp Neurol 131:155–172

    CAS  PubMed  Google Scholar 

  • Glover JC, Petursdottir G (1988) Pathway specificity of reticulospinal and vestibulospinal projections in the 11-day chicken embryo. J Comp Neurol 270:25–38

    CAS  PubMed  Google Scholar 

  • Gobel S (1975) Golgi studies of the substantia gelatinosa neurons in the spinal trigeminal nucleus. J Comp Neurol 162:397–416

    CAS  PubMed  Google Scholar 

  • Gobel S (1978) Golgi studies of the neurons in layer II of the dorsal horn of the medulla (Trigeminal Nucleus Caudalis). J Comp Neurol 180:395–413

    CAS  PubMed  Google Scholar 

  • Goldberg JM, Fernandez C (1980) Efferent vestibular system in the squirrel monkey: anatomical location and influence on afferent activity. J Neurophysiol 43:986–1025

    CAS  PubMed  Google Scholar 

  • Goldman PS, Nauta WJH (1977) An intricately patterned prefronto-caudate projection in the rhesus monkey. J Comp Neurol 171:369–384

    Google Scholar 

  • Goldman-Rakic PS (1982) Cytoarchitectonic heterogeneity of the primate neostriatum: subdivision into island and matrix cellular compartments. J Comp Neurol 205:398–413

    CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS, Nauta WJH (1977) Columnar distribution of cortico-cortical fibers in the frontal association, limbic and motor cortex of the developing rhesus monkey. Brain Res 122:393–414

    Google Scholar 

  • Goldman-Rakic PS, Schwartz ML (1982) Interdigitaion of contralateral and ipsilateral columnar projections to frontal association cortex in primates. Science 216:755–757

    CAS  PubMed  Google Scholar 

  • Gonzalo-Ruiz A, Leichnetz GR (1987) Lateralization of cerebellar efferent projections to the paraoculomotor region, superior colliculus, and medial pontine reticular formation in the rat: fluorescent double-labeling study. Brain Res 68:365–378

    CAS  Google Scholar 

  • Gonzalo-Ruiz A, Leichnetz GR (1990) Connections of the caudal cerebellar interpositus complex in a new world monkey (Cebus apella). Brain Res Bull 25:919–927

    CAS  PubMed  Google Scholar 

  • Gonzalo-Ruiz A, Leichnetz GR, Hardy SG (1990) Projections of the medial cerebellar nucleus to oculomotor-related midbrain areas in the rat: an anterograde and retrograde HRP study. J Comp Neurol 296:427–436

    CAS  PubMed  Google Scholar 

  • Goodman DC, Hallett RE, Welch Rb (1963) Patterns of localization in the cerebellar cortico-nuclear projections of the albino rat. J Comp Neurol 121:51–68

    CAS  PubMed  Google Scholar 

  • Gordon G, Grant G (1982) Dorsolateral spinal afferents to some medullary sensory nuclei. An anatomical study in the cat. Exp Brain Res 46:12–23

    CAS  PubMed  Google Scholar 

  • Gowers WR (1886) Bemerkungen über die antero-laterale aufsteigende Degeneration im Rückenmark. Neurol Centralbl 5:97–99

    Google Scholar 

  • Graham J (1977) An autoradiographic study of the efferent connections of the superior colliculus in the cat. J Comp Neurol 173:629–654

    CAS  PubMed  Google Scholar 

  • Graham J, Casagrande VA (1980) A light microscopic and electron microscopic study of the superficial layers of the superior colliculus of the tree shrew (Tupaia glis). J Comp Neurol 191:133–151

    CAS  PubMed  Google Scholar 

  • Grant G (1962) Projection of the external cuneate nucleus onto the cerebellum in the cat. An experimental study using silver methods. Exp Neurol 5:179–195

    CAS  PubMed  Google Scholar 

  • Grant G (1995) Primary afferent projections to the spinal cord. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic, London, pp 61–66

    Google Scholar 

  • Grant G, Gueritaud JP, Horcholle-Bossavit G, Tyc-Dumont S (1979) Anatomical and electrophysiological identification of motoneurones supplying the cat retractor bulbi muscle. Exp Brain Res 34:541–550

    CAS  PubMed  Google Scholar 

  • Grant G, Illert M, Tanaka R (1980) Integration in descending motor pathways controlling the forelimb in the cat. 6. Anatomical evidence consistent with the existence of C3-4 propriospinal neurones projecting to forelimb motor nuclei. Exp Brain Res 38:87–93

    CAS  PubMed  Google Scholar 

  • Grant K, Guegan M, Horcholle-Bossavit G (1981) The anatomical relationship of the retractor bulbi and posterior digastric motoneurones to the abducens and facial nuclei in the cat. Arch Ital Biol 119:195–207

    CAS  PubMed  Google Scholar 

  • Grantyn A, Grantyn R (1982) Axonal patterns and sites of termination of cat superior colliculus neurons projecting in the tecto-bulbo-spinal tract. Exp Brain Res 46:243–256

    CAS  PubMed  Google Scholar 

  • Granum SL (1986) The spinothalamic system of the rat. I. Locations of cells of origin. J Comp Neurol 247:159–180

    CAS  PubMed  Google Scholar 

  • Graur D, Higgins DG (1994) Molecular evidence for the inclusion of cetaceans within the order artiodactyla. Mol Biol Evol 11(3):357–364

    CAS  PubMed  Google Scholar 

  • Graur D, Duret L, Gouy M (1996) Phylogenetic position of the order Lagomorpha (rabbits, hares and allies). Nature 379:333–335

    CAS  PubMed  Google Scholar 

  • Gravel C, Hawkes R (1990) Parasagittal organization of the rat cerebellar cortex: direct comparison of Purkinje cell compartments and the organization of the spinocerebellar projection. J Comp Neurol 291:79–102

    CAS  PubMed  Google Scholar 

  • Graveland GA, DiFiglia M (1985) The frequency and distribution of medium-sized neurons with indented nuclei in the primate and rodent neostriatum. Brain Res 327:307–311

    CAS  PubMed  Google Scholar 

  • Graveland GA, Williams RS, Difiglia M (1985) A Golgi study in the human neostriatum: neurons and afferent fibers. J Comp Neurol 234:317–333

    CAS  PubMed  Google Scholar 

  • Gray TS, Hazlett JC, Martin GF (1981) Organization of projections from the gracile, medial cuneate and lateral nuclei in the North American opossum. Horseradish peroxidase study of the cells projecting to the cerebellum, thalamus and spinal cord. Brain Behav Evol 18:140–156

    CAS  PubMed  Google Scholar 

  • Graybiel AM (1972) Some fiber pathways related to the posterior thalamic region in the cat. Brain Behav Evol 6:363–393

    CAS  PubMed  Google Scholar 

  • Graybiel AM (1975) Anatomical organization of retinotectal afferents in the cat: an autoradiographic study. Brain Res 96:1–23

    CAS  PubMed  Google Scholar 

  • Graybiel AM (1977a) Direct and indirect preoculomotor pathways of the brainstem: an autoradiographic study of the pontine reticular formation in the cat. J Comp Neurol 175:37–78

    CAS  PubMed  Google Scholar 

  • Graybiel AM (1977b) Organization of oculomotor pathways in the cat and rhesus monkey. In: Baker R, Berthoz A (eds) Control of gaze by brainstem neurons. Developments in Neuroscience Vol 1, Elsevier, Amsterdam, pp 79–88

    Google Scholar 

  • Graybiel AM (1978a) A satellite system of the superior colliculus: the parabigeminal nucleus and its projections to the superficial collicular layers. Brain Res 145:365–374

    CAS  PubMed  Google Scholar 

  • Graybiel AM (1978b) Organization of the nigrotectal connection: an experimental tracer study in the cat. Brain Res 143:339–348

    CAS  PubMed  Google Scholar 

  • Graybiel AM (1979) Periodic-compartmental distribution of acetylcholinesterase in the superior colliculus of the human brain. Neuroscience 4:643–650

    CAS  PubMed  Google Scholar 

  • Graybiel AM (1984) Neurochemically specified subsystem in the basal ganglia. In: Evered D, O’Connor M (eds) Functions of the basal ganglia. Pitman, London, pp 114–149 (Ciba foundation symposium 107)

    Google Scholar 

  • Graybiel AM (1990) Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci 13:244–254

    CAS  PubMed  Google Scholar 

  • Graybiel AM (1975) Anatomical organization of retinotectal afferents in the cat: an autoradiographic study. Brain Res 96:1–23

    CAS  PubMed  Google Scholar 

  • Graybiel AM, Hartweig EA (1974) Some afferent connections of the oculomotor complex in the rat (1975). An experimental study with tracer techniques. Brain Res 8:543–551

    Google Scholar 

  • Graybiel AM, Ragsdale CW (1978) Histochemically distinct compartments in the striatum of human, monkey and cat demonstrated by acetylcholinesterase staining. Proc Natl Acad Sci USA 75:5723–5726

    CAS  PubMed  Google Scholar 

  • Graybiel AM, Ragsdale CW Jr (1979) Fiber connections of the basal ganglia. In: Bloom RE, Kreutzberg GW, Cuénod M (eds) Development and chemical specificity of neurons. Elsevier, Amsterdam, pp 239–283

    Google Scholar 

  • Graybiel AM, Ragsdale CW Jr (1983) Biochemical anatomy of the striatum. In: Emson PC (ed) Chemical neuroanatomy. Raven, New York, pp 427–504

    Google Scholar 

  • Graybiel AM, Ragsdale CW, Yoneoka ES, Elde RH (1981) An immunohistochemical study of enkephalins and other neuropeptide in the striatum of the cat with evidence that the opiate peptides are arranged to form mosaic patterns in register with the striosomal compartments visible by ace-tylcholinesterase staining. Neuroscience 6:377–397

    CAS  PubMed  Google Scholar 

  • Graybiel AM, Brecha N, Karten HJ (1984) Cluster-and-sheet pattern of enkephalin-like immunoreactivity in the superior colliculus of the cat. Neuroscience 12:191–214

    CAS  PubMed  Google Scholar 

  • Graybiel AM, Flaherty AW, Giménez-Amaya J-M (1991) Striosomes and matrisomes. In: Bernardi G, Carpenter MB, di Chiara G, Morelli M, Stanzione P (eds) The basal ganglia, vol 3. Plenum, New York, pp 3–12

    Google Scholar 

  • Graybiel AM, Aosaki T, Flaherty AW, Kimura M (1994) The basal ganglia and adaptive motor control. Science 265:1826–1831

    CAS  PubMed  Google Scholar 

  • Gregory JE, Iggo A, Mclntyre AK, Proske U (1987) Electroreceptors in the platypus. Nature 326:386–388

    CAS  PubMed  Google Scholar 

  • Gregory JE, Iggo A, Mclntyre AK, Proske U (1988) Receptors in the bill of the platypus. J Physiol (Lond) 400:349–366

    CAS  Google Scholar 

  • Gregory WK (1910) The orders of mammals. Bull Am Mus Nat Hist 27:1–534

    Google Scholar 

  • Grillner S, Shik MI (1973) On the descending control of the lumbosacral spinal cord from the ‘mesencephalic locomotor region’. Acta Physiol Scand 87:320–333

    CAS  PubMed  Google Scholar 

  • Groenewegen HJ (1988) Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal-prefrontal topography. Neuroscience 24:379–431

    CAS  PubMed  Google Scholar 

  • Groenewegen HJ, Berendse HW (1990) Connections of the subthalamic nucleus with ventral striatopallidal parts of the basal ganglia in the rat. J Comp Neurol 294:607–622

    CAS  PubMed  Google Scholar 

  • Groenewegen HJ, Berendse HW (1994) The specificity of the ‘nonspecific’ midline and intralaminar thalamic nuclei. Trends Neurosci 17:52–57

    CAS  PubMed  Google Scholar 

  • Groenewegen HJ, Russchen FT (1984) Organization of the efferent projections of the nucleus accumbens to pallidal hypothalamic, and mesencephalic structures: a tracing and immunohistochemical study in the cat. J Comp Neurol 223:347–367

    CAS  PubMed  Google Scholar 

  • Groenewegen HJ, Voogd J (1977) The parasagittal zonation within the olivocerebellar projection. I. Climbing fiber distribution in the vermis of cat cerebellum. J Comp Neurol 174:417–488

    CAS  PubMed  Google Scholar 

  • Groenewegen HJ, Boesten AJP, Voogd J (1975) The dorsal column nuclear projections to the nucleus ventralis posterior lateralis thalami and the inferior olive in the cat: an autoradiographic study. J Comp Neurol 162:505–518

    CAS  PubMed  Google Scholar 

  • Groenewegen HJ, Voogd J, Freedman SL (1979) The parasagittal zonation within the olivocerebellar projection. II. Climbing fiber distribution in the intermediate and hemispheric parts cat cerebellum. J Comp Neurol 183:551–602

    CAS  PubMed  Google Scholar 

  • Groenewegen HJ, Becker NEK, Lohman AHM (1980) Sub-cortical afferents of the nucleus accumbens septi in the cat, studied with retrograde axonal transport of horseradish peroxidase and bisbenzimid. Neuroscience 5:1903–1916

    CAS  PubMed  Google Scholar 

  • Groenewegen HJ, Room P, Witter MP, Lohman AHM (1982) Cortical afferents of the nucleus accumbens in the cat, studied with anterograde and retrograde transport techniques. Neuroscience 7:977–995

    CAS  PubMed  Google Scholar 

  • Groenewegen HJ, Ahlenius S, Haber SN, Kowall NW, Nauta WJH (1986) Cytoarchitecture, fiber connections, and some histochemical aspects of the interpeduncular nucleus in the rat. J Comp Neurol 249:65–102

    CAS  PubMed  Google Scholar 

  • Groenewegen HJ, Meredith GE, Berendse HW, Voorn P, Wolters JG (1989) The compartmental organization of the ventral striatum in the rat. In: Crossman AR, Sambrook AM (eds) Neural mechanisms in disorders of movement. Libbey, London, pp 45–52

    Google Scholar 

  • Groenewegen HJ, Berendse HW, Haber SN (1993) Organization of the output of the ventral striatopallidal system in the rat: ventral pallidal efferents. Neuroscience 57:113–142

    CAS  PubMed  Google Scholar 

  • Groenewegen HJ, Beijer AV, Wright CR (1996) The ventral striatum: gateway for limbic structures to reach the motor system? Prog Brain Res 107:485–511

    CAS  PubMed  Google Scholar 

  • Gross MH, Fox JA, Curtis JD (1979) A horseradish peroxidase study of primary afferent projections to the medullary cuneate nucleus in the rat. Neurosci Lett 14:147–152

    CAS  PubMed  Google Scholar 

  • Grothe B, Schweizer H, Pollak GD, Schuller G, Rosemann C (1994) Anatomy and projection patterns of the superior olivary complex in the Mexican free-tailed bat, Tadarida brasiliensis mexicana. J Comp Neurol 343:630–646

    CAS  PubMed  Google Scholar 

  • Grove EA (1988a) Neural associations of the substantia innominata in the rat: afferent connections. J Comp Neurol 277:315–346

    CAS  PubMed  Google Scholar 

  • Grove EA (1988b) Efferent connections of the substantia innominata in the rat. J Comp Neurol 277:347–364

    CAS  PubMed  Google Scholar 

  • Grzanna R, Fritschy J-M (1991) Efferent projections of different subpopulations of central noradrenaline neurons. Prog Brain Res 88:89–101

    CAS  PubMed  Google Scholar 

  • Guinan JJ Jr, Warr WB, Norris BE (1983) Differential olivocochlear projections from lateral versus medial zones of the superior olivary complex. J Comp Neurol 221:358–370

    PubMed  Google Scholar 

  • Gurche JA (1982) Early primate brain evolution. In: Armstrong E, Falk D (eds) Primate brain evolution. Methods and concepts. Plenum, New York, pp 227–246

    Google Scholar 

  • Gurdjian ES (1927) The diencephalon of the albino rat. J Comp Neurol 43:1–114

    Google Scholar 

  • Gwyn DG, Leslie RA (1979) A projection of vagus nerve to the area subpostrema in the cat. Brain Res 161:335–341

    CAS  PubMed  Google Scholar 

  • Gwyn DG, Waldron HA (1969) Observations on the morphology of a nucleus in the dorso-lateral funiculus of the spinal cord of the guinea-pig, rabbit, ferret and cat. J Comp Neurol 136:233–236

    CAS  PubMed  Google Scholar 

  • Gwyn DG, Waldron HA (1968) A nucleus in the dorsolateral funiculus of the spinal cord of the rat. Brain Res 10:342–351

    CAS  PubMed  Google Scholar 

  • Gwyn DG, Nicholson GP, Flumerfelt BA (1977) The inferior olivary nucleus of the rat: a light and electron microscopic study. J Comp Neurol 174:489–520

    CAS  PubMed  Google Scholar 

  • Haarmann K (1975) Morphologische und histologische Untersuchungen am Neocortex von Boviden (Antilopinae, Cephalopinae) und Traguliden mit Bemerkungen zur Evo-lutionshöhe. J Hirnforsch 16:93–116

    CAS  PubMed  Google Scholar 

  • Haartsen AB (1961) The fibre content of the record in small and large mammals. Acta Morphol Neerl Scand III:331–340

    Google Scholar 

  • Haartsen AB, Verhaart WJC (1967) Cortical projections to brain stem and spinal cord in the goat by way of the pyramidal tract and the bundle of bagley. J Comp Neurol 129:189–202

    Google Scholar 

  • Haase P (1990) Explanation for the labeling of cervical motoneurons in young rats following the introduction of horseradish peroxidase into the calf. J Comp Neurol 297:471–478

    CAS  PubMed  Google Scholar 

  • Haase P, Hrcycyshyn AW (1985) Labeling of motoneurons supplying the cutaneous maximus muscle in the rat, following injection of the triceps brachii muscle with horseradish peroxidase. Neurosci Lett 60:313–318

    CAS  PubMed  Google Scholar 

  • Haber SN, Nauta WJH (1983) Ramifications of the globus pallidus in the rat as indicated by patterns of immunohisto-chemistry. Neuroscience 9:245–260

    CAS  PubMed  Google Scholar 

  • Haber SN, Watson SJ (1985) The comparative distribution of enkephalin dynorphin and substance P in the human globus pallidus and basal forebrain. Neuroscience 14:1011–1024

    CAS  PubMed  Google Scholar 

  • Haber SN, Groenewegen HJ, Grove EA, Nauta WJH (1985) Efferent connections of the ventral pallidum: evidence for a dual striato-pallidofugal pathway. J Comp Neurol 235:322–335

    CAS  PubMed  Google Scholar 

  • Haber SN, Lynd E, Klein C, Groenewegen HJ (1990a) Topographic organization of the ventral striatal efferent projections in the rhesus monkey: an anterograde tracing study. J Comp Neurol 293:282–298

    CAS  PubMed  Google Scholar 

  • Haber SN, Wolfer DP, Groenewegen HJ (1990b) The relationship between ventral striatal efferent fibers and the distribution of peptide-positive woolly fibers in the forebrain of the rhesus monkey. Neuroscience 39:323–338

    CAS  PubMed  Google Scholar 

  • Haber SN, Lynd-Balta E, Mitchell SJ (1993) The organization of the descending ventral pallidal projections in the monkey. J Comp Neurol 329:111–128

    CAS  PubMed  Google Scholar 

  • Haberly LB (1983) Structure of the piriform cortex of the opossum. I. Description of neuron types with Golgi methods. J Comp Neurol 213:163–187

    CAS  PubMed  Google Scholar 

  • Haberly LB (1990a) Comparative aspects of olfactory cortex. In: Jones EG, Peters A (eds) Comparative structure and evolution of cerebral cortex, part II. Plenum, New York, pp 137–166 (Cerebral cortex, vol 8B)

    Google Scholar 

  • Haberly LB (1990b) Olfactory cortex. In: Shepherd GM (ed) The synaptic organization of the brain, 3rd edn. Oxford University Press, New York, pp 317–345

    Google Scholar 

  • Haberly LB, Feig SL (1983) Structure of the piriform cortex of the opossum. II. Fine structure of cell bodies and neuropil. J Comp Neurol 216:69–88

    CAS  PubMed  Google Scholar 

  • Haberly LB, Hansen DJ, Feig SL, Presto S (1987) Distribution and ultrastructure of neurons in opossum displaying immunoreactivity to GABA and GAD and high-affinity tritiated GABA uptake. J Comp Neurol 266:269–290

    CAS  PubMed  Google Scholar 

  • Hackethal H (1976) Morphologische Untersuchungen am Hirn der Schuppentiere (Mammalia, Pholidota) unter besonderer Berücksichtigung des Kleinhirns. Zool Anz 197:313–331

    Google Scholar 

  • Hagg S, Ha H (1970) Cervicothalamic tract in the dog. J Comp Neurol 139:357–374

    CAS  PubMed  Google Scholar 

  • Häggvist G (1936) Analyse der Faserverteilung in einem Rückenmarkquerschnitt (Th3). Z Mikr Anat Forsch 39:1–34

    Google Scholar 

  • Haglund L, Swanson LW, Köhler C (1984) The projection of the supramammillary nucleus to the hippocampal formation: an immunohistochemical and anterograde transport study with the lectin PHA-L in the rat. J Comp Neurol 229:171–185

    CAS  PubMed  Google Scholar 

  • Haight JR, Murray PF (1981) The cranial endocast of the early Miocene marsupial Wynyardia bassiana. An assessment of taxonomic relationships based upon comparisons of recent forms. Brain Behav Evol 19:17–36

    CAS  PubMed  Google Scholar 

  • Haight JR, Neylon L (1978) An atlas of the dorsal thalamus of the marsupial brush-tailed possum, Trichosurus vulpecula. J Anat 126:225–245

    CAS  PubMed  Google Scholar 

  • Haines DE (1977a) A proposed functional significance of parvicellular regions of the lateral and medial cerebellar nuclei. Brain Behav Evol 14:328–340

    CAS  PubMed  Google Scholar 

  • Haines DE (1977b) Cerebellar corticonuclear and corticovestibular fibers of the flocculonodular lobe in a Prosimian primate (Galago senegalensis). J Comp Neurol 174:607–630

    CAS  PubMed  Google Scholar 

  • Haines DE, Sowa TE (1985) Evidence of a direct projection from the medial terminal nucleus of the accessory optic system to lobule IX of the cerebellar cortex in the tree shrew (Tupaia Glis). Neurosci Lett 55:125–130

    CAS  PubMed  Google Scholar 

  • Haines DE, Patrick GW, Satrulee P (1982) Organization of cerebellar corticonuclear fiber systems. Exp Brain Res [Suppl] 6:320–367

    Google Scholar 

  • Halász N, Shepherd GM (1983) Neurochemistry of the vertebrate olfactory bulb. Neuroscience 10:579–619

    PubMed  Google Scholar 

  • Hall E (1972) Some aspects of the structural organization of the amygdala. In: Eleftheriou BE (ed) The neurobiology of the amygdala. Plenum, New York, pp 95–121

    Google Scholar 

  • Hall WC, Ebner FF (1970) Thalamotelencephalic projections in the turtle (Pseudemys scripta). J Comp Neurol 140:101–122

    CAS  PubMed  Google Scholar 

  • Hall WC, Fitzpatrick D, Klatt LL, Raczkowski D (1989) Cholinergic innervation of the superior colliculus in the cat. J Comp Neurol 287:495–514

    CAS  PubMed  Google Scholar 

  • Haller V, Hallerstein B (1934) Die äussere Gliederung des Zentralnervensystems des Menschen und der Säugetiere. In: Bolk L, Göppert E, Kallins E, Lubosch W (eds) Handbuch der vergleichenden Anatomie der Wirbeltiere, vol 2. Urban, Vienna, pp 1–318

    Google Scholar 

  • Halliday G, Harding A, Paxinos G (1995) Serotonin and tachylkinin systems. In: Paxinos G (ed) The rat nervous system. Academic, San Diego, pp 929–974

    Google Scholar 

  • Halpern M (1987) The organization and function os the vomeronasal system. Annu Rev Neurosci 10:325–362

    CAS  PubMed  Google Scholar 

  • Halsell CB, Travers SP, Travers JB (1996) Ascending and descending projections from the rostral nucleus of the solitary tract originate from separate neuronal populations. Neuroscience 72:185–197

    CAS  PubMed  Google Scholar 

  • Hamada J, Sakai M, Kubota K (1981) Morphological differences between fast and slow pyramidal tract neurons in the monkey motor cortex. Neurosci Lett 22:233–238

    Google Scholar 

  • Hamilton RB, Norgren R (1984) Central projections of gustatory nerves in the rat. J Comp Neurol 222:560–577

    CAS  PubMed  Google Scholar 

  • Hamilton TC, Johnson JI (1973) Somatotopic organization related to nuclear morphology in the cuneate-gracile complex of opossums didelphis marsupialis virginiana. Brain Res 51:125–140

    CAS  PubMed  Google Scholar 

  • Hamlyn LH (1962) The fine structure of the mossy fibre endings in the hippocampus of the rabbit. J Anat 96:112–120

    CAS  PubMed  Google Scholar 

  • Hammelbo T (1972) On the development of the cerebral fissures in cetacea. Acta Anat 82:606–618

    CAS  PubMed  Google Scholar 

  • Hand PJ, Van Winkle T (1977) The efferent connections of the feline nucleus cuneatus. J Comp Neurol 171:83–109

    CAS  PubMed  Google Scholar 

  • Hardeland R (1993) The presence and function of melatonin and structurally related indoleamines in a dinoflagellate, and a hypothesis on the evolutionary significance of these tryptophan metabolites in unicellulars. Experientia 49:614–623

    CAS  Google Scholar 

  • Harding GW, Towe AL (1985) Fiber analysis of the pyramidal tract of the laboratory rat. Exp Neurol 87:503–518

    CAS  PubMed  Google Scholar 

  • Hardy O, Corvisier J (1991) GABA and non-GABA immuno-stained neurones in the nucleus prepositus and the periparabigeminal area projecting to the guinea pig superior colliculus. Neurosci Lett 127:99–104

    CAS  PubMed  Google Scholar 

  • Harting JK (1977) Descending pathways from the superior colliculus: an autoradiographic analysis in the rhesus monkey (macaca mulatta). J Comp Neurol 173:583–612

    CAS  PubMed  Google Scholar 

  • Harting JK, Guillery RW (1976) Organization of retinocollicular pathways in the cat. J Comp Neurol 166:133–144

    CAS  PubMed  Google Scholar 

  • Harting JK, Martin GF (1970) Neocortical projections to the mesencephalon of the armadillo, dasypus novemcinctus. Brain Res 17:447–462

    CAS  PubMed  Google Scholar 

  • Harting JK, Noback CR (1971) Subcortical projections from the visual cortex in the tree shrew (Tupaia glis). Brain Res 25:21–33

    CAS  PubMed  Google Scholar 

  • Harting JK, Van Lieshout DP (1991) Spatial relationships of axons arising from the substantia nigra, spinal trigeminal nucleus, and pedunculopontine tegmental nucleus within the intermediate gray of the cat superior colliculus. J Comp Neurol 305:543–558

    CAS  PubMed  Google Scholar 

  • Harting JK, Hall WC, Diamond IT (1972) Evolution of the pulvinar. Brain Behav Evol 6:424–452

    CAS  PubMed  Google Scholar 

  • Harting JK, Hall WC, Diamond IT, Martin GF (1973) Anterograde degeneration study of the superior colliculus in Tupaia glis: evidence for a subdivision between superficial and deep layers. J Comp Neurol 148:361–386

    CAS  PubMed  Google Scholar 

  • Harting JK, Huerta MF, Frankfurter AJ, Strominger NL, Royce GJ (1980) Ascending pathways from the monkey superior colliculus: an autoradiographic analysis. J Comp Neurol 192:853–882

    CAS  PubMed  Google Scholar 

  • Harting JK, Huerta MF, Hashikawa T, Weber JT, Van Lieshout DP (1988) Neuroanatomical studies of the nigrotectal projection in the cat. J Comp Neurol 278:615–631

    CAS  PubMed  Google Scholar 

  • Harting JK, Huerta MF, Hashikawa T, Van Lieshout DP (1991a) Projection of the mammalian superior colliculus upon the dorsal lateral geniculate nucleus: organization of tectogeniculate pathways in nineteen species. J Comp Neurol 304:275–306

    CAS  PubMed  Google Scholar 

  • Harting JK, Van Lieshout DP, Hashikawa T, Weber JT (1991b) The parabigeminogeniculate projection: connectional studies in eight mammals. J Comp Neurol 305:559–581

    CAS  PubMed  Google Scholar 

  • Harting JK, Updyke BV, Van Lieshout DP (1992) Corticotectal projections in the cat: anterograde transport studies of twenty-five cortical areas. J Comp Neurol 324:379–414

    CAS  PubMed  Google Scholar 

  • Hartmann-von Monakow K, Akert K, Kunzle H (1979) Projections of precentral and premotor cortex to the red nucleus and other midbrain areas in macaca fascicularis. Exp Brain Res 34:91–105

    Google Scholar 

  • Hartwich-Young R, Weber JT (1986) The projection of frontal cortical oculomotor areas to the superior colliculus in the domestic cat. J Comp Neurol 253:342–357

    CAS  PubMed  Google Scholar 

  • Hassler R, Muhs-Clement K (1964) Architektonischer Aufbau des sensomotorischen und parietalen Cortex der Katze. J Hirnforsch 6:377–420

    Google Scholar 

  • Hatschek R (1907) Zur vergleichenden Anatomie des Nucleus ruber tegmenti. Arb Neurol Inst Wiener Univ 15:89–136

    Google Scholar 

  • Hatton GI, Yang QZ (1989) Supraoptic nucleus afferents from the main olfactory bulb. II. Intracellularly recorded responses to lateral olfactory tract stimulation in rat brain slices. Neuroscience 31:289–297

    CAS  PubMed  Google Scholar 

  • Haug H (1970) Der makroskopische Aufbau des Grosshirns. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Haun F, Eckenrode TC, Murray M (1992) Habenula and thalamus cell transplants restore normal sleep behaviors disrupted by denervation of the interpeduncular nucleus. J Neurosci 12:3282–3290

    CAS  PubMed  Google Scholar 

  • Hawkes R, Leclerc N (1987) Antigenic map of the rat cerebellar cortex: the distribution of sagittal bands as revealed by monoclonal anti-Purkinje cell antibody mabQ113. J Comp Neurol 256:29–41

    CAS  PubMed  Google Scholar 

  • Hayashi H (1980) Distributions of vibrissae afferent fiber collaterals in the trigeminal nuclei as revealed by intra-axonal injection of horseradish peroxidase. Brain Res 183:442–446

    CAS  PubMed  Google Scholar 

  • Hayes L, Totterdell S (1985) A light and electron microscopic study of non-pyramidal hippocampal cells that project to the medial nucleus accumbens. Neurosci Lett [Suppl] 22:S507

    Google Scholar 

  • Hayes NL, Rustioni A (1980) Spinothalamic and spinomedullary neurons in macaques: a single and double retrograde tracer study. Neuroscience 5:861–874

    CAS  PubMed  Google Scholar 

  • Hayes NL, Rustioni A (1981) Descending projections from brainstem and sensorimotor cortex to spinal enlargements in the cat. Single and double retrograde tracer studies. Exp Brain Res 41:89–107

    CAS  PubMed  Google Scholar 

  • Hayhow WR (1959) An experimental study of the accessory optic fiber system in the cat. J Comp Neurol 113:281–313

    CAS  PubMed  Google Scholar 

  • Hayhow WR (1966) The accessory optic system in the marsupial phalanger. Trichosurus vulpecula. An experimental degeneration. J Comp Neurol 126:653–672

    CAS  PubMed  Google Scholar 

  • Hayhow WR, Sefton A, Webb C (1962) Primary optic centers of the rat in relation to the terminal distribution of the crossed and uncrossed optic nerve fibers. J Comp Neurol 118:295–321

    CAS  PubMed  Google Scholar 

  • Haymaker W (1969) Hypothalamo-pituitary neural pathways and the circulatory syste, of the pituitary. In: Haymaker W, Anderson E, Nauta WJH (eds) The hypothalamus. Thomas, Springfield, pp 219–250

    Google Scholar 

  • Hazlett JC, Dom R, Martin GF (1972) Spinobulbar, spinothalamic and medial lemniscal connections in the American Opossum, Didelphis marsupialis virginiana. J Comp Neurol 146:95–118

    CAS  PubMed  Google Scholar 

  • Hazrati L-N, Parent A (1992) The striatopallidal projection displays a high degree of anatomical specificity in the primate. Brain Res 592:213–227

    CAS  PubMed  Google Scholar 

  • Heath CJ, Jones EG (1971) The anatomical organization of the suprasylvian gyrus of the cat. Ergeb Anat Entwicklungsgesch 45:1–64

    Google Scholar 

  • Hebb DO (1949) The organization of behavior. Wiley, New York, pp 62–66

    Google Scholar 

  • Hedreen JC, DeLong MR (1991) Organization of striatopallidal, striatonigral, and nigrostriatal projections in the macaque. J Comp Neurol 304:569–595

    CAS  PubMed  Google Scholar 

  • Hedreen JC, Struble RG, Whitehouse PJ, Price DL (1984) Topography of the magnocellular basal forebrain system in the human brain. J Neuropathol Exp Neurol 43:1–21

    CAS  PubMed  Google Scholar 

  • Heffner R, Masterton B (1975) Variation in form of the pyramidal tract and its relationship to digital dexterity. Brain Behav Evol 12:161–200

    CAS  PubMed  Google Scholar 

  • Heffner RS, Masterton RB (1983) The role of the corticospinal tract in the evolution of human digital dexterity. Brain Behav Evol 23:165–183

    CAS  PubMed  Google Scholar 

  • Heimer L (1968) Synaptic distribution of centripetal and centrifugal nerve fibers in the olfactory system of the rat. An experimental anatomical study. J Anat 103:413–432

    CAS  PubMed  Google Scholar 

  • Heimer L (1969) The secondary olfactory connections in mammals, reptiles and sharks. Ann NY Acad Sci 167:129–146

    Google Scholar 

  • Heimer L (1976) The olfactory cortex and the ventral striatum, In: Livingston KE, Hornykiewicz O (eds) Limbic mechanisms: the continuing evolution of the limbic system concept. Plenum, New York, pp 95–187

    Google Scholar 

  • Heimer L, Nauta WJH (1969) The hypothalamic distribution of the stria terminalis in the rat. Brain Res 13:284–297

    CAS  PubMed  Google Scholar 

  • Heimer L, Wilson RD (1975) The subcortical projections of the allocortex: similarities in the neural associations of the hippocampus, the piriform cortex, and the neocortex. In: Santini M (ed) Golgi centennial symposium proceedings. Raven, New York, pp 177–193

    Google Scholar 

  • Heimer L, Harlan RE, Alheid GF, Garcia MM, de Olmos J (1997) Substantia innominata: a notion which impedes clinical-anatomical correlations in neuropsychiatric disorders. Neuroscience 76:957–1006

    CAS  PubMed  Google Scholar 

  • Heimer L, Switzer RD, Van Hoesen GW (1982) Ventral striatum and ventral pallidum. Components of the motor system? Trends Neurosci 5:83–87

    Google Scholar 

  • Heimer L, Zahm DS, Churchill L, Kalivas PW, Wohltmann C (1991) Specificity in the projection patterns of accumbal cord and shell in the rat. Neuroscience 41:89–125

    CAS  PubMed  Google Scholar 

  • Held H (1893) Die centrale Gehörleitung. Arch Anat Physiol Anat Abt 201-248

    Google Scholar 

  • Helfert RH, Schwartz IR (1986) Morphological evidence for the existence of multiple neuronal classes in the cat lateral superior olivary nucleus. J Comp Neurol 22:533–549

    Google Scholar 

  • Heller SB, Ulinski PS (1987) Morphology of geniculocortical axons in turtles of the genera Pseudemys and Chrysemys. Anat Embryol (Berl) 175:505–515

    CAS  Google Scholar 

  • Hendrickson A, Wilson ME, Toyne MJ (1970) The distribution of optic nerve fibers in Macaca mulatta. Brain Res 23:425–427

    CAS  PubMed  Google Scholar 

  • Hendry SHC, Houser CR, Jones EG, Vaughn JE (1983) Synaptic organization of immunocytochemically characterized GABAergic neurons in the monkey sensory-motor cortex. J Neurocytol 12:639–660

    CAS  PubMed  Google Scholar 

  • Hendry SHC, Jones EG (1981) Sizes and distribution of intrinsic neurons incorporating tritiated GABA in monkey sensory-motor cortex. J. Neurosci 1:390–408

    CAS  PubMed  Google Scholar 

  • Hendry SHC, Jones EG (1983a) The organization of pyramidal and non-pyramidal cell dendrites in relation to tha-lamic afferent terminations in the monkey somatic sensory cortex. J Neurocytol 12:277–298

    CAS  PubMed  Google Scholar 

  • Hendry SHC, Jones EG (1983b) Thalamic inputs to identified commissural neurons in the monkey somatic sensory cortex. J Neurocytol 12:299–316

    CAS  PubMed  Google Scholar 

  • Hendry SH, Jones EG, Graham J (1979) Thalamic relay nuclei for cerebellar and certain related fiber systems in the cat. J Comp Neurol 185:679–713

    CAS  PubMed  Google Scholar 

  • Henkel CK, Martin GF (1977a) The vestibular complex of the American opossum (Didelphis virginiana). I. Conformation cytoarchitecture and primary vestibular input. J Comp Neurol 172:299–320

    CAS  PubMed  Google Scholar 

  • Henkel CK, Martin GF (1977b) The vestibular complex of the American opossum (Didelphis virginiana). II. Afferent and efferent connections. J Comp Neurol 172:321–348

    CAS  PubMed  Google Scholar 

  • Henkel CK, Shneiderman A (1988) Nucleus sagulum: projections of a lateral tegmental area to the inferior colliculus in the cat. J Comp Neurol 271:577–588

    CAS  PubMed  Google Scholar 

  • Henkel CK, Brunso-Bechtold JK (1993) Laterality of superior olive projections to the inferior colliculus in adult and developing ferret. J Comp Neurol 331:458–468

    CAS  PubMed  Google Scholar 

  • Henkel CK, Linauts M, Martin GF (1975) The origin of the annulo-olivary tract with notes on other mesencephaloolivary pathways. A study by the horseradish peroxidase method. Brain Res 100:145–150

    CAS  PubMed  Google Scholar 

  • Herbert H, Saper C (1992) Organization of medullary adrenergic and noradrenergic projections to the periaqueductal gray matter in the rat. J Comp Neurol 315:34–52

    CAS  PubMed  Google Scholar 

  • Herbert H, Moga MM, Saper CB (1990) Connections of the parabrachial nucleus with the nucleus of the solitary tract and the medullary reticular formation in the rat. J Comp Neurol 293:540–580

    CAS  PubMed  Google Scholar 

  • Herbert H, Aschoff A, Ostwald J (1991) Topography of projections from the auditory cortex to the inferior colliculus in the rat. J Comp Neurol 304:103–122

    CAS  PubMed  Google Scholar 

  • Herbert J (1993) Peptides in the limbic system: neurochemical codes for co-ordinated adaptive responses to behavioural and physiological demand. Prog Neurobiol 41:723–791

    CAS  PubMed  Google Scholar 

  • Herbin M, Repérant J, Cooper HM (1994) Visual system of the fossorial mole-lemmings, Ellobius talpinus and Ellobius lutescens. J Comp Neurol 346(2):253–275

    CAS  PubMed  Google Scholar 

  • Herkenham M (1979) The afferent and efferent connections of the ventromedial thalamic nucleus in the rat. J Comp Neurol 183:487–518

    CAS  PubMed  Google Scholar 

  • Herkenham M (1980a) Laminar organization of thalamic projections to the rat neocortex. Science 207:532–535

    CAS  PubMed  Google Scholar 

  • Herkenham M (1980b) The laminar organization of thalamic projections to neocortex. Trends Neurosci 3:17–18

    Google Scholar 

  • Herkenham M (1986) New perspectives on the organization and evolution of nonspecific thalamocortical projections. In: Jones EG, Peters A (eds) Sensory-motor areas and aspects of cortical connectivity. Plenum, New York, pp 403–446 (Cerebral cortex, vol 5)

    Google Scholar 

  • Herkenham M, Nauta WJH (1977) Afferent connections of the habenular nuclei in the rat: a horseradish peroxidase study, with a note on the fiber-of-passage problem. J Comp Neurol 173:123–146

    CAS  PubMed  Google Scholar 

  • Herkenham M, Nauta WJH (1979) Efferent connections of the habenular nuclei in the rat. J Comp Neurol 187:19–48

    CAS  PubMed  Google Scholar 

  • Herkenham M, Pert CB (1981) Mosaic distribution of opiate receptors, parafascicular projection and acetylcholinesterase in rat striatum. Nature 291:415–418

    CAS  PubMed  Google Scholar 

  • Herrick CJ (1899) The cranial and first spinal nerves of Menidia: a contribution upon the nerve components of the bony fishes. J Comp Neurol 9:153–455

    Google Scholar 

  • Herrick CJ (1910) The morphology of the forebrain in Amphibia and Reptilia. J Comp Neurol 20:413–547

    Google Scholar 

  • Herrick CJ (1913) Anatomy of the brain. In: The reference handbook of the medical sciences, vol 12. Wood, New York, pp 274–342

    Google Scholar 

  • Herrick CJ (1924) The nucleus olfactorius anterior of the opossum. J Comp Neyrol 37:317–359

    Google Scholar 

  • Herrick CJ (1927) The amphibian forebrain. IV. The cerebral hemispheres of Amblystoma. J Comp Neurol 43:231–325

    Google Scholar 

  • Herrick CJ (1933) The amphibian forebrain. VI. Necturus. J Comp Neurol 58:1–288

    Google Scholar 

  • Herrick CJ (1948) The brain of the tiger salamander. University of Chicago Press, Chicago

    Google Scholar 

  • Hersch SM, White EL (1981a) Thalamocortical synapses involving identified neurons in mouse primary somatosensory cortex: a terminal degeneration and Golgi/EM study. J Comp Neurol 195:252–263

    Google Scholar 

  • Hersch SM, White EL (1981b) Quantification of synapses formed with apical dendrites of Golgi impregnated pyramidal cells: variability in thalamocortical inputs and consistency in the ratios of asymmetrical to symmetrical synapses. Neuroscience 6:1043–1051

    CAS  PubMed  Google Scholar 

  • Hersch SM, White EL (1981c) Thalamocortical synapses with corticothalamic projection neurons in mouse SmI cortex: electron microscopic demonstration of a monosynaptic feedback loop. Neurosci Lett 24:207–210

    CAS  PubMed  Google Scholar 

  • Hersch SM, White EL (1982) A quantitative study of the thalamocortical and other synapses in layer IV of pyramidal cells projecting from mouse SmI cortex to the caudateputamen nucleus. J Comp Neurol 211:217–225

    CAS  PubMed  Google Scholar 

  • Hershkovitz P (1970) Cerebral fissurai patterns in platyrrhine monkeys. Folia Primatol 13:213–240

    CAS  PubMed  Google Scholar 

  • Herzog AG, Van Hoesen GW (1976) Temporal neocortical afferent connections to the amygdala in the rhesus monkey. Brain Res 115:57–69

    CAS  PubMed  Google Scholar 

  • Hess DT (1982) The tecto-olivo-cerebellar pathway in the rat. Brain Res 250:143–148

    CAS  PubMed  Google Scholar 

  • Hess DT, Hess A (1986) 5’-Nucleotidase of cerebellar molecular layer: reduction in Purkinje cell-deficient mutant mice. Dev Brain Res 29:93–100

    CAS  Google Scholar 

  • Hess DT, Voogd J (1986) Chemoarchitectonic zonation of the monkey cerebellum. Brain Res 369:383–387

    CAS  PubMed  Google Scholar 

  • Hess WR (1954) Diencephalon: autonomic and extrapyramidal functions. Grune and Stratton, New York

    Google Scholar 

  • Hess WR, Brugger M (1943) Das subkortikale Zentrum der affektiven Abwehrreaktion. Helv Physiol Acta 1:33–52

    Google Scholar 

  • Highstein SM, Reisine H (1979) Synaptic and functional organization of vestibulo-ocular reflex pathways. Prog Brain Res 50:431–442

    CAS  PubMed  Google Scholar 

  • Highstein SM, Karabelas A, Baker R, McCrea RA (1982) Comparison of the morphology of physiologically identified abducens motor and internuclear neurons in the cat: a light microscopic study employing the intracellular injection of horseradish peroxidase. J Comp Neurol 208:369–381

    CAS  PubMed  Google Scholar 

  • Higo S, Kawano J, Matsuyama T, Kawamura S (1992) Differential projections to the superior collicular layers from the perihypoglossal nuclei in the cat. Brain Res 599:19–28

    CAS  PubMed  Google Scholar 

  • Hilton SM, Zbrozyna AW (1963) Amygdaloid region for defence reactions and its efferent pathways to the brainstem. J Physiol (Lond) 165:160–173

    CAS  Google Scholar 

  • Hines M (1929) The brain of Ornithorhynchus anatinus (Monotremata). Philos Trans R Soc (Lond) Ser B 217:155–187

    Google Scholar 

  • Hinrichsen CFL, Watson CD (1984) The facial nucleus of the rat: representation of facial muscles revealed by retrograde transport of horseradish peroxidase. Anat Rec 209:407–415

    CAS  PubMed  Google Scholar 

  • Hirai T, Onodera SK (1982) Cerebellotectal projections studied in cats with horseradish peroxidase or tritiated amino acids axonal transport. Exp Brain Res 48:1–12

    CAS  PubMed  Google Scholar 

  • Hockfield S (1987) A Mab to a unique cerebellar neuron generated by immunosuppression and rapid immunization. Science 237:67–70

    CAS  PubMed  Google Scholar 

  • Hoddevik GH, Brodai A, Kawamura K, Hashikawa T (1977) The pontine projection to the cerebellar vermal visual area studied by means of retrograde axonal transport of horseradish peroxidase. Brain Res 123:209–227

    CAS  PubMed  Google Scholar 

  • Hofbauer A, Dräger UC (1985) Depth segregation of retinal ganglion cells projecting to mouse superior colliculus. J Comp Neurol 234:465–474

    CAS  PubMed  Google Scholar 

  • Hoffmann K-P, Ballas I, Wagner H-J (1984) Double labelling of retinofugal projections in the cat: a study using anterograde transport of 3H-proline and horseradish peroxidase. Exp Brain Res 53:420–430

    CAS  PubMed  Google Scholar 

  • Hoffmann KP, Distler C, Erickson R (1991) Functional projections from striate cortex and superior temporal sulcus to the nucleus of the optic tract (NOT) and dorsal terminal nucleus of the accessory optic tract (DTN) of macaque monkeys. J Comp Neurol 313(4):707–724

    CAS  PubMed  Google Scholar 

  • Hoffmann KP, Distler C, Ilg U (1992) Callosal and superior temporal sulcus contributions to receptive field properties in the macaque monkey’s nucleus of the optic tract and dorsal terminal nucleus of the accessory optic tract. J Comp Neurol 321:150–162

    CAS  PubMed  Google Scholar 

  • Hofman MA (1985) Size and shape of the cerebral cortex in mammals. I. The cortical surface. Brain Behav Evol 27:28–40

    CAS  PubMed  Google Scholar 

  • Hökfelt T, Fuxe K, Goldstein M, Johansson O (1973) Evidence for adrenaline neurons in the rat brain. Acta Physiol Scand 89:286–288

    PubMed  Google Scholar 

  • Hökfelt T, Fuxe K, Goldstein M, Johansson O (1974) Immuno-histochemical evidence for the existence of adrenaline neurons in the rat brain. Brain Res 66:235–251

    Google Scholar 

  • Hökfelt T, Philipson G, Goldstein M (1979) Evidence for a dopaminergic pathway in the rat descending from the All cell group to the spinal cord. Acta Physiol Scand 107:393–395

    PubMed  Google Scholar 

  • Hökfelt T, Johansson O, Goldstein M (1984a) Central cate-cholamine neurons as revealed by immuno-histochemistry with special reference to adrenaline neurons. In: Bjorklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy, classical transmitters in the CNS, vol 2, part I. Elsevier Science, Amsterdam, pp 157–276

    Google Scholar 

  • Hökfelt T, Martensson R, Bjorklund A, Kleinau S, Goldstein M (1984b) Distributional maps of tyrosine-hydroxylaseimmuno reactive neurons in the rat brain. In: Bjorklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy. Classical transmitters in the CNS, part I. Elsevier Science, Amsterdam, pp 277–379 (Handbook of chemical neuroanatomy, vol 2)

    Google Scholar 

  • Holländer H (1974) On the origin of the corticotectal projections in the cat. Exp Brain Res 21:433–439

    PubMed  Google Scholar 

  • Holländer H, Sanides D (1976) The retinal projection to the ventral part of the lateral geniculate nucleus: an experimental study with silver-impregnation and axoplasmatic protein tracing. Exp Brain Res 26:329–342

    PubMed  Google Scholar 

  • Holloway RL, LaCoste-Lareymondie MC (1982) Brain endocast asymmetry in Pongids and Hominids: some preliminary findings on the paleontology of cerebral dominance. Am J Phys Anthropol 58:108–110

    Google Scholar 

  • Holmgren N (1922) Points of view concerning forebrain morphology in lower vertebrates. J Comp Neurol 34:391–440

    Google Scholar 

  • Holmgren N, van der Horst CJ (1925) Contribution to the morphology of the brain of Ceratodus. Acta Zool 6:59–161

    Google Scholar 

  • Hoist M-C, Ho RH, Martin GF (1991) The origins of supraspinal projections to lumbosacral and cervical levels of the spinal cord in the gray short-tailed brazilian opossum, Monodelphis domestica. Brain Behav Evol 38:273–289

    Google Scholar 

  • Holstege G (1987a) Anatomical evidence for an ipsilateral rubrospinal pathway and for direct rubrospinal projections to motoneurons in the cat. Neurosci Lett 74:269–274

    CAS  PubMed  Google Scholar 

  • Holstege G (1987b) Some anatomical observations on the projections from the hypothalamus to brainstem and spinal cord: an HRP and autoradiographic tracing study in the cat. J Comp Neurol 260:98–126

    CAS  PubMed  Google Scholar 

  • Holstege G (1990) Subcortical limbic system projections to caudal brainstem and spinal cord. In: Paxinos G (ed) The human nervous system. Academic, San Diego, pp 261–286

    Google Scholar 

  • Holstege G (1991) Descending motor pathways and the spinal motor system: limbic and non-limbic components. Prog Brain Res 87:307–421

    CAS  PubMed  Google Scholar 

  • Holstege G (1992) The emotional motor system. Eur J Morphol 30:67–79

    CAS  PubMed  Google Scholar 

  • Holstege G (1995) The basic, somatic and emotional components of the motor system in mammals. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic, San Diego, pp 137–154

    Google Scholar 

  • Holstege G, Collewijn H (1982) The efferent connections of the nucleus of the optic tract and the superior colliculus in the rabbit. J Comp Neurol 209:139–175

    CAS  PubMed  Google Scholar 

  • Holstege G, Cowie RJ (1989) Projections from the rostral mesencephalic reticular formation to the spinal cord. An HRP and autoradiographical tracing study in the cat. Exp Brain Res 75:265–279

    CAS  PubMed  Google Scholar 

  • Holstege G, Kuypers HGJM (1977) Propriobulbar fibre connections to the trigeminal facial and hypoglossal motor nuclei. I. An anterograde degeneration study in the cat. Brain 100:239–264

    CAS  PubMed  Google Scholar 

  • Holstege G, Kuypers HGJM (1982a) The anatomy of brain stem pathways to the spinal cord in cat. In: Kuypers HGJM, Martin GF (eds) Descending pathways to the spinal cord. Elsevier, Amsterdam (Progress in brain research, vol 57)

    Google Scholar 

  • Holstege JC, Kuypers HG (1982b) Brain stem projections to spinal motoneuronal cell groups in rat studied by means of electron microscopy autoradiography. Progr Brain Res 57:177–183

    CAS  Google Scholar 

  • Holstege G, Tan J (1988) Projections from the red nucleus and surrounding areas to the brainstem and spinal cord in the cat. An HRP and auto-radiographical tracing study. Behav Brain Res 28:33–57

    CAS  PubMed  Google Scholar 

  • Holstege G, Kuypers HGJM, Dekker JJ (1977) The organization of the bulbar fibre connections to the trigeminal, facial and hypoglossal motor nuclei. II. An autoradiographic tracing study in cat. Brain 100:265–286

    Google Scholar 

  • Holstege G, Graveland G, Bijker-Biemond C, Schuddeboom I (1983) Location of motoneurons innervating soft palate, pharynx and upper esophagus. Anatomical evidence for a possible swallowing center in the pontine reticular formation. An HRP and autoradiographical tracing study. Brain Behav Evol 23:46–62

    Google Scholar 

  • Holstege G, Tan J, Van Ham J, Bos A (1984) Mesencephalic projections to the facial nucleus in the cat. An autoradiographical tracing study. Brain Res 311:7–22

    CAS  PubMed  Google Scholar 

  • Holstege G, Meiners L, Tan K (1985) Projections of the bed nucleus of the stria terminalis to the mesencephalon, pons, and medulla oblongata in the cat. Exp Brain Res 58:379–391

    CAS  PubMed  Google Scholar 

  • Holstege G, Griffiths D, De Wall H, Dalm E (1986) Anatomical and physiological observations on supraspinal control of bladder and urethral sphincter muscles in the cat. J Comp Neurol 250:449–461

    CAS  PubMed  Google Scholar 

  • Holstege G, Van Neerven J, Evertse F (1987) Spinal cord location of the motoneurons innervating the abdominal, cutaneous maximus, latissimus dorsi and longissimis dorsi muscles in the cat. Exp Brain Res 67:179–194

    CAS  PubMed  Google Scholar 

  • Holstege G, Bandler R, Saper CB (1996) The emotional motor system. Prog Brain Res 107:1–627

    Google Scholar 

  • Holstege JC (1996) The ventro-medial medullary projections to spinal motoneurons: ultrastructure, transmitters and functional aspects. In: Holstege G, Bandler R, Saper CB (eds) The emotional motor system. Prog Brain Res 107:159-181

    Google Scholar 

  • Holstege JC, Kuypers HGJM (1987a) Brainstem projections to lumbar motoneurons in rat. I. An ultrastructural study using autoradiography and the combination of autoradiography and horseradish peroxidase histochemistry. Neuroscience 21:345–367

    CAS  PubMed  Google Scholar 

  • Holstege JC, Kuypers HGJM (1987b) Brainstem projections to spinal motoneurons: an update. Neuroscience 23:809–821

    CAS  PubMed  Google Scholar 

  • Honeycutt RL, Nedbal MA, Adkins RM, Janecek LL (1995) Mammalian mitochondrial DNA evolution: a comparison of the cytochrome b and cytochrome c oxidase II genes. J Mol Evol 40:260–272

    CAS  PubMed  Google Scholar 

  • Hoogland PV, Vermeulen-van der Zee E (1988) Intrinsic and exttrinsic connections of the cerebral cortex of lizards. In: Schwerdtfeger WK, Smeets WJAJ (eds) The forebrain of reptiles. Karger, Basel, pp 20–29

    Google Scholar 

  • Hooks MS, Kalivas PW (1995) The role of mesoaccumbenspallidal circuitry in novelty-induced behavioral activation. Neuroscience 64:587–597

    CAS  PubMed  Google Scholar 

  • Hoover DB, Jacobowitz DM (1979) Neurochemical and histochemical studies on the effect of a lesion of the nucleus cuneiformis on the cholinergic innervation of discrete areas of the rat brain. Brain Res 170:113–122

    CAS  PubMed  Google Scholar 

  • Hopkins DA (1975) Amygdalotegmental projections in the rat, cat and rhesus monkey. Neurosci Lett 1:263–270

    CAS  PubMed  Google Scholar 

  • Hopkins DA, Armour JA (1982) Medullary cells of origin of physiologically identified cardiac nerves in the dog. Brain Res Bull 8:359–365

    CAS  PubMed  Google Scholar 

  • Hopkins DA, Holstege G (1978) Amygdaloid projections to the mesencephalon, pons and medulla oblongata in the cat. Exp Brain Res 32:529–547

    CAS  PubMed  Google Scholar 

  • Hopkins DA, Holstege G (1978) Amygdaloid projections to the mesencephalon, pons and medulla oblongata in the cat. Exp Brain Res 32:529–548

    CAS  PubMed  Google Scholar 

  • Hopkins DA, Niessen LW (1976) Substantia nigra projections to the reticular formation, superior colliculus and central gray in the rat, cat and monkey. Neurosci Lett 2:253–259

    CAS  PubMed  Google Scholar 

  • Hopkins DA, Niessen LW (1976) Substantia nigra projections to the reticular formation, superior colliculus and central gray in the rat, cat and monkey. Neurosci Lett 2:253–259

    CAS  PubMed  Google Scholar 

  • Horner CH (1993) Plasticity of the dendritic spine. Prog Neurobiol 41:281–321

    CAS  PubMed  Google Scholar 

  • Hornung JP, Garey LJ (1981) The thalamic projection to cat visual cortex: ultrastructure of neurons indentified by Golgi impregnation of retrograde horseradish peroxidase transport. Neuroscience 6:1053–1068

    CAS  PubMed  Google Scholar 

  • Hosoya Y, Matsushita M (1981) Brainstem projections from the lateral hypothalamic area in the rat, as studied with autoradiography. Neurosci Lett 24:111–116

    CAS  PubMed  Google Scholar 

  • Houser CR, Vaughn JE, Barber RP, Roberts E (1980) GABA neurons are the major cell type of the nucleus reticularis thalami. Brain Res 200:341–354

    CAS  PubMed  Google Scholar 

  • Houser CR, Vaughn JE, Hendry SHC, Jones EG, Peters A (1984) GABA neurons in the cerebral cortex. In: Jones EG, Peters A (eds) Functional properties of cortical cells. Plenum, New York, pp 63–89 (Cerebral cortex, vol 2)

    Google Scholar 

  • Houser CR, Crawford GD, Salvaterra PM, Vaughn JE (1985) Immunocytochemical localization of choline acetyltransfe-rase in rat cerebral cortex: a study of cholinergic neurons and synapses. J Comp Neurol 234:17–34

    CAS  PubMed  Google Scholar 

  • Hubbard JE, DiCarlo V (1974a) Fluorescence histochemistry of monoamine-containing cell bodies in the brain stem of the squirrel monkey (Saimiri sciureus) (1974) II. Catecholamine-containing groups. J Comp Neurol 153:369–384

    CAS  PubMed  Google Scholar 

  • Hubbard JE, DiCarlo V (1974b) Fluorescence histochemistry of monoamine-containing cell bodies in the brain stem of the squirrel monkey (Saimiri sciureus). III. Serotonin-containing groups. J Comp Neurol 153:385–398

    CAS  PubMed  Google Scholar 

  • Hubel DH (1975) An autoradiographic study of the retino-cortical projections in the tree shrew (Tupaia glis). Brain Res 96:41–50

    CAS  PubMed  Google Scholar 

  • Hubel DH, LeVay S, Wiesel TN (1975) Mode of termination of retinotectal fibers in macaque monkey: an autoradiographic study. Brain Res 96:25–40

    CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol (Lond) 160:106–154

    CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1968) Receptive fields and functional architecture of monkey visual cortex. J Physiol (Lond) 195:215–243

    CAS  Google Scholar 

  • Hubel DH, Wiesel TN (1972) Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey. J Comp Neurol 146:421–450

    CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1977) Functional architecture of macaque monkey cortex. Proc R Soc Lond B 198:1–59

    CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN, Stryker MP (1978) Anatomical demonstration of orientation columns in macaque monkey. J Comp Neurol 177:361–379

    CAS  PubMed  Google Scholar 

  • Hübener M, Schwarz C, Bolz J (1990) Morphological types of projection neurons in layer 5 of cat visual cortex. J Comp Neurol 301:655–674

    PubMed  Google Scholar 

  • Huber GC, Guild SR (1913) Observations on the peripheral distribution of the nervus terminalis in mammals. Anat Rec 7:253–272

    Google Scholar 

  • Huerta M, Harting JK (1982a) Projections of the superior colliculus to the supraspinal nucleus and the cervical spinal cord gray of the cat. Brain Res 242:326–331

    CAS  PubMed  Google Scholar 

  • Huerta M, Harting JK (1982b) The projection from the nucleus of the posterior commissure to the superior colliculus of the cat: patch-like endings within the intermediate and deep grey layers. Brain Res 238:426–432

    CAS  PubMed  Google Scholar 

  • Huerta MF, Harting JK (1984) Connectional organization of the superior colliculus. Trends Neurosci 7:286–289

    Google Scholar 

  • Huerta MF, Frankenfurter AJ, Harting JK (1981) The trigeminocollicular projection in the cat: patch-like endings within the intermediate gray. Brain Res 211:1–15

    CAS  PubMed  Google Scholar 

  • Huerta MF, Frankfurter A, Harting JK (1983) Studies of the principal sensory and spinal trigeminal nuclei of the rat: projections to the superior colliculus, inferior olive, and cerebellum. J Comp Neurol 220:147–167

    CAS  PubMed  Google Scholar 

  • Huerta MF, Krubitzer LA, Kaas JH (1986) Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys: I. Subcortical connections. J Comp Neurol 253:415–439

    CAS  PubMed  Google Scholar 

  • Huerta MF, Van Lieshout DP, Harting JK (1991) Nigrotectal projections in the primate Galago crassicaudatus. Exp Brain Res 87:389–401

    CAS  PubMed  Google Scholar 

  • Huffman RF, Henson JOW (1990) The descending auditory pathway and acousticomotor systems: connections with the inferior colliculus. Brain Res Rev 15:295–323

    CAS  PubMed  Google Scholar 

  • Huisman AM (1983) Collateralization of descending spinal pathways from red nucleus and other brainstem cell groups in rat, cat and monkey. Thesis, Erasmus University Rotterdam

    Google Scholar 

  • Huisman AM, Kuypers HGJM, Conde F, Keizer K (1983) Collaterals of rubrospinal neurons to the cerebellum in rat. A retrograde fluorescent double labeling study. Brain Res 264:181–196

    CAS  PubMed  Google Scholar 

  • Huisman AM, Kuypers HGJM, Verburgh CA (1981) Quantitative differences in collateralization of the descending spinal pathways from red nucleus and other brain stem cell groups in rat as demonstrated with the multiple fluorescent retrograde tracer technique. Brain Res 209:271–286

    CAS  PubMed  Google Scholar 

  • Huisman AM, Kuypers HGJM, Verburgh CA (1982) Differences in collateralization of the descending spinal pathways from red nucleus and other brainstem cell groups in cat and monkeys. In: Kuypers HMG (ed) Anatomy of descending pathways to the spinal cord. Elsevier, Amsterdam (Progress in brain research, vol 57)

    Google Scholar 

  • Humphrey DR, Gold R, Reed DJ (1984) Sizes, laminar and topographical origins of cortical projections to the major divisions of the red nucleus in the monkey. J Comp Neurol 225:75–94

    CAS  PubMed  Google Scholar 

  • Humphrey T (1936) The telencephalon of the bat. I. The non-cortical nuclear masses and certain pertinent fiber connections. J Comp Neurol 65:603–711

    Google Scholar 

  • Husten K (1924) Experimentelle Untersuchungen über die Beziehungen der Vaguskerne zu den Brust-und Bauchorganen. Z Ges Neurol Psychiat 93:763–773

    Google Scholar 

  • Hutchins B (1991) Evidence for a direct retinal projection to the anterior pretectal nucleus in the cat. Brain Res 561:169–173

    CAS  PubMed  Google Scholar 

  • Hutchins B, Weber JT (1985) The pretectal complex of the monkey: a reinvestigation of the morphology and retinal terminations. J Comp Neurol 232:425–442

    CAS  PubMed  Google Scholar 

  • Hutchins KD, Martino AM, Strick PL (1988) Corticospinal projections from the medial wall of the hemisphere. Exp Brain Res 71:667–672

    CAS  PubMed  Google Scholar 

  • Iggo A, Gregory JE, Proske U (1992) The central projection of electrosensory information in the platypus. J Physiol (Lond) 447:449–465

    CAS  Google Scholar 

  • Ikeda M, Matsoshita M, Tanami T (1982) Termination and cells of origin of the ascending intranuclear fibers in the spinal trigeminal nucleus of the cat. A study with the horseradish peroxidase technique. Neurosci Lett 31:215–220

    CAS  PubMed  Google Scholar 

  • Ilg UJ, Hoffmann K-P (1993) Functional grouping of the cortico-pretectal projection. J Neurophysiol 70:867–869

    CAS  PubMed  Google Scholar 

  • Ilinsky IA, Jouandet ML, Goldman-Rakic PS (1985) Organization of the nigro-thalamocortical system in the rhesusmonkey. J Comp Neurol 236:315–330

    CAS  PubMed  Google Scholar 

  • Illing RB (1988) Spatial relation of the acetylcholinesteraserich domain to the visual topography in the feline superior colliculus. Exp Brain Res 73:589–594

    CAS  PubMed  Google Scholar 

  • Illing RB (1990) Choline acetyltransferase-like immunoreactivity in the superior colliculus of the cat and its relation to the pattern of acetylcholinesterase staining. J Comp Neurol 296:32–46

    CAS  PubMed  Google Scholar 

  • Illing RB (1992) Association of efferent neurons to the compartmental architecture of the superior colliculus. Proc Natl Acad Sci USA 89:10900–10904

    CAS  PubMed  Google Scholar 

  • Illing RB (1993) More modules. Trends Neurosci 16:179–180

    CAS  PubMed  Google Scholar 

  • Illing RB, Graybiel AM (1985) Convergence of afferents from frontal cortex and substantia nigra into acetylcholinesterase-rich patches of the cat’s superior colliculus. Neuroscience 14:455–482

    CAS  PubMed  Google Scholar 

  • Illing RB, Graybiel AM (1986) Complementary and non-matching afferent compartments in the cat’s superior colliculus innervation of the acetylcholinesterase-poor domain of the intermediate gray layer. Neuroscience 18:373–384

    CAS  PubMed  Google Scholar 

  • Illing RB, Wässle H (1981) The retinal projection to the thalamus in the cat: a quantitative investigation and a comparison with the retinotectal pathway. J Comp Neurol 202:265–285

    CAS  PubMed  Google Scholar 

  • Imai Y, Kusama T (1969) Distribution of the dorsal root fibers in the cat. An experimental study with the Nauta method. Brain Res 13:338–359

    CAS  PubMed  Google Scholar 

  • Inglis WL, Winn P (1995) The pedunculopontine tegmental nucleus: where the striatum meets the reticular formation. Prog Neurobiol 47:1–29

    CAS  PubMed  Google Scholar 

  • Ingram WR (1940) Nuclear organization and chief connections of the primate hypothalamus. Res Nerv Ment Dis Proc 20:195–244

    Google Scholar 

  • Innocenti GM (1986) General organization of callosal connections in the cerebral cortex. In: Jones EG, Peters A (eds) Sensory-motor areas and aspects of cortical connectivity. Plenum, New York, pp 291–354 (Cerebral cortex, vol 5)

    Google Scholar 

  • Ino T, Itoh K, Kamiya H, Shigemoto R, Akiguchi I, Mizuno N (1988) Direct projections of non-pyramidal neurons of Ammon’s horn to the supramamillary region in the cat. Brain Res 460:173–177

    CAS  PubMed  Google Scholar 

  • Irvine DRF (1986) The auditory brainstem. Prog Sens Physiol 7:1–279

    Google Scholar 

  • Isa T, Itouji T (1992) Axonal trajectories of single Forel’s field H neurones in the mesencephalon, pons and medulla oblongata in the cat. Exp Brain Res 89:484–495

    CAS  PubMed  Google Scholar 

  • Ishizuka N, Mannen H, Hongo T, Sasaki S (1979) Trajectory of group la afferent fibers stained with horseradish peroxidase in the lumbosacral spinal cord of the cat: three dimensional reconstructions from serial sections. J Comp Neurol 186:819–212

    Google Scholar 

  • Ishizuka N, Sasaki S-I, Mannen H (1982) Central course and terminal arborizations of single primary vestibular afferent fibers from the horizontal canal in the cat. Neurosci Lett 33:135–139

    CAS  PubMed  Google Scholar 

  • Isokawa-Akesson M, Komisaruk BR (1987) Difference in projections to the lateral and medial facial nucleus: anatomically separate pathways for rhythmical vibrissa movement in rats. Exp Brain Res 65:385–398

    CAS  PubMed  Google Scholar 

  • Isomura G (1981) Comparative anatomy of the extrinsic ocular muscles in vertebrates. Anat Anz Jena 150:498–515

    CAS  Google Scholar 

  • Isseroff A, Schwartz ML, Dekker JJ, Goldman-Rakic PS (1984) Columnar organization of callosal and associational projections from rat frontal cortex. Brain Res 293:213–223

    CAS  PubMed  Google Scholar 

  • Itaya SK, Van Hoesen W (1982) WGA-HRP as a transneuronal marker in the visual pathways of monkey and rat. Brain Res 236:199–204

    CAS  PubMed  Google Scholar 

  • Ito J, Matsuoka I, Sasa M, Takaori S, Morimoto M (1983) Input to lateral vestibular nucleus as revealed by retrograde horseradish peroxidase. Adv Oto Rhino Laryngol 30:64–70

    CAS  Google Scholar 

  • Ito M (1984) The cerebellum and neural control. Raven, New York

    Google Scholar 

  • Itoh J, Matsuoka I, Sasa M, Takaori S, Morimoto M (1983a) Input to lateral vestibular nucleus as revealed by retrograde horseradish peroxidase. Adv Oto Rhino Laryngol 30:64–70

    Google Scholar 

  • Itoh K, Takada M, Yasui Y, Kudo M, Mizuno N (1983b) Direct projections from the anterior pretectal nucleus to the dorsal accessory olive in the cat: an anterograde and retrograde WGA-HRP study. Brain Res 272:350–353

    CAS  PubMed  Google Scholar 

  • Itoh K, Kaneko T, Kudo M, Mizuno N (1984) The intercollicular region in the cat: a possible relay in the parallel somatosensory pathways from the dorsal column nuclei to the posterior complex of the thalamus. Brain Res 308:166–171

    CAS  PubMed  Google Scholar 

  • Itoh K, Nomura S, Konishi A, Yasui Y, Sugimoto T, Mizuno N (1986) A morphological evidence of direct connections from the ocular nuclei to tensor tympani motoneurons in the cat: a possible afferent limb of the acoustic middle ear reflex pathways. Brain Res 375:214–219

    CAS  PubMed  Google Scholar 

  • Iwai E, Yukie M (1987) Amygdalofugal and amygdalopetal connections with modality-specific visual cortical areas in macaques (Macaca fuscata, M. mulatta and M. fascicularis). J Comp Neurol 261:362–387

    CAS  PubMed  Google Scholar 

  • Jackson A, Crossman AR (1981) Subthalamic projections to nucleus tegmenti pedunculopontinus efferent connections with special reference to the basal ganglia, studied in the rat by anterograde and retrograde transport of horseradish peroxidase. Neuroscience 22:17–22

    CAS  Google Scholar 

  • Jackson A, Crossman AR (1983) Nucleus tegmenti pedunculopontinus efferent connections with special reference to the basal ganglia, studied in the rat by anterograde and retrograde transport of horseradish peroxidase. Neuroscience 10:725–765

    CAS  PubMed  Google Scholar 

  • Jacobs BL, Gannon PJ, Azmitia EC (1984) Atlas of serotonergic cell bodies in the cat brainstem: an immunocytochemical analysis. Brain Res Bull 13:1–31

    CAS  PubMed  Google Scholar 

  • Jacobs MS, Morgane PJ, McFarland WL (1971) The anatomy of the brain of the bottlenose dolphin (Tursiops truncatus). Rhinic lobe (Rhinencephalon) I. The paleocortex. J Comp Neurol 141:205–272

    CAS  PubMed  Google Scholar 

  • Jacobson S, Trojanowski JQ (1975) Amygdaloid projections to prefrontal granular cortex in rhesus monkey demonstrated with horseradish peroxidase. Brain Res 100:132–139

    CAS  PubMed  Google Scholar 

  • Jacquin MF, Rhoades RW, Enfiejian HL, Egger MD (1983) Organization and morphology of masticatory neurons in the rat: a retrograde HRP study. J Comp Neurol 218:239–256

    CAS  PubMed  Google Scholar 

  • Jacquin MF, Mooney RD, Rhoades RW (1986) Morphology, response properties, and collateral projections of trigeminothalamic neurons in brainstem subnucleus interpolaris of rat. Exp Brain Res 61:457–468

    CAS  PubMed  Google Scholar 

  • Jakab RL, Leranth C (1995) Septum. In: Paxinos G (ed) The rat nervous system. Academic, San Diego, pp 405–442

    Google Scholar 

  • Jankowska E (1992) Interneuronal relay in spinal pathways from proprioceptors. Prog Neurobiol 38:335–378

    CAS  PubMed  Google Scholar 

  • Jankowska E, Lindström S (1971) Morphological identification of Renshaw cells. Brain Res 20:323–326

    Google Scholar 

  • Jansen J (1954) On the morphogenesis and morphology of the mammalian cerebellum. In: Jansen J, Brodai A (eds) Aspects of cerebellar anatomy, chap 1. Grundt Tanum, Oslo, pp 13–81

    Google Scholar 

  • Jansen J (1969) Neurobiology of cerebellar evolution and development. In: Llinas R (ed) Proceedings of the first international symposium of the Institute for Medical Research. American Medical Association, Chicago, pp 881–893

    Google Scholar 

  • Jansen J, Brodai A (1940) Experimental studies on the intrinsic fibers of the cerebellum. II. The cortico-nuclear projection. J Comp Neurol 73:267–321

    Google Scholar 

  • Jansen J, Brodai A (1942) Experimental studies on the intrinsic fibers of the cerebellum. III Cortico-nuclear projection in the rabbit and the monkey. Avh Norske Vid Akad. Avh I Math Nat Kl 3:1–30

    Google Scholar 

  • Jasmin L, Courville J, Bakker DA (1985) Afferent projections from forelimb muscles to the external and main cuneate nuclei in the cat. A study with trans-ganglionic transport of horseradish peroxidase. Anat Embryol (Berl) 171:275–284

    CAS  Google Scholar 

  • Jayaraman A, Batton RR III, Carpenter MB (1977) Nigrotectal projections in the monkey: an autoradiographic study. Brain Res 135:147–152

    CAS  PubMed  Google Scholar 

  • Jelgersma G (1934) Das Gehirn der Wassersäugetiere. Barth, Leipzig

    Google Scholar 

  • Jen LS, Dai Z-G, So K-F (1984) The connections between the parabigeminal nucleus and the superior colliculus in the golden hamster. Neurosci Lett 51:189–194

    CAS  PubMed  Google Scholar 

  • Jeneskog T, Padel Y (1984) An excitatory pathway through dorsal columns to rubrospinal cells in the cat. J Physiol (Lond) 353:355–373

    CAS  Google Scholar 

  • Jennes L (1987) The nervus terminalis in the mouse: light and electron microscopic immunocytochemical studies. Ann NY AcadSci 519:165–173

    CAS  Google Scholar 

  • Jenny AB, Smith JM, Bernardo KL, Woolsey TA (1991) Distribution of motor cortical neuron synaptic terminals on monkey parvocellular red neurons. Somatosens Mot Res 8:23–26

    CAS  PubMed  Google Scholar 

  • Jeon CJ, Mize RR (1993) Choline acetyltransferase-immunoreactive patches overlap specific efferent cell groups in the cat superior colliculus. J Comp Neurol 337:127–150

    CAS  PubMed  Google Scholar 

  • Jeon CJ, Spencer RF, Mize RR (1993) Organization and synaptic connections of cholinergic fibers in the cat superior colliculus. J Comp Neurol 333:360–374

    CAS  PubMed  Google Scholar 

  • Jerison HJ (1973) Evolution of the brain and intelligence. Academic, New York

    Google Scholar 

  • Jhamandas JH, Petrov T, Harris KH, Vu T, Krukoff TL (1996) Parabrachial nucleus projection to the amygdala in the rat: electrophysiological and anatomical observations. Brain Res Bull 39:115–126

    CAS  PubMed  Google Scholar 

  • Ji Z, Hawkes R (1994) Topography of Purkinje cell compartments and mossy fiber terminal fields in lobules II and III of the rat cerebellar cortex: spino-cerebellar and cuneocerebellar projections. Neuroscience 61:935–954

    CAS  PubMed  Google Scholar 

  • Jia H-G, Rao Z-R, Shi J-W (1994) An indirect projection from the nucleus of the solitary tract to the central nucleus of the amygdala via the parabrachial nucleus in the rat: a light and electron microscopic study. Brain Res 663:181–190

    CAS  PubMed  Google Scholar 

  • Joel D, Weiner I (1994) The organization of the basal gangliathalamocortical circuits: open interconnected rather than closed segregated. Neuroscience 63:363–379

    CAS  PubMed  Google Scholar 

  • Johnson JJI, Welker WI, Pubols JBH (1968) Somatotopic organization of raccoon orsal column nuclei. J Comp Neurol 132:1–44

    PubMed  Google Scholar 

  • Johnson JI (1980) Morphological correlates of specialized elaborations in somatic sensory cerebral neocortex. In: Ebbesson SOE (ed) Comparative neurology of the telencephalon. Plenum, New York, pp 423–447

    Google Scholar 

  • Johnson JI (1990) Comparative development of somatic sensory cortex. In: Jones EG, Peters A (eds) Comparative structure and evolution of cerebral cortex, part II. Plenum, New York, pp 335–449 (Cerebral cortex, vol 8B)

    Google Scholar 

  • Johnson JI Jr (1977) Central nervous system of marsupials. In: Hunsaker D II (ed) The biology of marsupials. Academic, New York, pp 157–278

    Google Scholar 

  • Johnston JB (1913) Nervus terminalis in reptiles and mammals. J Comp Neurol 23:97–120

    Google Scholar 

  • Johnston JB (1914) The nervus terminalis in man and mammals. Anat Rec 8:185–198

    Google Scholar 

  • Johnston JB (1923) Further contributions to the study of the evolution of the forebrain. J Comp Neurol 35:337–481

    Google Scholar 

  • Jones BE (1990) Immunohistochemical study of choline acetyltransferase-immunoreactive processes and cells innervating the pontomedullary reticular formation in the rat. J Comp Neurol 295:485–514

    CAS  PubMed  Google Scholar 

  • Jones BE (1995) Reticular formation: cytoarchitecture, transmitters, and projections. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic, San Diego, pp 155–171

    Google Scholar 

  • Jones BE, Beaudet A (1987) Distribution of acetylcholine and catecholamine neurons in the cat brainstem: a choline acetyltransferase and tyrosine hydroxylase immunohisto-chemical study. J Comp Neurol 261:15–32

    CAS  PubMed  Google Scholar 

  • Jones BE, Friedman L (1983) Atlas of catecholamine perikarya, varicosities and pathways in the brainstem of the cat. J Comp Neurol 215:382–396

    CAS  PubMed  Google Scholar 

  • Jones BE, Yang TZ (1985) The efferent projections from the reticular formation and the locus coeruleus studied by anterograde and retrograde axonal transport in the rat. J Comp Neurol 242:56–92

    CAS  PubMed  Google Scholar 

  • Jones EG (1975a) Some aspects of the organization of the thalamic reticular complex. J Comp Neurol 162:285–308

    CAS  PubMed  Google Scholar 

  • Jones EG (1975b) Varieties and distribution of non-pyramidal cells in the somatic sensory cortex of the squirrel monkey. J Comp Neurol 160:205–268

    CAS  PubMed  Google Scholar 

  • Jones EG (1984a) Laminar distribution of cortical efferent cells. In: Peters A, Jones EG (eds) Cellular components of the cerebral cortex. Plenum, New York, pp 521–553 (Cerebral cortex, vol 1)

    Google Scholar 

  • Jones EG (1984b) Neurogliaform or spiderweb cells. In: Peters A, Jones EG (eds) Cellular components of the cerebral cortex. Plenum, New York, pp 409–418 (Cerebral cortex, vol 1)

    Google Scholar 

  • Jones EG (1985) The thalamus. Plenum, New York

    Google Scholar 

  • Jones EG (1986) Connectivity of the primate sensory-motor cortex. In: Jones EG, Peters A (eds) Sensory-motor areas and aspects of cortical connectivity. Plenum, New York, pp 113–184 (Cerebral cortex, vol 5)

    Google Scholar 

  • Jones EG (1987) Cerebral cortex. In: Adelman G (ed) Encyclopedia of neuroscience, vol 1. Birkhäuser, Boston, pp 209–211

    Google Scholar 

  • Jones EG, Burton H (1976) A projection from the medial pulvinar to the amygdala in primates. Brain Res 104:142–147

    CAS  PubMed  Google Scholar 

  • Jones EG, Peters A (1984–1992) Cerebral cortex, vol 1–9. Plenum, New York

    Google Scholar 

  • Jones EG, Powell TPS (1969) Synapses on the axon hillocks and initial segments of pyramidal cell axons in the cerebral cortex. J Cell Sci 5:495–507

    CAS  PubMed  Google Scholar 

  • Jones EG, Powell TPS (1970) An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93:793–824

    CAS  PubMed  Google Scholar 

  • Jones EG, Wise SP (1977) Size, laminar and columnar distribution of efferent cells in the sensory-motor cortex of monkeys. J Comp Neurol 175:391–438

    CAS  PubMed  Google Scholar 

  • Jones EG, Burton H, Porter R (1975) Commissural and cortico-cortical “columns” in the somatic sensory cortex of primates. Science 190:572–574

    CAS  PubMed  Google Scholar 

  • Jones EG, Hendry SHC, DeFelipe J (1987) GABA-peptide neurons of the primate cerebral cortex: a limited cell class. In: Jones EG, Peters A (eds) Further aspects of cortical function, including hippocampus. Plenum, New York, pp 237–266 (Cerebral cortex, vol 6)

    Google Scholar 

  • Jones EG, DeFelipe J, Hendry SHC, Maggio JE (1988) A study of tachykinin-immunoreactive neurons in monkey cerebral cortex. J Neurosci 8:1206–1224

    CAS  PubMed  Google Scholar 

  • Jones MW, Hodge CJ, Apkarian AV, Stevens RT (1985) A dorsolateral spinothalamic pathway in cat. Brain Res 335:188–193

    CAS  PubMed  Google Scholar 

  • Jones MW, Apkarian AV, Stevens RT, Hodge CJJ (1987) The spinothalamic tract: an examination of the cells of origin of the dorsolateral and ventral spinothalamic pathways in cats. J Comp Neurol 260:349–361

    CAS  PubMed  Google Scholar 

  • Jongen-Rélo AL, Groenewegen HJ, Voorn P (1993) Evidence for a multi-compartmental histochemical organization of the nucleus accumbens in the rat. J Comp Neurol 337:267–276

    PubMed  Google Scholar 

  • Jongen-Rélo AL, Voorn P, Groenewegen HJ (1994) Immuno-histochemical characterization of the shell and core territories of the nucleus accumbens in the rat. Eur J Neurosci 6:1255–1264

    PubMed  Google Scholar 

  • Joosten EA, Gribnau AA (1988) Unmyelinated corticospinal axons in adult rat pyramidal tract. An electron microscopic tracer study. Brain Res 459:173–177

    CAS  PubMed  Google Scholar 

  • Jordan H, Holländer H (1972) The structure of the ventral part of the lateral geniculate nucleus. A cyto-and myeloarchitectonic study in the cat. J Comp Neurol 145:259–272

    CAS  PubMed  Google Scholar 

  • Joseph MP, Guinan JJJ, Fullerton BC, Norris BE, Kiang NYS (1985) Number and distribution of stapedius motoneurons in cats. J Comp Neurol 232:43–54

    CAS  PubMed  Google Scholar 

  • Jürgens U (1974) The hypothalamus and behavioral patterns. Prog Brain Res 41:445–463

    PubMed  Google Scholar 

  • Kaada BR (1972) Stimulation and regional ablation of the amygdaloid cortex with reference to functional representations. In: Eleftheriou BE (ed) The neurobiology of the amygdala. Plenum, New York, pp 205–282

    Google Scholar 

  • Kaas JH, Harting JK, Guillery RW (1974) Representation of the complete retina in the contralateral superior colliculus of some mammals (1971) Brain Res 65:343–346

    CAS  PubMed  Google Scholar 

  • Kadoya S, Wolin LR, Massopust LC Jr (1971) Photically evoked unit activity in the tectum opticum of the squirrel monkey. J Comp Neurol 142:495–508

    CAS  PubMed  Google Scholar 

  • Kahle W (1956) Zur entwicklung des menschlichen Zwischenhirnes. Dtsch Z Nervenhkd 175:259–318

    CAS  Google Scholar 

  • Kakei S, Shinoda Y (1990) Parietal projection of thalamocortical fibers from the ventroanterior-ventrolateral complex of the cat thalamus. Neurosci Lett 117:280–284

    CAS  PubMed  Google Scholar 

  • Kalia M, Mesulam M-M (1980a) Brain stem projections of sensory and motor components of the vagus complex in the cat. I. The cervical vagus and nodose ganglion. J Comp Neurola 193:435–465

    CAS  Google Scholar 

  • Kalia M, Mesulam M-M (1980b) Brain stem projections of sensory and motor components of the vagus complex in the cat. II. Laryngeal, tracheobroncial, pulmonary, cardiac, and gastrointestinal branches. J Comp Neurol 193:467–508

    CAS  PubMed  Google Scholar 

  • Kalia M, Sullivan M (1982) Brainstem projections of sensory and motor components of the vagus nerve in the rat. J Comp Neurol 211:248–264

    CAS  PubMed  Google Scholar 

  • Kallén B (1951a) The nuclear development in the mammalian forebrain with special regard to the subpallium. Kungl Fysiografiska Sällskapets Handlingar N F vol 61, no 9. Gleerup, Lund

    Google Scholar 

  • Källén B (1951b) Embryological studies on the nuclei and their homologization in the vertebrate forebrain. Kungl Fysiografiska Sällskapets Handlingar N F vol 62, no 5. Gleerup, Lund

    Google Scholar 

  • Kamal AM, Tömböl T (1975) Golgi studies on the amygdaloid nuclei of the cat. J Hirnforsch 16:175–201

    CAS  PubMed  Google Scholar 

  • Kamal AM, Tömböl T (1976) Olfactory and temporal projections to the amygdala. Verh Anat Ges 70:283–288

    PubMed  Google Scholar 

  • Kanagasuntheran R, Wong WC, Krishnamurti A (1968) Nuclear configuration of the diencephalon in some Lorisoids. J Comp Neurol 133:241–268

    Google Scholar 

  • Kanaseki T, Sprague JM (1974) Anatomical organization of pretectal nuclei and tectal laminae in the cat. J Comp Neurol 38:319–338

    Google Scholar 

  • Kane ES, Barone LM (1980) The dorsal nucleus of the lateral lemniscus in the cat: neuronal types and their distributions. J Comp Neurol 192:797–826

    CAS  PubMed  Google Scholar 

  • Kane ES, Finn RC (1977) Descending and intrinsic inputs to dorsal cochlear nucleus of cats: a horseradish peroxidase study. Neuroscience 2:897–912

    Google Scholar 

  • Kappel RM (1981) The development of the cerebellum in macaca mulatta. A study of regional differences during corticogenesis. Thesis, Leiden

    Google Scholar 

  • Karabelas AB, Moschovakis AK (1985) Nigral inhibitory termination on efferent neurons of the superior colliculus: an intracellular horseradish peroxidase study in the cat. J Comp Neurol 239:309–329

    CAS  PubMed  Google Scholar 

  • Karamanlidis A (1968) Trigemino-cerebellar fiber connections in the goat studied by means of the retrograde cell degeneration method. J Comp Neurol 133:71–88

    CAS  PubMed  Google Scholar 

  • Karamanlidis AN, Magras J (1972) Retinal projections in domestic ungulates. I. The retinal projections in the sheep and the pig. Brain Res 44:127–145

    CAS  PubMed  Google Scholar 

  • Karamanlidis AN, Magras J (1974) Retinal projections in domestic ungulates (1978) II. The retinal projections in the horse and the ox. Brain Res 66:209–225

    Google Scholar 

  • Karamanlidis AN, Voogd J (1970) Trigemino-thalamic fibre connections in the goat. An experimental anatomical study. Acta Anat 75:596–622

    CAS  PubMed  Google Scholar 

  • Karamanlidis AN, Michaloudi H, Mangana O, Saigal RP (1978) Trigeminal ascending projections in the rabbit, studied with horseradish peroxidase. Brain Res 156:110–116

    CAS  PubMed  Google Scholar 

  • Kassel J (1982) Somatotopic organization of SI corticotectal projections in rats. Brain Res 231:247–255

    CAS  PubMed  Google Scholar 

  • Kato I, Harada K, Hasegawa T, Igarashi T, Koike Y, Kawasaki (1973) T. Role of the nucleus of the optic tract in monkeys in relation to optokinetic nystagmus. Brain Res 364:12–22

    Google Scholar 

  • Kato N, Kawaguchi S, Miyata H (1984) Geniculocortical projection to layer I of area 17 in kittens: orthograde and retrograde HRP studies. J Comp Neurol 225:441–447

    CAS  PubMed  Google Scholar 

  • Kato N, Kawaguchi S, Miyata H (1986) Postnatal development of afferent projections to the lateral suprasylvian visual area in the cat: an HRP study. J Comp Neurol 252:543–554

    CAS  PubMed  Google Scholar 

  • Katz LC (1987) Local circuitry of identified projection neurons in cat visual cortex brain slices. J Neurosci 7:1223–1249

    CAS  PubMed  Google Scholar 

  • Kaufman EFS, Rosenquist AC (1985) Efferent projections of the thalamic intralaminar nuclei in the cat. Brain Res 335:257–279

    CAS  PubMed  Google Scholar 

  • Kawaguchi Y (1993) Physiological, morphological and histo-chemical characterization of three classes of interneurons in rat neostriatum. J Neurosci 13:4908–4923

    CAS  PubMed  Google Scholar 

  • Kawaguchi Y, Hama K (1987) Two subtypes of non-pyramidal cells in rat hippocampal formation identified by intracellular recording and HRP injection. Brain Res 411:190–195

    CAS  PubMed  Google Scholar 

  • Kawamura K, Brodai A (1973) The tectopontine projection in the cat: an experimental anatomical study with comments on pathways for teleceptive impulses to the cerebellum. J Comp Neurol 149:371–390

    CAS  PubMed  Google Scholar 

  • Kawamura K, Hashikawa T (1978) Cell bodies of origin of reticular projections from the superior colliculus in the cat: an experimental study with the use of horseradish peroxidase as a tracer. J Comp Neurol 1978:1–16

    Google Scholar 

  • Kawamura K, Konno T (1979) Various types of corticotectal neurons of cats as demonstrated by means of retrograde axonal transport of horseradish peroxidase. Exp Brain Res 35:161–175

    CAS  PubMed  Google Scholar 

  • Kawamura K, Onodera S (1984) Olivary projections from the pretectal region in the cat studied with horseradish peroxidase and tritiated amino acids axonal transport. Arch Ital Biol 122:155–168

    CAS  PubMed  Google Scholar 

  • Kawamura K, Brodai A, Hoddevik G (1974) The projection of the superior colliculus onto the reticular formation of the brain stem. An experimental anatomical study in the cat. Exp Brain Res 19:1–19

    CAS  PubMed  Google Scholar 

  • Kawamura S, Sprague JM, Niimi K (1974) Corticofugal projections from the visual cortices to the thalamus, pretectum and superior colliculus in the cat. J Comp Neurol 158:339–362

    CAS  PubMed  Google Scholar 

  • Kawamura S, Hattori S, Higo S, Matsuyama T (1982) The cerebellar projections to the superior colliculus and pretectum in the cat: an autoradiographic and horseradish peroxidase study. Neuroscience 7:1673–1689

    CAS  PubMed  Google Scholar 

  • Kawana E, Kusama T (1968) Projections from the anterior part of the coronal gyrus to the thalamus, the spinal trigeminal complex and the nucleus of the solitary tract in cats. Proc Jpn Acad 44:176–181

    Google Scholar 

  • Keizer K (1989) Collateralization of the pathways descending from the cerebral cortex to brain stem and spinal cord in cat and monkey. Thesis, Erasmu University Rotterdam

    Google Scholar 

  • Keizer K, Kuypers HGJM (1984) Distribution of corticospinal neurons with collaterals to lower brain stem reticular formation in cat. Exp Brain Res 54:107–120

    CAS  PubMed  Google Scholar 

  • Keizer K, Kuypers HGJM (1989) Distribution of corticospinal neurons with collaterals to the lower brain stem reticular formation in monkey (Macaca fascicularis). Exp Brain Res 74:311–318

    CAS  PubMed  Google Scholar 

  • Keizer K, Kuypers HGJM, Ronday HK (1987) Branching cortical neurons in cat which project to the colliculi and to the pons: a retrograde fluorescent double-labeling study. Exp Brain Res 67:1–15

    CAS  PubMed  Google Scholar 

  • Kelley AE, Domesick VB, Nauta WJH (1982) The amygdalostriatal projection in the rat — an anatomical study by anterograde and retrograde tracing méthodes. Neuroscience 7:615–630

    CAS  PubMed  Google Scholar 

  • Kelly J, Swanson LW (1980) Additional forebrain regions projecting to the posterior pituitary: preoptic region, bed nucleus of the stria terminalis and zona incerta. Brain Res 197:1–10

    CAS  PubMed  Google Scholar 

  • Kemp JM, Powell TPS (1970) The cortico-striate projection in the monkey. Brain 93:525–547

    CAS  PubMed  Google Scholar 

  • Kemp JM, Powell TPS (1971a) The structure of the caudate nucleus of the cat: light and electron microscopy. Philos Trans R Soc Lond [Biol] 262:383–401

    CAS  Google Scholar 

  • Kemp JM, Powell TPS (1971b) The site of the termination of afferent fibers in the caudate nucleus. Philos Trans R Soc Lond [Biol] 262:413–427

    CAS  Google Scholar 

  • Kemplay S, Webster KE (1989) A quantitative study of the projections of the gracile, cuneate and trigeminal nuclei and of the medullary reticular formation to the thalamus in the rat. Neuroscience 32:153–167

    CAS  PubMed  Google Scholar 

  • Kennedy PR (1990) Corticospinal, rubrospinal and rubroolivary projections: a unifying hypothesis. Trends Neurosci 13:474–479

    CAS  PubMed  Google Scholar 

  • Kennedy PR, Gibson AR, Houk JC (1986) Functional and anatomic differentiation between parvi-cellular and magnocellular regions of red nucleus in the monkey. Brain Res 364:124–136

    CAS  PubMed  Google Scholar 

  • Kenny GC, Scheelings FT (1979) Observations of the pineal region of non-eutherian mammals. Cell Tissue Res 198:309–324

    CAS  PubMed  Google Scholar 

  • Kerr FWL (1962) Facial, vagal and glossopharyngeal nerves in the cat. Arch Neurol 6:264–281

    CAS  PubMed  Google Scholar 

  • Kerr FWL (1963) The divisional organization of afferent fibers of the trigeminal nerve. Brain 86:721–732

    CAS  PubMed  Google Scholar 

  • Kerr FW (1975) The ventral spinothalamic tract and other ascending systems of the ventral funiculus of the spinal cord. J Comp Neurol 159:335–356

    CAS  PubMed  Google Scholar 

  • Kesarev VS, Malofeyeva LI, Trykova OV (1977) Ecological specificity of cetacean neocortex. J Hirnforsch 18:447–460

    CAS  PubMed  Google Scholar 

  • Kevetter GA, Perachio AA (1986) Distribution of vestibular afferents that innervate the sacculus and posterior canal in the gerbil. J Comp Neurol 254:410–424

    CAS  PubMed  Google Scholar 

  • Kevetter GA, Perachio AA (1989) Projections from the sacculus to the cochlear nuclei in the Mongolian gerbil. Brain Behav Evol 34:193–200

    CAS  PubMed  Google Scholar 

  • Kevetter GA, Willis WD (1984) Collateralization in the spinothalamic tract: new methodology to support or deny phylogenetic theories. Brain Res Rev 7:1–14

    Google Scholar 

  • Kevetter GA, Winans SS (1981) Connections to the corticomedial amygdala in the golden hamster. I. Efferents of the ‘vomeronasal amygdala’. J Comp Neurol 197:81–98

    CAS  PubMed  Google Scholar 

  • Kiang NYS, Liberman MC, Gage JS, Northrop CC, Dodds LW, Oliver ME (1984) Afferent innervation of the mammalian cochlea. In: Bolis L, Keynes RD, Madrell SHP (eds) Comparative physiology of sensory systems. Cambridge University Press, Cambridge, pp 143–161

    Google Scholar 

  • Kievit J (1979) Cerebello-thalamische projecties en de afferente verbindingen naar de frontaalschors in the rhesus aap. Thesis, Erasmus University Rotterdam

    Google Scholar 

  • Kievit J, Kuypers HGJM (1975) Basal forebrain and hypothalamic connections to frontal and parietal cortex in the rhesus monkey. Science 187:660–662

    CAS  PubMed  Google Scholar 

  • Killackey HP (1983) The somatosensory cortex of the rodent. Trends Neurosci 6:425–429

    Google Scholar 

  • Killackey HP, Erzurumlu RS (1981) Trigeminal projections to the superior colliculus of the rat. J Comp Neurol 201:221–242

    CAS  PubMed  Google Scholar 

  • Killackey HP, Koralek K-A, Chiaia NL, Rhoades RW (1989) Laminar and areal differences in the origin of the subcortical projection neurons of the rat somatosensory cortex. J Comp Neurol 282:428–445

    CAS  PubMed  Google Scholar 

  • Kim U, Gregory E, Hall WC (1992) Pathway from the zona incerta to the superior colliculus in the rat. J Comp Neurol 321:555–575

    CAS  PubMed  Google Scholar 

  • Kincaid AE, Wilson CJ (1996) Corticostriatal innervation of the patch and matrix in the rat neostriatum. J Comp Neurol 374:578–592

    CAS  PubMed  Google Scholar 

  • King GW (1980) Topology of ascending brainstem projections to nucleus parabrachialis in the cat. J Comp Neurol 191:651–638

    Google Scholar 

  • King JS, Dom RM, Conner JB, Martin GF (1973) An experimental light and electron microscopic study of cerebellorubral projections in the opossum, didelphis marsupialis virginiana. Brain Res 52:61–78

    CAS  PubMed  Google Scholar 

  • King WM, Precht W, Dieringer N (1980) Synaptic organization of frontal eye field and vestibular afferents to interstitial nucleus of Cajal in the cat. J Neurophysiol 43:912–928

    CAS  PubMed  Google Scholar 

  • Kirsche W, Kunz G, Wenzel J, Wenzel M, Winkelmann A, Winkelmann E (1973) Neurohistologische Untersuchungen zur Variabilität der Pyramidenzellen des sensorischen Cortex der Ratte. J Hirnforsch 14:117–135

    CAS  PubMed  Google Scholar 

  • Kisvárday ZF, Eysel UT (1992) Cellular organization of reciprocal patchy networks in layer III of cat visual cortex (area 17). Neuroscience 46:275–286

    PubMed  Google Scholar 

  • Kisvárday ZF, Martin KAC, Whitteridge D, Somogyi D (1985) Synaptic connections of intracellularly filled clutch cells. A type of small basket cell in the visual cortex of the cat. J Comp Neurol 241:111–137

    PubMed  Google Scholar 

  • Kisvárday ZF, Martin KAC, Freund TF, Maglöczky ZS, Whitteridge D, Somogyi P (1986) Synaptic targets of HRP-filled layer III pyramidal cells in the cat striate cortex. Exp Brain Res 64:541–552

    PubMed  Google Scholar 

  • Kisvárday ZF, Beaulieu C, Eysel UT (1993) Network of GABAergic large basket cells in cat visual cortex (area 18): implication for lateral disinhibition. J Comp Neurol 327:398–415

    PubMed  Google Scholar 

  • Kita H, Oomura Y (1981) Reciprocal connections between the lateral hypothalamus and the frontal cortex in the rat: electrophysiological and anatomical observations. Brain Res 213:1–16

    CAS  PubMed  Google Scholar 

  • Kita Y, Oomura Y (1982) An HRP study of the afferent connections to rat lateral hypothalamic region. Brain Res Bull 8:53–71

    CAS  PubMed  Google Scholar 

  • Kita H, Kosaka T, Heizmann CW (1990) Parvalbuminimmunoreactive neurons in the rat neostriatum: a light and electron microscopic study. Brain Res 536:1–15

    CAS  PubMed  Google Scholar 

  • Kitao Y, Nakamura Y (1987) An ultrastructural analysis of afferent terminals to the anterior pretectal nucleus in the cat. J Comp Neurol 259:348–363

    CAS  PubMed  Google Scholar 

  • Kitao Y, Nakamura Y, Kudo M, Morrizumi T, Tokuno H (1989) The cerebral and cerebellar connections of pretecto-thalamic and pretecto-olivary neurons in the anterior pretectal nucleus of the cat. Brain Res 484:304–313

    CAS  PubMed  Google Scholar 

  • Kitt CA, Mitchell SJ, DeLong MR, Wainer BH, Price DL (1987) Fiber pathways of basal forebrain cholinergic neurons in monkeys. Brain Res 406:192–206

    CAS  PubMed  Google Scholar 

  • Klein BG, Rhoades RW (1985) Representation of whisker follicle intrinsic musculature in the facial motor nucleus of the rat. J Comp Neurol 232:55–69

    CAS  PubMed  Google Scholar 

  • Klemm WR, Vertes RP (eds) (1990) Brainstem mechanisms of behavior. Wiley, New York

    Google Scholar 

  • Klüver H, Bucy PC (1937) Psychic blindness and other symptoms following bilateral temporal lobectomy in rhesus monkeys. Am J Physiol 119:352–353

    Google Scholar 

  • Klüver H, Bucy PC (1939) Preliminary analysis of functions of the temporal lobes in monkeys. Arch Neurol Psychiatry 42:979–1000

    Google Scholar 

  • Kling A, Steklis HD, Deutsch S (1979) Radiotelemetered activity from the amygdala during social interactions in the monkey. Exp Neurol 66:688–696

    Google Scholar 

  • Kling AS, Brothers LA (1992) The amygdala and social behavior. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss, New York, pp 353–378

    Google Scholar 

  • Klinkhachorn PS, Haines DE, Culberson JL (1984a) Cerebellar cortical efferent fibers in the North American Opossum, Didelphis virginiana. I. The anterior lobe. J Comp Neurol 227:424–438

    CAS  PubMed  Google Scholar 

  • Klinkhachorn PS, Haines DE, Culbertson JL (1984b) Cerebellar cortical efferent fibers in the North American Opossum, Didelphis virginiana. II. The Posterior Vermis. J Comp Neurol 227:439–451

    CAS  PubMed  Google Scholar 

  • Klooster J, Van der Want JJL, Vrensen G (1983) Retinopretectal projections in albino and pigmented rabbits: an autora-diographic study. Brain Res 288:1–12

    CAS  PubMed  Google Scholar 

  • Kneisley LW, Biber MP, LaVail JH (1978) A study of the origin of brain stem projections to monkey spinal cord using the retrograde transport method. Exp Neurol 60:116–139

    CAS  PubMed  Google Scholar 

  • Knowles WD, Schwartzkroin PA (1981) Axonal ramifications of hippocampal CA1 pyramidal cells. J Neurosci 1:1236–1241

    CAS  PubMed  Google Scholar 

  • Kobayashi Y, Matsumura G (1996) Central projections of primary afferent fibers from the rat trigeminal nerve labeled with isolectin B4-HRP. Neuroscience 217:89–92

    CAS  Google Scholar 

  • Koch M, Ehret G (1989) Immunocytochemical localization and quantitation of estrogen-binding cells in the male and female (virgin, pregnant, lactating) mouse brain. Brain Res 489:101–112

    CAS  PubMed  Google Scholar 

  • Koester SE, O’Leary DM (1992) Functional classes of corical projection neurons develop dendritic distinctions by class-specific sculpting of an early common pattern. J Neurosci 12:1382–1393

    CAS  PubMed  Google Scholar 

  • Köhler C (1985) Intrinsic projections of the retrohippocampal region in the rat brain. I. The subicular complex. J Comp Neurol 236:504–522

    PubMed  Google Scholar 

  • Koikegami H (1957) On the correlation between cellular and fibrous patterns of the human brain stem reticular formation with some cytoarchitectonic remarks on the other mammals. Acta Med Biol 5:21–72

    Google Scholar 

  • Koikegami H (1963) Amygdala and other related limbic structures; experimental studies on the anatomy and function. Acta Med Biol 10:161–277

    CAS  PubMed  Google Scholar 

  • Kojima T (1951) On the brain of the sperm whale (Physeter catadon). Sci Rep Whales Res Inst Tokyo 6:49–72

    Google Scholar 

  • Kojima M, Sano Y (1983) The organization of serotonin fibers in the anterior column of the mammalian spinal cord. An immunohistochemical study. Anat Embryol (Berl) 167:1–11

    CAS  Google Scholar 

  • Komiyama M, Shibata H, Suzuki T (1984) Somatotopic representation of facial muscles within the facial nucleus of the mouse. Brain Behav Evol 24:144–151

    CAS  PubMed  Google Scholar 

  • Kooy FH (1916) The inferior olive in vertebrates. Proefschrift. De Erven F Bohn, Haarlem

    Google Scholar 

  • Kooy FH (1971) The inferior olive in vertebrates. Folia Neurobiol 10:205–369

    Google Scholar 

  • Kordower JH, Piecinski P, Rakic P (1992) Neurogenesis of the amygdaloid nuclear complex in the rhesus monkey. Dev Brain Res 68:9–15

    CAS  Google Scholar 

  • Korneliussen HK (1967) Cerebellar corticogenesis in Cetacea, with special references to regional variations. J Hirnforsch 9:151–185

    CAS  PubMed  Google Scholar 

  • Korneliussen HK (1968a) On the morphology and subdivision of the cerebellar nuclei of the rat. J Hirnforsch 10:109–122

    CAS  PubMed  Google Scholar 

  • Korneliussen HK (1968b) On the ontogenetic development of the cerebellum (nuclei, fissures and cortex) of the rat, with special reference to regional variations in corticogenesis. J Hirnforsch 10:379–412

    CAS  PubMed  Google Scholar 

  • Korneliussen HK (1968c) Comments on the cerebellum and its division. Brain Res 8:229–236

    CAS  PubMed  Google Scholar 

  • Korneliussen HK, Jansen J (1965) On the early development and homology of the central cerebellar nuclei in cetacea. J Hirnforsch 8:47–66

    Google Scholar 

  • Körte G (1979) The brainstem projection of the vestibular nerve in the cat. J Comp Neurol 184:279–292

    PubMed  Google Scholar 

  • Krasnoshchekova EI, Figurina II (1980) The cortical projection of the medial geniculate body of the dolphin brain. Arkh Anat Gistol Embriol 78:19–24

    CAS  PubMed  Google Scholar 

  • Kraus G, Pilleri G (1969) Quantitative Untersuchungen über die Grosshirnrinde der Cetaceen. Inv Cetacea 1:127–150

    Google Scholar 

  • Krettek JE, Price JL (1974a) A direct input from the amygdala to the thalamus and the cerebral cortex. Brain Res 67:169–174

    CAS  PubMed  Google Scholar 

  • Krettek JE, Price JL (1974b) Projections from the amygdala to the perirhinal and entorhinal cortices and the subiculum. Brain Res 71:150–154

    CAS  PubMed  Google Scholar 

  • Krettek JE, Price JL (1977a) The cortical projections of the mediodorsal nucleus and adjacent thalamic nuclei in the rat. J Comp Neurol 171:157–192

    CAS  PubMed  Google Scholar 

  • Krettek JE, Price JL (1977b) Projections from the amygdaloid complex to the cerebral cortex and thalamus in the rat and cat. J Comp Neurol 172:687–722

    CAS  PubMed  Google Scholar 

  • Krettek JE, Price JL (1977c) Projections from the amygdaloid complex and adjacent olfactory structures to the entorhinal cortex and to the subiculum in the rat and cat. J Comp Neurol 172:723–752

    CAS  PubMed  Google Scholar 

  • Krettek JE, Price JL (1978a) Amygdaloid projections to sub-cortical structures within the basal forebrain and brain-stem in the rat and cat. J Comp Neurol 178:225–253

    CAS  PubMed  Google Scholar 

  • Krettek JE, Price JL (1978b) A description of the amygdaloid complex in the rat and cat with observations on intra-amygdaloid axonal connections. J Comp Neurol 178:255–280

    CAS  PubMed  Google Scholar 

  • Krieg WJS (1932) The hypothalamus of the albino rat. J Comp Neurol 55:19–89

    Google Scholar 

  • Krieger MS, Conrad LCA, Pfaff DW (1979) An autoradio-graphic study of the efferent connections of the ventromedial nucleus of the hypothalamus. J Comp Neurol 183:785–816

    CAS  PubMed  Google Scholar 

  • Kriegstein AR (1987) Synaptic responses of cortical pyramidal neurons to light stimulation in the isolated turtle visual system. J Neurosci 7:2488–2492

    CAS  PubMed  Google Scholar 

  • Kriegstein AR, Connors BW (1986) Cellular physiology of the turtle visual cortex: synaptic properties and intrinsic circuitry. J Neurosci 6:178–191

    CAS  PubMed  Google Scholar 

  • Kruger L (1959) The thalamus of the dolphin (Tursiops truncatus) and comparison with other mammals. J Comp Neurol 111:133–194

    Google Scholar 

  • Kruger L (1966) Specialized features of the Cetacean brain. In: Norris KS (ed) Whales, dolphins, and porpoises. University of California Press, Berkeley, pp 232–254

    Google Scholar 

  • Kruger L, Michel F (1962) A morphological and somatotopic analysis of single unit activity in the trigeminal sensory complex of the cat. Exp Neurol 5:139–156

    CAS  PubMed  Google Scholar 

  • Krukoff TL, Harris KH, Jhamandas JH (1993) Efferent projections from the parabrachial nucleus demonstrated with the anterograde tracer Phaseolus vulgaris leucoagglutinin. Brain Res Bull 30:163–172

    CAS  PubMed  Google Scholar 

  • Kruska D (1973) Cerebralisation, Hirnevolution und domestikationbedingte Hirngrössenänderungen innerhalb der Ordnung Perissodactyla Owen, 1848 und ein Vergleich mit der Ordnung Artiodactyla Owen, 1848. Z Zool Syst Evol Forsch 11:81–103

    Google Scholar 

  • Kruska D (1982) Hirngrösseänderungen bei Tylopoden während der Stammesgeschichte und in der Domestikation. Verh Dtsch Zool Ges 75:173–183

    Google Scholar 

  • Kubota Y, Kawaguchi Y (1993) Spatial distributions of chemically identified intrinsic neurons in relation to patch and matrix compartments of rat neostriatum. J Comp Neurol 332:499–513

    CAS  PubMed  Google Scholar 

  • Kubota Y, Inagaki S, Kito S (1986) Innervation of substance P neurons by catecholaminergic terminals in the neostriatum. Brain Res 375:163–167

    CAS  PubMed  Google Scholar 

  • Kudo M (1981) Projections of the nuclei of the lateral lemniscus in the cat: an autoradiographic study. Brain Res 221:57–69

    CAS  PubMed  Google Scholar 

  • Kudo M, Yamammoto M, Nakamura Y (1991) Suprachiasmatic nucleus and retinohypothalamic projections in moles. Brain Behav Evol 38:332–338

    CAS  PubMed  Google Scholar 

  • Kuhlenbeck H (1975) The central nervous system of vertebrates. Spinal cord and deuterencephalon, vol 4. Karger, Basel

    Google Scholar 

  • Kuhlenbeck H (1954) The human diencephalon. Karger, Basel

    Google Scholar 

  • Kuhlenbeck H (1977) The central nervous system of vertebrates, vol 5, part 1: derivatives of the prosencephalon: diencephalon and telencephalon. Karger, Basel

    Google Scholar 

  • Kume M, Uemura M, Matsuda K, Ryotaro M, Mizuno N (1978) Topographical representation of peripheral branches of the facial nerve within the facial nucleus: a HRP study in the cat. Neurosci Lett 8:5–8

    CAS  PubMed  Google Scholar 

  • Kunkel DD, Hendrickson AE, Wu JY, Schwartzkroin PA (1986) Glutamic acid decarboxylase (GAD) immunocyto-chemistry of developing rabbit hippocampus. J Neurosci 6:541–552

    CAS  PubMed  Google Scholar 

  • Kunkel DD, Lacaille J-C, Schwartzkroin PA (1988) Ultrastructure of stratum lacunosum-molecular interneurons of hippocampal CA1 region. Synapse 2:382–394

    CAS  PubMed  Google Scholar 

  • Künzle H (1975a) Autoradiographic tracing of the cerebellar projections from the lateral reticular nucleus in the cat. Exp Brain Res 22:255–266

    PubMed  Google Scholar 

  • Künzle H (1975b) Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia an autoradiographic study in the macace fascicularis. Brain Res 88:195–209

    PubMed  Google Scholar 

  • Künzle H (1978) An autoradiographic analysis of the efferent connections from premotor and adjacent prefrontal regions (areas 6 and 9) in Macaca fascicularis. Brain Behav Evol 15:185–234

    PubMed  Google Scholar 

  • Künzle H (1992) Meso-diencephalic regions projecting to spinal cord and dorsal column nuclear complex in the hedgehog-tenrec. Echinops telfairi. Anat Embryol (Berl) 185:57–68

    Google Scholar 

  • Künzle H (1993) Tectal and related target areas of spinal and dorsal column nuclear projections in hedgehog tenrecs. Somatosens Mot Res 10:339–353

    PubMed  Google Scholar 

  • Künzle H, Akert K (1977) Efferent connections of cortical, area 8 (frontal eye field) in Macaca fascicularis. A reinves-tigation using the autoradiographic technique. J Comp Neurol 173:147–164

    PubMed  Google Scholar 

  • Kurimoto Y, Kawaguchi S, Murata M (1995) Cerebellotectal projection in the rat: anterograde and retrograde WGA-HRP study of individual cerebellar nuclei. Neurosci Res 22:57–71

    CAS  PubMed  Google Scholar 

  • Kuroda M, Price JL (1991) Synaptic organization of projections from basal forebrain structures to the mediodorsal thalamic nucleus of the rat. J Comp Neurol 303:513–533

    CAS  PubMed  Google Scholar 

  • Kuypers HGJM (1958a) An anatomical analysis of cortico-bulbar connexions to the pons and lower brain stem in the cat. J Anatomya 92:198–218

    CAS  Google Scholar 

  • Kuypers HGJM (1958b) Some projections from the pericentral cortex to the pons and lower brain stem in monkey and chimpanzee. J Comp Neurol 110:221–255

    CAS  PubMed  Google Scholar 

  • Kuypers HGJM (1962) Corticospinal connections: postnatal development in the Rhesus monkey. Science 138:678–680

    CAS  PubMed  Google Scholar 

  • Kuypers HGJM (1964) The descending pathways to the spinal cord, their anatomy and function. Prog Brain Res 11:178–200

    CAS  PubMed  Google Scholar 

  • Kuypers HGJM (1973) The anatomical organization of the descending pathways and their contributions to motor control especially in primates. In: Desmedt JE (ed) New developments in electromyography and clinical neurophysiology, vol 3. Karger, Basel, pp 38–68

    Google Scholar 

  • Kuypers HGJM (1981) Anatomy of the descending pathways. In: Brookhart JM, Mountcastle VB, Brooks VB, Geiger SL (eds) Handbook of physiology, the nervous system, vol II: motor control, part I. American Physiological Society, Bethesda, pp 597–666

    Google Scholar 

  • Kuypers HGJM (1982) A new look at the organization of the motor system. Prog Brain Res 57:382–403

    Google Scholar 

  • Kuypers HGJM (1987) Pyramidal tract. In: Adelman G (ed) Encyclopedia of neuroscience, vol II. Birkhäuser, Boston, pp 1018–1020

    Google Scholar 

  • Kuypers HGJM, Brinkman J (1970) Precentral projections to different parts of the spinal intermediate zone in the rhesus monkey. Brain Res 24:29–48

    CAS  PubMed  Google Scholar 

  • Kuypers HGJM, Lawrence DG (1967) Cortical projections to the red nucleus and the brain stem in the rhesus monkey. Brain Res 4:151–188

    CAS  PubMed  Google Scholar 

  • Kuypers HGJM, Lawrence DG (1967) Cortical projections to the red nucleus and the brain stem in the rhesus monkey. Brain Res 4:151–188

    CAS  PubMed  Google Scholar 

  • Kuypers HGJM, Maisky V (1975) Retrograde axonal transport of horseradish peroxidase from spinal cord to brain stem cell groups in the cat. Neuroscience Lett 1:9–14

    CAS  Google Scholar 

  • Kuypers HGJM, Tuerk JD (1964) The distribution of the cortical fibres within the nuclei cuneatus and gracilis in the cat. J Anat (Lond) 98:143–162

    CAS  Google Scholar 

  • Kuypers HGJM, Fleming WR, Farinholt JW (1960) Descending projections to spinal motor and sensory cell groups in the monkey: cortex versus subcortex. Science 132:38–40

    CAS  PubMed  Google Scholar 

  • Kuypers HGJM, Hoffman AL, Beasley RM (1961) Distribution of cortical “feedback” fibers in the nuclei cuneatus and gracilis. Soc Biol Med 108:634–637

    CAS  Google Scholar 

  • Kuypers HGJM, Fleming WR, Farinholt JW (1962) Subcorticospinal projections in the Rhesus monkey. J Comp Neurol 118:107–137

    CAS  PubMed  Google Scholar 

  • Kyuhou S, Matzuzaki R (1991) Topographical organization of the tecto-olivo-cerebellar projection in the cat. Neuroscience 41:227–241

    CAS  PubMed  Google Scholar 

  • Löpez-Mascaraque L, de Carlos JA, Valverde F (1986) Structure of the olfactory bulb of the hedgehog (Erinaceus europaeus): description of cell types in the granular layer. J Comp Neurol 253:135–152

    PubMed  Google Scholar 

  • Löpez-Mascaraque L, de Carlos JA, Valverde F (1990) Structure of the olfactory bulb of the hedgehog (Erinaceus europaeus): a Golgi study of the intrinsic organization of the superficial layers. J Comp Neurol 301:243–261

    PubMed  Google Scholar 

  • Labandeira-Garcia JL, Gomez Segade LA, Suarez-Nunez J (1983) Localisation of motoneurons supplying the extraocular muscles of the rat using horseradish peroxidase and fluorescent double labeling. J Anat 137:247–261

    PubMed  Google Scholar 

  • Lacaille J-C, Schwartzkroin PA (1988a) Stratum lacunosummoleculare interneurons of hippocampal CA1 region. I. Intracellular response characteristics, synaptic responses, and morphology. J Neurosci 8:1400–1410

    CAS  PubMed  Google Scholar 

  • Lacaille J-C, Schwartzkroin PA (1988b) Stratum lacunosummoleculare interneurons of hippocampal CA1 region. II. Intrasomatic and intradendritic recordings of local circuit synaptic interactions. J Neurosci 8:1411–1424

    CAS  PubMed  Google Scholar 

  • Lacaille J-C, Williams S (1990) Membrane properties of interneurons in stratum oriens-alveus of the CA1 region of rat hippocampus in vitro. Neuroscience 36:349–359

    CAS  PubMed  Google Scholar 

  • Lacaille J-C, Mueller AL, Kunkel DD, Schwartzkroin PA (1987) Local circuit interactions between oriens/alveus interneurons and CA1 pyramidal cells in hippocampal slices: electrophysiology and morphology. J Neurosci 7:1979–1993

    CAS  PubMed  Google Scholar 

  • Lacaille J-C, Kunkel DD, Schwartzkroin PA (1989) Electrophysiological and morphological characterization of hippocampal interneurons. In: Chan-Palay V, Köhler C (eds) The hippocampus — new vistas. Liss, New York, pp 287–305 (Neurology and neurobiology, vol 52)

    Google Scholar 

  • Laemle LK (1981) A Golgi study of cellular morphology in the superficial layers of superior colliculus man, Saimiri, and Macaca. J Hirnforsch 22:253–263

    CAS  PubMed  Google Scholar 

  • Laemle LK (1983) A Golgi study of cell morphology in the deep layers of the human superior colliculus. J Hirnforsch 24:297–306

    CAS  PubMed  Google Scholar 

  • Lagares C, Caballero-Bleda M, Fernandez B, Puelles L (1994) Reciprocal connections between the rabbit suprageniculate pretectal nucleus and the superior colliculus: tracer study with horseradish peroxidase and fluorogold. Vis Neurosci 11:347–353

    CAS  PubMed  Google Scholar 

  • Laine J, Axelrad H (1994) The candelabrum cell: a new interneuron in the cerebellar cortex. J Comp Neurol 339:159–173

    CAS  PubMed  Google Scholar 

  • Lammers HJ (1972) The neural connections of the amygdaloid complex in mammals. In: Eleftheriou BE (ed) The neurobiology of the amygdala: proceedings of a symposium on the neurobiology of the amygdala, Bar Harbor, Maine, 6-17 June, 1971, pp 123–144

    Google Scholar 

  • Landry P, Labelle A, DeschLnes M (1980) Intracortical distribution of axonal collaterals of pyramidal tract cells in the cat motor cortex. Brain Res 191:327–336

    CAS  PubMed  Google Scholar 

  • Lane RH, Allman JM, Kaas JH (1971) Representation of the visual field in the superior colliculus of the grey squirrel (Sciurus Carolinensis) and the tree shrew (Tupaia glis). Brain Res 26:277–292

    CAS  PubMed  Google Scholar 

  • Lane RH, Allman JM, Kaas JH, Miezin FM (1973) The visuotopic organization of the superior colliculus of the owl monkey (Aotus Trivirgatus) and the bush baby (Galago Senegalensis). Brain Res 60:335–349

    CAS  PubMed  Google Scholar 

  • Lane RH, Kaas JH, Allman JM (1974) Visuotopic organization of the superior colliculus in normal and Siamese cats (1979). Brain Res 70:413–430

    CAS  PubMed  Google Scholar 

  • Lang EJ, Sugihara I, Llinas R (1996) GABAergic modulation of complex spike activity by the cerebellar nucleoolivary pathway in rat. J Neurophysiol 76:255–275

    CAS  PubMed  Google Scholar 

  • Lang W, Buttner-Ennever JA, Buttner U (1974) Vestibular projections to the monkey thalamus: an autoradiographic study. Brain Res 177:3–17

    Google Scholar 

  • Langer T, Fuchs AF, Scudder CA, Chubb MC (1985) Afférents to the flocculus of the cerebellum in the rhesus macaque as revealed by retrograde transport of horseradish peroxidase. J Comp Neurol 235:1–25

    CAS  PubMed  Google Scholar 

  • Langer T, Kaneko CRS, Scudder CA, Fuchs AF (1986) Afférents to the abducens nucleus in the monkey and cat. J Comp Neurol 245:379–400

    CAS  PubMed  Google Scholar 

  • Langer TP (1985) Basal interstitial nucleus of the cerebellum: cerebellar nucleus related to the flocculus. J Comp Neurol 235:38–47

    CAS  PubMed  Google Scholar 

  • Langer TP, Lund RD (1974) The upper layers of the superior colliculus of the rat: a golgi study. J Comp Neurol 158:405–436

    Google Scholar 

  • Langworthy OR (1932) A description of the central nervous system of the porpoise (Tursiops truncatus). J Comp Neurol 54:437–486

    Google Scholar 

  • Langworthy OR (1967) A study of the brain of the porpoise, Tursiops truncatus. Brain 31(54):225–236

    Google Scholar 

  • Lankamp DJ (1967) Fiber composition of the pedunculus cerebri (Crus cerebri) in man. Thesis. Luctor and Emergo, Leiden

    Google Scholar 

  • Lapper SR, Bolam JP (1992) Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the rat. Neuroscience 51:533–545

    CAS  PubMed  Google Scholar 

  • Larsell O (1934) Morphogenesis and evolution of the cerebellum. Arch Neurol 31:373–395

    Google Scholar 

  • Larsell O (1952) The development of the cerebellum in man in relation to its comparative anatomy. J Comp Neurol 87:85–129

    Google Scholar 

  • Larsell O (1953) The morphogenesis and adult pattern of the lobules and tissues of the cerebellum of the white rat. J Comp Neurol 97:281–356

    Google Scholar 

  • Larsell O (1967) The comparative anatomy and histology of the cerebellum from myxinoids birds. In: Jansen J (ed) University of Minnesota Press, Minneapolis

    Google Scholar 

  • Larsell O (1970a) Cerebellum of cat and monkey. J Comp Neurol 99:135–200

    Google Scholar 

  • Larsell O (1970b) The comparative anatomy and histology of the cerebellum from momotremes through apes. University of Minnesota Press, Minneapolis

    Google Scholar 

  • Larsell O, Jansen J (1972) The comparative anatomy and histology of the cerebellum from monotremes through apes. The human cerebellum, cerebellar connections, and the cerebellar cortex. University of Minnesota Press, Minneapolis

    Google Scholar 

  • Larsen PJ, Hay-Schmidt A, Mikkelsen JD (1994) Efferent connections from the lateral hypothalamic region and the lateral preoptic area to the hypothalamic paraventricular nucleus of the rat. J Comp Neurol 342:299–319

    CAS  PubMed  Google Scholar 

  • Larson B, Miller S, Oscarsson O (1969a) A spinocerebellar climbing fibre path activated by the flexor reflex afferents from all four limbs. J Physiol (Lond) 203:641–649

    CAS  Google Scholar 

  • Larson B, Miller S, Oscarsson O (1969b) Termination and functional organization of the dorsolateral spinoolivocerebellar path. J Physiol (Lond) 203:611–640

    CAS  Google Scholar 

  • Lavoie B, Parent A (1990) Immunohistochemical study of the serotoninergic innervation of the basal ganglia in the squirrel monkey. J Comp Neurol 299:1–16

    CAS  PubMed  Google Scholar 

  • Lavoie B, Parent A (1994) The pedunculopontine nucleus in the squirrel monkey. Projections to the basal ganglia as revealed by anterograde tract-tracing methods. J Comp Neurol 344:210–231

    CAS  PubMed  Google Scholar 

  • Lawn AM (1966) The nucleus ambiguus of the rabbit. J Comp Neurol 127:307–320

    CAS  PubMed  Google Scholar 

  • Lawrence DG, Kuypers HGJM (1968a) The functional organization of the motor system in the monkey. I. The effects of bilateral pyramidal lesions. Brain 91:1–14

    CAS  PubMed  Google Scholar 

  • Lawrence DG, Kuypers HGJM (1968b) The functional organization of the motor system in the monkey. II. The effects of lesions of the descending brain-stem pathways. Brain 91:15–36

    CAS  PubMed  Google Scholar 

  • Lazarov NE, Chouchkov CN (1995) Serotonin-containing projections to the mesencephalic trigeminal nucleus of the cat. Anat Rec 241:136–142

    CAS  PubMed  Google Scholar 

  • Le Gros Clark WE (1929) Studies of the optic thalamus of the Insectivora: the anterior nuclei. Brain 52:334–358

    Google Scholar 

  • Le Gros Clark WE (1932) The structure and connections of the thalamus. Brain 55:406–470

    Google Scholar 

  • Le Gros Clark WE (1938) Morphological aspects of the hypothalamus. In: Le Gros Clark WE, Beattie J, Riddoch G, Dott NM (eds) The hypothalamus. Oliver and Boyd, Edinburgh, pp 1–68

    Google Scholar 

  • Le Gros Clark WE (1945) Deformation patterns in the cerebral cortex. In: Le Gros Clark WE, Medawar PB (eds) Essays on growth and form presented to D’Arcy Went-worth Thompson. Clarendon, Oxford

    Google Scholar 

  • Leah J, Menetrey D, De Pommery J (1988) Neuropeptides in long ascending spinal tract cells in the rat: evidence for parallel processing of ascending information. Neuroscience 24:195–207

    CAS  PubMed  Google Scholar 

  • Leake PA, Snyder RL (1989) Topographic organization of the central projections of the spiral ganglion in cats. J Comp Neurol 281:612–629

    CAS  PubMed  Google Scholar 

  • Leake PA, Snyder RL, Hradek GT (1993) Spatial organization of inner hair cell synapses and cochlear spiral ganglion neurons. J Comp Neurol 333:257–270

    CAS  PubMed  Google Scholar 

  • Leclerc N, Dore L, Parent A, Hawkes R (1990) The compart-mentalization of the monkey and rat cerebellar cortex: zebrin I and cytochrome oxidase. Brain Res 506:70–78

    CAS  PubMed  Google Scholar 

  • LeDoux JE (1987) Emotion. In: Plum F (ed) Handbook of physiology, vol 1: the nervous system, vol V, higher functions of the brain. American Physiological Society, Bethesda, pp 419–460

    Google Scholar 

  • LeDoux JE (1992) Emotion and the amygdala. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss, New York, pp 339–351

    Google Scholar 

  • LeDoux JE, Ruggiero DA, Reis DJ (1985) Projections to the sub cortical forebrain from anatomically defined regions of the medial geniculate body of the rat. J Comp Neurol 242:172–213

    Google Scholar 

  • LeDoux JE, Iwata J, Cicchetti P, Reis DJ (1988) Different projections of the central amygdaloid nucleus mediate autonomie and behavioral correlates of conditioned fear. J Neurosci 8:2517–2529

    Google Scholar 

  • LeDoux JE, Färb C, Ruggiero DA (1990a) Topographic organization of neurons in the acoustic thalamus that project to the amygdala. J Neurosci 10:1043–1054

    Google Scholar 

  • LeDoux JE, Cicchetti P, Xagoraris A, Romanski LM (1990b) The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning. J Neurosci 10:1062–1069

    Google Scholar 

  • Lee GY, Chen ST, Shen CL (1991) Autoradiographic study of the retinal projections in the Chinese pangolin, Manis pentadactyla. Brain Behav Evol 37(2):104–110

    CAS  PubMed  Google Scholar 

  • Lee HJ, Rye DB, Hallenger AE, Levey AI, Wainer BH (1988) Cholinergic vs non-cholinergic efferents from the mesopontine tegmentum to the extrapyramidal motor system nuclei. J Comp Neurol 275:469–492

    CAS  PubMed  Google Scholar 

  • Leenen L, Meek J, Nieuwenhuys R (1982) Unmyelinated fibers in the pyramidal tract of the rat: a new view. Brain Res 246:297–301

    CAS  PubMed  Google Scholar 

  • Legendre A, Courville J (1987) Origin and trajectory of the cerebello-olivary projection: an experimental study with radioactive and fluorescent tracers in the cat. Neuroscience 21:877–891

    CAS  PubMed  Google Scholar 

  • Lehman J, Nagy IJ, Atmadja S, Fibiger HC (1980) The nucleus basalis magnocellularis: the origin of a cholinergic projection to the neocortexto the rat. Neuroscience 5:1161–1174

    Google Scholar 

  • Lehman MN, Winans SS (1983) Evidence for a ventral nonstriatal pathway from the amygdala to the bed nucleus of the stria terminalis in the male golden hamster. Brain Res 268:139–146

    CAS  PubMed  Google Scholar 

  • Leichnetz GR (1982a) Connections between the frontal eye field and pretectum in the monkey: an anterograde/retrograde study using HRP gel and TMB neurohistochemistry. J Comp Neurol 207:394–402

    CAS  PubMed  Google Scholar 

  • Leichnetz GR (1982b) Comment on the center for vertical eye movements in the medial prerubral subthalamic region of the monkey considering some of its frontal cortical afferents. Neurosci Lett 30:95–101

    CAS  PubMed  Google Scholar 

  • Leichnetz GR, Astruc J (1977) The course of some prefrontal corticofugals to the pallidum, substantia innominata, and amygdaloid complex in monkeys. Exp Neurol 54:104–109

    CAS  PubMed  Google Scholar 

  • Leichnetz GR, Spencer RF, Smith DJ (1984) Cortical projections to nuclei adjacent to the oculomotor complex in the medial diencephalic tegmentum in the monkey. J Comp Neurol 228:359–387

    CAS  PubMed  Google Scholar 

  • LeMay M, Geschwind N (1975) Hemispheric differences in the brain of the great apes. Brain Behav Evol 11:48–52

    CAS  PubMed  Google Scholar 

  • Lende RA (1963a) Sensory representation in the cerebral cortex of the opossum (Didelphis virginiana). J Comp Neurol 121:395–403

    CAS  PubMed  Google Scholar 

  • Lende RA (1963b) Motor representation in the cerebral cortex of the opossum (Didelphis virginiana). J Comp Neurol 121:405–415

    CAS  PubMed  Google Scholar 

  • Lende RA (1964) Representation in the cerebral cortex of a primitive mammal. Sensorimotor, visual and auditory fields in the echidna (Tachyglossus aculeatus). J Neurophysiol 27:37–48

    CAS  PubMed  Google Scholar 

  • Lent R (1982) The organization of subcortical projections of the hamster’s visual cortex. J Comp Neurol 206:227–242

    CAS  PubMed  Google Scholar 

  • Leonard CM, Scott JW (1971) Origin and distribution of the amygdalofugal pathways in the rat: an experimental neuroanatomical study. J Comp Neurol 141:313–329

    CAS  PubMed  Google Scholar 

  • Leonard CM, Rolls ET, Wilson FA, Baylis GC (1985) Neurons in the amygdala of the monkey with responses selective for faces. Behav Brain Res 15:159–176

    CAS  PubMed  Google Scholar 

  • Leser O (1925) On the development of the extra-ocular muscles in some mammals. Br J Ophthalmol 9:154–161

    CAS  PubMed  Google Scholar 

  • LeVay S (1973) Synaptic patterns in the visual cortex of the cat and monkey: Electron microscopy of Golgi preparations. J Comp Neurol 150:53–86

    CAS  PubMed  Google Scholar 

  • LeVay S, Sherk H (1981) The visual claustrum of the cat. I. Structure and connections. J Neurosci 1:956–980

    CAS  PubMed  Google Scholar 

  • LeVay S, Hubel DH, Wiesel TN (1975) The pattern of ocular dominance columns in macaque visual cortex revealed by a reduced silver stain. J Comp Neurol 159:559–576

    CAS  PubMed  Google Scholar 

  • Levitt P, Rakic P, Goldman-Rakic P (1984) Region-specific distribution of catecholamine afferents in primate cerebral cortex: a fluorescence histochemical analysis. J Comp Neurol 227:23–36

    CAS  PubMed  Google Scholar 

  • Li YQ, Takada M, Ohishi H, Shinonaga Y, Mizuno N (1992) Trigeminal ganglion neurons which project by way of axon collaterals to both the caudal spinal trigeminal and the principal sensory trigeminal nuclei. Brain Res 594:155–159

    CAS  PubMed  Google Scholar 

  • Lidov HGW, Grzanna R, Molliver ME (1980) The serotonin innervation of the cerebral cortex in the rat — an immunohistochemical analysis. Neuroscience 5:207–227

    CAS  PubMed  Google Scholar 

  • Lietaert Peerbolte M (1932) De loop van de achterwortelvezels, die in de achterstrengen van het ruggemerg opstijgen. Thesis University of Leiden, The Netherlands

    Google Scholar 

  • Light AR, Perl ER (1979a) Reexamination of the dorsal tract projection to the spinal dorsal horn including observations on the differential termination of coarse and fine fibers. J Comp Neurol 186:117–132

    CAS  PubMed  Google Scholar 

  • Light AR, Perl ER (1979b) Spinal termination of functionally identified primary afferent neurons with slowly conducting myelinated fibers. J Comp Neurol 186:133–150

    CAS  PubMed  Google Scholar 

  • Linauts M, Martin GF (1978) An autoradiographic study of midbrain-diencephalic projections to the inferior olivary nucleus in the opossum (Didelphis virginiana). J Comp Neurol 179:325–354

    CAS  PubMed  Google Scholar 

  • Linden R, Perry VH (1983a) Massive retinotectal projection in rats. Brain Res 272:145–149

    CAS  PubMed  Google Scholar 

  • Linden R, Perry VH (1983b) Retrograde and anterogradetransneuronal degeneration in the parabigeminal nucleus following tectal lesions in developing rats. J Comp Neurol 218:270–281

    CAS  PubMed  Google Scholar 

  • Linden R, Rocha-Miranda CE (1978) Projections from the striate cortex to the superior colliculus in the opossum (Didelphis marsupialis aurita). In: Rocha-Miranda CE, Lent R (eds) Opossum neurobiology (neurobiologia do Gamba). Academia Brasileira de Ciencias, Rio de Janeiro, pp 137–150

    Google Scholar 

  • Lindström S (1982) Synaptic organization of inhibitory pathways in the cat’s lateral geniculate nucleus. Brain Res 164:304–308

    Google Scholar 

  • Lindvall O, Björklund A (1983) Dopamine-and norepinephrine-containing neuron systems: their anatomy in the rat brain. In: Emson PC (ed) Clinical neuroanatomy. Raven, New York, pp 229–255

    Google Scholar 

  • Lingenhohl K, Friauf E (1991) Sensory neurons and motoneurons of the jaw-closing reflex pathway in rats: a combined morphological and physiological study using the intracellular horseradish peroxidase technique. Exp Brain Res 83:385–396

    CAS  PubMed  Google Scholar 

  • Lissauer H (1886) Beitrag zum Faserverlauf im Hinterhorn des menschlichen Rückenmarks und zum Verhalten desselben bei Tabes doralis. Arch Psych 17:377–438

    Google Scholar 

  • Livingstone MS, Hubel DH (1984) Anatomy and physiology of a color system in the primate visual cortex. J Neurosci 4:309–356

    CAS  PubMed  Google Scholar 

  • Ljungdahl A, Hökfelt T (1973) Autoradiographic uptake patterns of [3H]GABA and [3H]glycine in central nervous tissues with special. Brain Res 62:587–595

    CAS  PubMed  Google Scholar 

  • Llamas A, Avendano C, Reinoso-Suárez F (1977) Amygdaloid projections to prefrontal and motor cortex. Science 195:794–797

    CAS  PubMed  Google Scholar 

  • Llinás R, Baker R, Sotelo C (1974) Electrotonic coupling between neurons in the cat inferior olive. J Neurophysiol 37:560–571

    PubMed  Google Scholar 

  • Lo FS, Sherman SM (1994) Feedback inhibition in the cat’s lateral geniculate nucleus. Exp Brain Res 100(2):365–368

    CAS  PubMed  Google Scholar 

  • Loewy AD (1991) Forebrain nuclei involved in autonomic control. Prog Brain Res 87:253–268

    CAS  PubMed  Google Scholar 

  • Loewy AD, Burton H (1978) Nuclei of the solitary tract: efferent projections to the lower brain stem and spinal cord of the cat. J Comp Neurol 181:421–450

    CAS  PubMed  Google Scholar 

  • Loewy AD, Saper CB (1978) Edinger-Westphal nucleus: projections to the brain stem and spinal cord in the cat. Brain Res 150:1–27

    CAS  PubMed  Google Scholar 

  • Loewy AD, Saper CB, Yamodis ND (1978) Re-evaluation of the efferent projections of the Edinger-Westphal nucleus in the cat. Brain Res 141:151–159

    Google Scholar 

  • Lohman AHM (1963) The anterior olfactory lobe of the guinea pig. A descriptive and experimental study. Acta Anat 53[Suppl 49]:1–109

    Google Scholar 

  • Lohman AHM, Lammers HJ (1967) On the structure and fibre connections of the olfactory centres in mammals. Prog Brain Res 23:65–82

    CAS  PubMed  Google Scholar 

  • Lohman AHM, Mentink GM (1972) Some cortical connections of the tegu lizard (Tupinambis teguixin). Brain Res 45:325–344

    CAS  PubMed  Google Scholar 

  • Lohman AHM, Hoogland PV, Witjes RJGM (1988) Projections from the main and accessory olfactory bulbs to the amygdaloid complex in the lizard gekko gecko. In: Schwerdtfeger, WK, Smeets, WJAJ (eds) The forebrain of reptiles. Karger, Basel, pp 41–49

    Google Scholar 

  • Lohman AHM, van Woerden-Verkley I (1976) The reptilian cortex and some of its connections in the tegu lizard. In: Creutzfeldt OD (ed) Afferent and intrinsic organization of laminated structures in the brain. Exp Brain Res [Suppl] 1:166-170

    Google Scholar 

  • Loo YT (1930) The forebrain of the opossum, Didelphis virginiana; Part I. Gross anatomy. J Comp Neurol 51:1–64

    Google Scholar 

  • Loo YT (1931) The forebrain of the opossum, didelphis virginiana. J Comp Neurol 52:1–48

    Google Scholar 

  • Loopuijt LD, van der Kooy D (1985) Organization of the striatum: collateralization of its efferent axons. Brain Res 348:86–99

    CAS  PubMed  Google Scholar 

  • Löpez-Garcia C, Martinez-Guijarro FJ (1988a) Neurons in the medial cortex give rise to Timm-positive boutons in the cerebral cortex of lizards. Brain Res 463:205–217

    PubMed  Google Scholar 

  • Löpez-Garcia C, Martinez-Guijarro FJ, Berbel P, Garcia-Verdugo JM (1988b) Long-spined polymorphic neurons of the medial cortex of lizards: a Golgi, Timm, and electron-microscopic study. J Comp Neurol 272:409–423

    PubMed  Google Scholar 

  • Löpez-Mascaraque L, de Carlos JA, Valverde F (1986) Structure of the olfactory bulb of the hedgehog (Erinaceus europaeus): description of cell types in the granular layer. J Comp Neurol 253:135–152

    PubMed  Google Scholar 

  • Löpez-Mascaraque L, de Carlos JA, Valverde F (1990) Structure of the olfactory bulb of the hedgehog (Erinaceus europaeus): a Golgi study of the intrinsic organization of the superficial layers. J Comp Neurol 301:243–261

    PubMed  Google Scholar 

  • Lorente de Nö R (1922) La corteza cerebral del ratön. Trabajos Cajal Madrid 20:41–80 (con 26 grabados)

    Google Scholar 

  • Lorente de Nö R (1933) Vestibulo-ocular reflex arc. Arch Neurol Psychiat 30:245–291

    Google Scholar 

  • Lorente de Nö R (1934a) Studies on the structure of the cerebral cortex. I. The area entorhinalis. J Psychol Neurol 45:381–439

    Google Scholar 

  • Lorente de Nö R (1934b) Studies on the structure of the cerebral cortex. II. Continuation of the study of the ammonic system. J Phys Neurol 46:113–177

    Google Scholar 

  • Lorente de Nö R (1938) The cerebral cortex: architecture, intracortical connections and motor projections. In: Fulton JF (ed) Physiology of the nervous system. Oxford University Press, London, pp 291–325

    Google Scholar 

  • Loughlin SE, Foote SL, Bloom FE (1986) Efferent projections of nucleus locus coeruleus: topographic organization of cells of origin demonstrated by three-dimensional reconstruction. Neuroscience 18:291–306

    CAS  PubMed  Google Scholar 

  • Lu GW (1989) Spinocervical tract-dorsal column postsynaptic neurons: a double-projection neuronal system. Somatosens Mot Res 6:445–454

    CAS  PubMed  Google Scholar 

  • Lu GW, Yang CT (1989) The morphology of cat spinal neurons projecting to both the lateral cervical nucleus and the dorsal column nuclei. Neurosci Lett 101:29–34

    CAS  PubMed  Google Scholar 

  • Lu GW, Jiao SS, Zhang GF (1988) Morphological evidence for newly discovered double projection spinal neurons. Neurosci Lett 93:181–185

    CAS  PubMed  Google Scholar 

  • Lu Y, Dy Y-J, Qin B-Z, Li J-S (1993) The subdivisions of the intermediolateral nucleus in the sacral spinal cord of the cat. Brain Res 632:351–355

    CAS  PubMed  Google Scholar 

  • Lui F, Giolli RA, Blanks RH, Tom EM (1994) Pattern of striate cortical projections to the pretectal complex in the guinea pig. J Comp Neurol 344:598–609

    CAS  PubMed  Google Scholar 

  • Luiten PGM, Ter Horst GJ, Karst H, Steffens AB (1985) The course of paraventricular hypothalamic efferents to autonomie structures in medulla and spinal cord. Brain Res 329:374–378

    CAS  PubMed  Google Scholar 

  • Luiten PGM, ter Horst GJ, Steffens AB (1987) The hypothalamus, intrinsic connections and outflow pathways to the enndocrine system in relation to the control of feeding and metabolism. Prog Neurobiol 28:1–54

    CAS  PubMed  Google Scholar 

  • Lund JS (1973) Organization of neurons in the visual cortex, area 17, of the monkey (Macaca mulatta). J Comp Neurol 147:455–469

    CAS  PubMed  Google Scholar 

  • Lund JS (1984) Spiny stellate neurons. In: Peters A, Jones EG (eds) Cellular components of the cerebral cortex. Plenum, New York, pp 255–308 (Cerebral cortex, vol 1)

    Google Scholar 

  • Lund JS (1987) Local circuit neurons of macaque monkey striate cortex: I. Neurons of laminae 4C and 5A. J Comp Neurol 257:60–92

    CAS  PubMed  Google Scholar 

  • Lund JS (1988a) Anatomical organization of macaque monkey striate visual cortex. Annu Rev Neurosci 11:253–288

    CAS  PubMed  Google Scholar 

  • Lund JS (1988b) Local circuit neurons of macaque monkey striate cortex: II. Neurons of laminae 5B and 6. J Comp Neurol 276:1–29

    CAS  PubMed  Google Scholar 

  • Lund JS, Boothe RG (1975) Interlaminar connections and pyramidal neuron organisation in the visual cortex, area 17, of the macaque monkey. J Comp Neurol 159:305–334

    Google Scholar 

  • Lund JS, Lewis DA (1993) Local circuit neurons of developing and mature prefrontal cortex: Golgi and immunocyto-chemical characteristics. J Comp Neurol 328:282–312

    CAS  PubMed  Google Scholar 

  • Lund JS, Lund RD (1970) The termination of callosal fibers in the paravisual cortex of the rat. Brain Res 17:25–45

    CAS  PubMed  Google Scholar 

  • Lund JS, Yoshioka T (1991) Local circuit neurons of macaque monkey striate cortex: III. Neurons of laminae 4B, 4A, and 3B. J Comp Neurol 311:234–258

    CAS  PubMed  Google Scholar 

  • Lund JS, Henry GH, MacQueen CL, Harvey AR (1979) Anatomical organization of the primary visual cortex (Area 17) of the cat. A comparison with Area 17 of the macaque monkey. J Comp Neurol 184:599–618

    CAS  PubMed  Google Scholar 

  • Lund JS, Hendrickson AE, Ogren MP, Tobin EA (1981) Anatomical organization of primate visual cortex area VII. J Comp Neurol 202:19–45

    CAS  PubMed  Google Scholar 

  • Lund JS, Fitzpatrick D, Humphrey AL (1985) The striate visual cortex of the tree shrew. In: Peters A, Jones EG (eds) Visual cortex. Plenum, New York, pp 157–205 (Cerebral cortex, vol 3)

    Google Scholar 

  • Lund JS, Hawken MJ, Parker AJ (1988) Local circuit neurons of macaque monkey striate cortex: II. Neurons of laminae 5B and 6. J Comp Neurol 27:1–29

    Google Scholar 

  • Lund RD (1964) Terminal distribution in the superior colliculus of fibers originating in the visual cortex. Nature 204:1283–1285

    CAS  PubMed  Google Scholar 

  • Lund RD, Lund JS (1965) The visual system of the mole, talpa europaea. Exp Neurol 13:302–316

    CAS  PubMed  Google Scholar 

  • Lund RD, Lund JS (1976) Plasticity in the developing visual system: the effects of retinal lesions made in young rats. J Comp Neurol 169:133–154

    CAS  PubMed  Google Scholar 

  • Lund RD, Webster KE (1967) Thalamic afferents from the spinal cord and trigeminal nuclei. An experimental anatomical study in the rat. J Comp Neurol 130:313–328

    CAS  PubMed  Google Scholar 

  • Lund RD, Land PW, Boles J (1980) Normal and abnormal uncrossed retinotectal pathways in rats: an HRP study in adults. J Comp Neurol 189:711–720

    CAS  PubMed  Google Scholar 

  • Lundberg (1971) Function of the ventral spinocerebellar tract. A new hypothesis. Exp Brain Res 12:317–330

    CAS  PubMed  Google Scholar 

  • Luskin MB, Price JL (1983a) The topographic organization of associational fibers of the olfactory system in the rat including centrifugal fibers to the olfactory bulb. J Comp Neurol 216:264–291

    CAS  PubMed  Google Scholar 

  • Luskin MB, Price JL (1983b) The laminar distribution of intracortical fibers originating in the olfactory cortex of the rat. J Comp Neurol 216:292–302

    CAS  PubMed  Google Scholar 

  • Lynd-Balta E, Haber SN (1994) Primate striatonigral projections: a comparison of the sensorimotor-related striatum and the ventral striatum. J Comp Neurol 345:562–578

    CAS  PubMed  Google Scholar 

  • Lyon MJ (1978) The central location of the motor neurons to the stapedius muscle in the cat. Brain Res 143:437–444

    CAS  PubMed  Google Scholar 

  • Ma TP, Graybiel AM, Wurtz RH (1991) Location of saccaderelatedneurons in the macaque superior colliculus. Exp Brain Res 85:21–35

    CAS  PubMed  Google Scholar 

  • Ma W, Peschanski M, Besson JM (1986) The overlap of spinothalamic and dorsal column nuclei projections in the ventrobasal complex of the rat thalamus: a double anterograde labeling study using light microscopy analysis. J Comp Neurol 245:531–540

    CAS  PubMed  Google Scholar 

  • Mabuchi M, Kusama T (1966) The cortico-rubral projection in the cat. Brain Res 2:254–273

    CAS  PubMed  Google Scholar 

  • Macchi G, Bentivoglio M (1982) The organization of the efferent projections of the thalamic intralaminar nuclei: past, present and future of the anatomical approach. Ital J Neurol Sci 2:83–96

    Google Scholar 

  • Macchi G, Bentivoglio M, Rossini P, Tempesta E (1978) The basolateral amygdaloid projections in the cat. Neurosci Lett 9:347–351

    CAS  PubMed  Google Scholar 

  • Mackay-Sim A, Sefton AJ, Martin PR (1983) Subcortical projections to lateral geniculate and thalamic reticular nuclei in the hooded rat. J Comp Neurol 213:24–35

    CAS  PubMed  Google Scholar 

  • MacLean P (1952) Some psychiatric implications of physiological studies on frontotemporal portions of limbic system (visceral brain). Electroenceph Clin Neurophysiol 4:407–418

    CAS  PubMed  Google Scholar 

  • MacLean PD (1970) The triune brain, emotion, and scientific bias. In: Schnitt FO (ed) The neurosciences, 2nd study program. Rockefeller University Press, New York, pp 336–349

    Google Scholar 

  • MacLean PD (1972) Cerebral evolution and emotional processes: new findings on the striatal complex. Ann NY Acad Sci 193:137–155

    CAS  PubMed  Google Scholar 

  • MacLean PD (1990) The triune brain in evolution: role in paleocerebral function. Plenum, New York

    Google Scholar 

  • MacLean PD (1992) The limbic system concept. In: Trimble MR, Bolwig TG (eds) The temporal lobes and the limbic system. Wrightson, Petersfield, pp 1–14

    Google Scholar 

  • Macrides F, Davis BJ (1983) The olfactory bulb. In: Emson PC (ed) Chemical neuroanatomy. Raven, New York, pp 391–426

    Google Scholar 

  • MacVicar BA, Dudek FE (1980) Local synaptic circuits in rat hippocampus: interactions between pyramidal cells. Brain Res 184:220–223

    CAS  PubMed  Google Scholar 

  • Maekawa H, Ohtsuka K (1993) Afferent and efferent connections of the cortical accommodation area in the cat. Neurosci Res 17:315–323

    CAS  PubMed  Google Scholar 

  • Maekawa K, Takeda T (1977) Afferent pathways from the visual system to the cerebellar flocculus in the rabbit. In: Baker R, Berthoz A (eds) Control by gaze of brain stem neurons. Elsevier, Amsterdam, pp 187–195

    Google Scholar 

  • Maekawa K, Takeda T (1979) Origin of descending afferents to the rostral part of the dorsal cap of inferior olive which transfers contralateral optic activities to the flocculus. A horseradish peroxidase study. Brain Res 172:393–405

    CAS  PubMed  Google Scholar 

  • Magnin M, Fuchs AF (1977) Discharge properties of neurons in the monkey thalamus tested with angular acceleration, eye movement and visual stimuli. Exp Brain Res 28:293–299

    CAS  PubMed  Google Scholar 

  • Maioli MG, Domeniconi R, Squatrito S, Sanseverino R (1992) Projections from cortical visual areas of the superior temporal sulcus to the superior colliculus, in macaque monkeys. Arch Ital Biol 130:157–166

    CAS  PubMed  Google Scholar 

  • Majorossy K, Kiss A (1990) Types of neurons and synaptic relations in the lateral superior olive of the cat: normal structure and experimental observations. Acta Morphol Hung 38:207–215

    CAS  PubMed  Google Scholar 

  • Malmierca MS, Blackstad TW, Osen KK, Karaghlle T, Molowny RL (1993) The central nucleus of the inferior colliculus in rat: a Golgi and computer reconstruction study of neuronal and laminar structure. J Comp Neurol 333:1–27

    CAS  PubMed  Google Scholar 

  • Mangold-Wirz K (1966) Cerebralisation und Ontogenesemodus bei Eutherien. Acta Anat 63:449–508

    CAS  PubMed  Google Scholar 

  • Mannen H, Sasaki S-I, Ishizuka N (1982) Trajectory of primary vestibular fibers originating from the lateral, anterior, and posterior semicircular canals in the cat. Proc Jpn Acad 58 B:237–242

    Google Scholar 

  • Mantyh PW (1983a) The spinothalamic tract in the primate: a re-examination using WGA-HRP. Neuroscience 9:847–862

    CAS  PubMed  Google Scholar 

  • Mantyh PW (1983b) The terminations of the spinothalamic tract in the cat. Neurosci Lett 38:119–124

    CAS  PubMed  Google Scholar 

  • Mantyh PW (1983c) Connections of midbrain periaqueductal gray in the monkey. I. Ascending efferent projections. J Neurophysiol 49:567–581

    CAS  PubMed  Google Scholar 

  • Marani E (1986) Topographic histochemistry of the cerebellum. Prog Histol Cytochem 16:1–169

    CAS  Google Scholar 

  • Marani E, Voogd J (1977) An acetylcholinesterase band pattern in the molecular layer of the cat cerebellum. J Anat (Lond) 124:335–345

    CAS  Google Scholar 

  • Marinesco G (1904) Travaux originaux. Semaine Med 29:225–231

    Google Scholar 

  • Marin-Padilla M (1969) Origin of the pericellular baskets of the pyramidal cells of the human motor cortex: a Golgi study. Brain Res 14:633–646

    CAS  PubMed  Google Scholar 

  • Marin-Padilla M (1978) Dual origin of the mammalian neo-cortex and evolution of the cortical plate. Anat Embryol 152:109–126

    CAS  PubMed  Google Scholar 

  • Marin-Padilla M (1984) Neurons of layer I. A development analysis. In: Peters A, Jones EG (eds) Cellular components of the cerebral cortex. Plenum, New York, pp 447–478 (Cerebral cortex, vol 1)

    Google Scholar 

  • Marin-Padilla M (1992) Ontogenesis of the pyramidal cell of the mammalian neocortex and developmental cytoarchitectonics: A unifying theory. J Comp Neurol 321:223–240

    CAS  PubMed  Google Scholar 

  • Mark RF, James AC, Sheng XM (1993) Geometry of the representation of the visual field on the superior colliculus of the wallaby (Macropus eugenii). I. Normal projection. J Comp Neurol 330:303–314

    CAS  PubMed  Google Scholar 

  • Marlier L, Sandillon F, Poulat P, Rajaofetra N, Geffard M, Privat A (1991) Serotonergic innervation of the dorsal horn of rat spinal cord: light and electron microscopic immunocytochemical study. J Neurocytol 20:310–322

    CAS  PubMed  Google Scholar 

  • Marr D (1969) A theory of cerebellar cortex. J Physiol (Lond) 202:437–470

    CAS  Google Scholar 

  • Marin-Padilla M (1978) Dual origin of the mammalian neocortex and evolution of the cortical plate. Anat Embryol (Berl) 152:109–126

    CAS  Google Scholar 

  • Marin-Padilla M (1992) Ontogenesis of the pyramidal cell of the mammalian neocortex and developmental cytoarchitectonics: a unifying theory. J Comp Neurol 321:223–240

    CAS  PubMed  Google Scholar 

  • Marshall LG (1979) Evolution of metatherian and eutherian (mammalian) characters: a review based on cladistic methodology. Zool J Linn Soc 66:369–410

    Google Scholar 

  • Martin GF (1968) The pattern of neocortical projections to the mesencephalon of the opossum, didelphis virginiana. Brain Res 11:593–610

    PubMed  Google Scholar 

  • Martin GF (1969) Efferent tectal pathways of the opossum (Didelphis virginiana). J Comp Neurol 135:209–224

    CAS  PubMed  Google Scholar 

  • Martin GF, Cabana T (1985) Cortical projections to superficial laminae of the dorsal horn and to the ventral horn of the spinal cord in the North American opossum. Studies using the orthograde transport of WGA-HRP. Brain Res 337:188–192

    CAS  PubMed  Google Scholar 

  • Martin GF, Dom R (1970) Rubrobulbar projections of the opossum (Didelphis virginiana). J Comp Neurol 139:199–214

    CAS  PubMed  Google Scholar 

  • Martin GF, Fisher AM (1968) A further evaluation of the origin, the course and the termination of the opossum corticospinal tract. J Neurol Sci 7:177–187

    CAS  PubMed  Google Scholar 

  • Martin GF Jr, Hamel EG Jr (1967) The striatum of the opossum, Didelphis virginiana. Description and experimental studies. J Comp Neurol 131:491–516

    PubMed  Google Scholar 

  • Martin GF, West HJ (1967) Efferent neocortical projections to sensory nuclei in the brain stem of the opossum (Didelphys virginiana). J Neurol Sci 5:287–302

    PubMed  Google Scholar 

  • Martin GF, King JS, Dom R (1973) The projections of the deep cerebellar nuclei of the opossum, Didelphis marsupialis virginiana. J Hirnforsch 15:545–573

    Google Scholar 

  • Martin GF, Dom R, Katz S, King JS (1974) The organization of projection neurons in the opossum red nucleus (1975). Brain Res 278:17–34

    Google Scholar 

  • Martin GF, Megirian D, Roebuck A (1975) The corticospinal tract of the marsupial phalanger (Trichosurus vulpecula). J Comp Neurol:245-258

    Google Scholar 

  • Martin GF, Henkel CK, King JS (1976) Cerebello-olivary fibers: their origin, course and distribution in the North American Opossum. Exp Brain Res 24:219–236

    CAS  PubMed  Google Scholar 

  • Martin GF, Bresnahan JC, Henkel CK, Megirian D (1996) Corticobulbar fibres in the North American opossum (Didelphis marsupialis virginiana) with notes on the Tasmanian brush-tailed possum (Trichosurus vulpecula) and other marsupials. J Anat 120:439–484

    Google Scholar 

  • Martin GF, Humbertson AO, Laxson C, Panneton WM (1979) Evidence for direct bulbospinal projections to laminae IX, X and the intermediolateral cell column. Studies using axonal transport techniques in the North American opossum. Brain Res 170:165–171

    CAS  PubMed  Google Scholar 

  • Martin GF, Culbertson J, Laxson C, Linauts M, Panneton M, Tschismadia I (1980) Afferent connections of the inferior olivary nucleus with preliminary notes on their development: studies using the North American Opossum. In: Courville J, deMontigny C, Lamarre Y (eds) The inferior olivary nucleus: anatomy and physiology. Raven, New York, pp 35–72

    Google Scholar 

  • Martin GF, Cabana T, Humbertson AOJ (1981) Evidence for a lack of distinct rubrospinal somatotopy in the North American Opossum and for collateral innervation of the cervical and lumbar enlargements by single rubral neurons. J Comp Neurol 201:255–263

    CAS  PubMed  Google Scholar 

  • Martin GF, Cabana T, Ditirro FJ, Ho RH, Humbertson AOJ (1982a) Raphespinal projections in the North American Opossum: evidence for connectional heterogeneity. J Comp Neurol 208:67–84

    CAS  PubMed  Google Scholar 

  • Martin GF, Cabana T, Ditirro FJ, Ho RH, Humbertson AOJ (1982b) Reticular and raphe projections to the spinal cord of the North Américain opossum. Evidence for connectional heterogeneity. Prog Brain Res 57:109–129

    CAS  PubMed  Google Scholar 

  • Martin GF, Cabana T, Waltzer R (1983) Anatomical demonstration of the location and collateralization of rubral neurons which project to the spinal cord, lateral brainstem and inferior olive in the North American opossum. Brain Behav Evol 23:93–109

    CAS  PubMed  Google Scholar 

  • Martin GF, Holstege G, Mehler WR (1990) Reticular formation of the pons and medulla. In: Paxinos G (ed) The human nervous system. Academic, San Diego, pp 203–220

    Google Scholar 

  • Martin KAC (1984) Neuronal circuits in cat striate cortex. In: Jones, EG, Peters A (eds.) Functional properties of cortical cells. Plenum, New York, pp 241–284 (Cerebral cortex, vol 2)

    Google Scholar 

  • Martin LJ, Hadfleld MG, Dellovade TL, Price DL (1991) The striate mosaic in primates: patterns of neuropeptide immunoreactivity differentiate the ventral striatum from the dorsal striatum. Neuroscience 43:397–417

    CAS  PubMed  Google Scholar 

  • Martinez L, Lamas JA, Canedo A (1995) Pyramidal tract and corticospinal neurons with branching axons to the dorsal column nuclei of the cat. Neuroscience 68:195–206

    CAS  PubMed  Google Scholar 

  • Martinez-Guijarro FJ, Soriano E, del Rio JA, Lopez-Garcia C (1991) Parvalbumin-immunoreactive neurons in the cerebral cortex of the lizard Podarcis hispanica. Brain Res 547:339–343

    CAS  PubMed  Google Scholar 

  • Martinotti C (1890) Beitrag zum Studium der Hirnrinde und dem Centralursprung der Nerven. Int Monatsschr Anat Physiol 7:69–90

    Google Scholar 

  • Maslany S, Crockett DP, Egger MD (1991) Somatotopic organization of the dorsal column nuclei in the rat: transganglionic labelling with B-HRP and WGA-HRP. Brain Res 564:56–65

    CAS  PubMed  Google Scholar 

  • Mason R, Groos GA (1981) Cortico-recipient and tectorecipient visual zones in the rat’s lateral posterior (pulvinar) nucleus: An anatomical study. Neurosci Lett 25:107–112

    CAS  PubMed  Google Scholar 

  • Massopust LC, Hauge DH, Ferneding JC, Doubek WG, Taylor JJ (1985) Projection systems and terminal localization of dorsal column afferents: an autoradiographic and horseradish peroxidase study in the rat. J Comp Neurol 237:533–544

    CAS  PubMed  Google Scholar 

  • Mates SL, Lund JS (1983) Neuronal composition and development in lamina 4C of monkey striate cortex. J Comp Neurol 221:60–90

    CAS  PubMed  Google Scholar 

  • Matsuda K, Uemura M, Kume M, Matsushima R, Mizuno N (1978) Topographical representation of masticatory muscles in the motor trigeminal nucleus in the rabbit: a HRP study. Neurosci Lett 8:1–4

    CAS  PubMed  Google Scholar 

  • Matsushita M (1969) Some aspects of the interneuronal connections in cat’s spinal gray matter. J Comp Neurol 136:57–80

    CAS  PubMed  Google Scholar 

  • Matsushita M (1983) Anatomical organization of the spinocerebellar system, as studied by the HRP method. Acta Morphol Hung 31:73–86

    CAS  PubMed  Google Scholar 

  • Matsushita M, Gao XH (1995) Y. Spinovestibular projections in the rat, with particular reference to projections from the central cervical nucleus to the lateral vestibular nucleus. J Comp Neurol 361:334–344

    CAS  PubMed  Google Scholar 

  • Matsushita M, Hosoya Y (1978) The location of spinal projection neurons in the cerebellar nuclei (cerebellospinal tract neurons) of the cat. A study with the HRP technique. Brain Res 142:237–248

    CAS  PubMed  Google Scholar 

  • Matsushita M, Okado N (1981a) Spinocerebellar projections to lobules I and II of the anterior lobe of the cat, as studied by retrograde transport of horseradish peroxidase. J Comp Neurol 197:411–424

    CAS  PubMed  Google Scholar 

  • Matsushita M, Okada N (1981b) Cells of origin of brain stem afferents to lobule I and II of the cerebellar anterior lobe in the cat. Neuroscience 6:2392–2405

    Google Scholar 

  • Matsushita M, Tanami T (1983) Contralateral termination of primary afferent axons in the sacral and caudal segments of the cat, as studied by anterograde transport of horseradish peroxidase. J Comp Neurol 220:206–218

    CAS  PubMed  Google Scholar 

  • Matsushita M, Tanami T (1987) Spinocerebellar projections from the central cervical nucleus in the cat, as studied by antero-grade transport of wheat germ agglutininhorseradish peroxidase. J Comp Neurol 266:376–397

    CAS  PubMed  Google Scholar 

  • Matsushita M, Wang C-L (1987) Projection pattern of vestibulocerebellar fibers in the anterior vermis of the cat: an anterograde wheat germ agglutnin-horseradish peroxidase study. Neurosci Lett 74:25–30

    CAS  PubMed  Google Scholar 

  • Matsushita M, Ueyama T (1973) Ventral motor nucleus of the cervical enlargement om some mammals; its specific afferents from the lower cord levels and cytoarchitecture. J Comp Neurol 150:33–52

    CAS  PubMed  Google Scholar 

  • Matsushita M, Yaginuma H (1990) Afférents to the cerebellar nuclei from the cervical enlargement in the rat, as demonstrated with the Phaseolus vulgaris leucoagglutinin method. Neurosci Lett 113:253–259

    CAS  PubMed  Google Scholar 

  • Matsushita M, Yaginuma H (1995) Projections from the central cervical nucleus to the cerebellar nuclei in the rat, studied by anterograde axonal tracing. J Comp Neurol 353:234–246

    CAS  PubMed  Google Scholar 

  • Matsushita M, Hosoya Y, Ikeda M (1979a) Anatomical organization of the spinocerebellar system in the cat, as studied by retrograde transport of horseradish peroxidase. J Comp Neurol 184:81–106

    CAS  PubMed  Google Scholar 

  • Matsushita M, Ikeda M, Hosoya Y (1979b) The location of spinal neurons with long descending axons (long descending propriospinal tract neurons) in the cat: a study with the horseradish peroxidase technique. J Comp Neurol 184:63–80

    CAS  PubMed  Google Scholar 

  • Matsushita M, Ikeda M, Okado N (1982) The cells of origin of the trigeminothalamic, trigeminospinal and trigeminocerebellar projections in the cat. Neuroscience 7:1439–1454

    CAS  PubMed  Google Scholar 

  • Matthews DA, Salvaterra PM, Crawford GD, Houser CR, Vaughn JE (1987) An immunocytochemical study of choline acetyltransferase-containing neurons and axon terminals in normal and partially deafferented hippocampal formation. Brain Res 402:30–43

    CAS  PubMed  Google Scholar 

  • May PJ, Hall WC (1984) Relationships between the nigrotectal pathway and the cells of origin of the predorsal bundle. J Comp Neurol 226:357–376

    CAS  PubMed  Google Scholar 

  • May PJ, Hall WC (1986) The cerebellotectal pathway in the grey squirrel. Exp Brain Res 65:200–212

    CAS  PubMed  Google Scholar 

  • May PJ, Hartwich-Young R, Nelson J, Sparks DL, Porter JD (1990) Cerebellotectal pathways in the macaque: implications for collicular generation of saccades. Neuroscience 36:305–324

    CAS  PubMed  Google Scholar 

  • May PJ, Porter JD, Gamlin PDR (1992) Interconnections between the primate cerebellum and mid-brain nearresponse regions. J Comp Neurol 315:98–116

    CAS  PubMed  Google Scholar 

  • McBride RL, Larsen KD (1980) Projections of the feline globus pallidus. Brain Res 189:3–14

    CAS  PubMed  Google Scholar 

  • McBride RL, Sutin J (1977) Amygdaloid and pontine projections to the ventromedial nucleus of the hypothalamus. J Comp Neurol 174:377–396

    CAS  PubMed  Google Scholar 

  • McConnell J, Angevine JB (1983) Time of neuron origin in the amygdaloid complex of the mouse. Brain Res 272:150–156

    CAS  PubMed  Google Scholar 

  • McCotter RE (1913) The nervus terminalis in the adult dog and cat. J Comp neurol 23:145–155

    Google Scholar 

  • McCrea RA, Baker R (1985) Anatomical connections of the nucleus prepositus of the cat. J Comp Neurol 237:377–407

    CAS  PubMed  Google Scholar 

  • McCrea RA, Strassman A, Highstein SM (1986) Morphology and physiology of abducens motoneurons and internuclear neurons intracellularly injected with horseradish peroxidase in alert squirrel monkey. J Comp Neurol 243:291–308

    CAS  PubMed  Google Scholar 

  • McCrea RA, Strassman A, Highstein SM (1987) Anatomical and physiological characteristics of vestibular neurons mediating the vertical vestibulo-ocular reflexes of the squirrel monkey. J Comp Neurol 264:571–594

    CAS  PubMed  Google Scholar 

  • McDonald AJ (1982) Neurons of the lateral and basolateral amygdaloid nuclei: a Golgi study in the rat. J Comp Neurol 212:293–312

    CAS  PubMed  Google Scholar 

  • McDonald AJ (1983) Neurons of the bed nucleus of the stria terminalis: a Golgi study in the rat. Brain Res Bull 10:111–120

    CAS  PubMed  Google Scholar 

  • McDonald AJ (1987) Organization of amygdaloid projections to the mediodorsal thalamus and prefrontal cortex: a fluorescence retrograde transport study in the rat. J Comp Neurol 242:46–58

    Google Scholar 

  • McDonald AJ (1991a) Organization of amygdaloid projections to the prefrontal cortex and associated striatum in the rat. Neuroscience 44:1–14

    CAS  PubMed  Google Scholar 

  • McDonald AJ (1991b) Topographical organization of amygdaloid projections to the caudatoputamen, nucleus accumbens, and related striatal-like areas of the rat brain. Neuroscience 44:15–33

    CAS  PubMed  Google Scholar 

  • McDonald AJ, Culberson JL (1981) Neurons of the basolateral amygdala: a Golgi study in the opossum (Didelphis virgiania). Am J Anat 162:327–342

    CAS  PubMed  Google Scholar 

  • McDonald AJ, Culberson JL (1986) Efferent projections of the basolateral amygdala in the opossum, Didelphis virgiana. Brain Res Bull 17:335–350

    CAS  PubMed  Google Scholar 

  • McFarland WL, Morgane PJ, Jacobs MS (1969) Ventricular system of the brain of the dolphin, Tursiops truncatus, with comparative anatomical observations and relations to brain specializations. J Comp Neurol 135:275–368

    CAS  PubMed  Google Scholar 

  • McGeorge AJ, Faull RLM (1989) The organization of the projection from the cerebral cortex to the striatum in the rat. Neuroscience 29:503–537

    CAS  PubMed  Google Scholar 

  • McGuire BA, Hornung J-P, Gilbert CD, Wiesel TN (1984) Patterns of synaptic input to layer 4 of cat striate cortex. J Neurosci 4:3021–3033

    CAS  PubMed  Google Scholar 

  • McGuire BA, Gilbert CD, Rivlin PK, Wiesel TN (1991a) Targets of horizontal connections in macaque primary visual cortex. J Comp Neurol 305:370–392

    CAS  PubMed  Google Scholar 

  • McGuire PK, Bates JF, Goldman-Rakic PS (1991b) Interhemispheric integration: I. symmetry and convergence of the corticocortical connections of the left and the right principal sul-cus (PS) and the left and the right supplementary motor area (SMA) in the Rhesus monkey. Cerebral Cortex 1:390–407

    CAS  PubMed  Google Scholar 

  • McHaffie JG, Kruger L, Clemo HR, Stein BE (1988) Corticothalamic and corticotectal somatosensory projections from the anterior ectosylvian sulcus (SIV cortex) in neonatal cats: an anatomical demonstration with HRP and 3H-leucine. J Comp Neurol 274:115–126

    CAS  PubMed  Google Scholar 

  • McHaffie JG, Beninato M, Stein BE, Spencer RF (1991) Postnatal development of acetylcholinesterase in, and cholinergic projections to, the cat superior colliculus. J Comp Neurol 313:113–131

    CAS  PubMed  Google Scholar 

  • McKenna MC (1975) Towards a phylogenetic classification of the mammalia. In: Luckett WP, Szalay FS (eds) Phylogeny of the primates. A multidisciplinary approach. Plenum Press New York, pp 21–46

    Google Scholar 

  • Mechelse K (1957) The pedunculus cerebri of the cat. Psychiatr Neurol (Basel) 133:257–275

    CAS  Google Scholar 

  • Meesen H, Olszewski J (1949) A cytoarchitectonic atlas of the rhombencephalon of the rabbit. Karger, Basel

    Google Scholar 

  • Mehler WR (1962) The anatomy of the so-called ‘pain-tract’ in man: an analysis of the course and distribution of the ascending fibers of the fasciculus anterolateralis. In: French JD, Porter RW (eds) Basic research in paraplegia. Thomas, Springfield

    Google Scholar 

  • Mehler WR (1966a) Further notes on the centre médian, nucleus of Luys. In: Purpura DP, Yahr MO (eds) The thalamus. Columbia University Press, New York, pp 109–127

    Google Scholar 

  • Mehler WR (1966b) Some observations on secondary ascending afferent systems in the central nervous system. In: Knighton RS, Dumke PR (eds) Pain. Little Brown, Boston, pp 11–32

    Google Scholar 

  • Mehler WR (1966c) The posterior thalamic region in man. Confin Neurol 27:18–29

    CAS  PubMed  Google Scholar 

  • Mehler WR (1969) Some neurological species differences — a posteriori. Ann NY Acad Sci 167:424–468

    Google Scholar 

  • Mehler WR (1974) Central pain and the spinothalamic tract (1980). Adv Neurol 4:127–146

    Google Scholar 

  • Mehler WR (1980) Subcortical afferent connections of the amygdala in the monkey. J Comp Neurol 190:733–762

    CAS  PubMed  Google Scholar 

  • Mehler WR (1981) The basal ganglia-circa 1982: a review and commentary. Appl Neurophysiol 44:261–290

    CAS  PubMed  Google Scholar 

  • Mehler WR, Feferman ME, Nauta WJH (1960) Ascending axon degeneration following anterolateral cordotomy. An experimental study in the monkey. Brain 83:718–751

    CAS  PubMed  Google Scholar 

  • Meinecke DL, Peters A (1987) GAB A immunoreactive neurons in rat visual Cortex. J Comp Neurol 261:388–404

    CAS  PubMed  Google Scholar 

  • Menétrey D, De Pommery J (1985) Propriospinal fibers reaching the lumbar enlargement in the rat. Neurosci Lett 58:257–261

    PubMed  Google Scholar 

  • Menétrey D, Chaouch A, Besson JM (1980) Location and properties of dorsal horn neurons at origin of spinoreticular tract in the lumbar enlargement of the rat. J Neurophysiol 44:862–877

    PubMed  Google Scholar 

  • Merchan MA, Saldana E, Plaza I (1994) Dorsal nucleus of the lateral lemniscus in the rat: concentric organization and tonotopic projection to the inferior colliculus. J Comp Neurol 342:259–278

    CAS  PubMed  Google Scholar 

  • Meredith M (1987) Vomeronasal organ and nervus terminalis. In: Adelman G (ed) Encyclopedia of neuroscience. Birkhäuser, Boston, pp 1303–1305

    Google Scholar 

  • Mesulam M-M (1985) Patterns in behavioral neuroanatomy. In: Mesulam M-M (ed) Principles of behavioral neurology. Davis, Philadelphia, pp 1–70

    Google Scholar 

  • Mesulam MM, Geula C (1988) Nucleus basalis (Ch4) and cortical cholinergic innervation in the human brain: observations based on the distribution of acetylcholinesterase and choline acetyltransferase. J Comp Neurol 275:216–240

    CAS  PubMed  Google Scholar 

  • Mesulam MM, Mufson EJ (1984) Neural inputs into the nucleus basalis of the substantia innominata (Ch4) in the rhesus monkey. Brain 107:253–274

    PubMed  Google Scholar 

  • Mesulam MM, Van Hoesen GW (1976) Acetylcholinesteraserich projections from the basal forebrain of the rhesus monkey to neocortex. Brain Res 109:152–157

    CAS  PubMed  Google Scholar 

  • Mesulam MM, Mufson EJ, Wainer BH, Levey AI (1983a) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Chl-Ch6). Neuroscience 10:1185–1201

    CAS  PubMed  Google Scholar 

  • Mesulam MM, Mufson EJ, Levey AI, Wainer BH (1983b) Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol 214:170–197

    CAS  PubMed  Google Scholar 

  • Mesulam MM, Mufson EJ, Levey AI, Wainer BH (1984a) Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immunohistochemistry and acetylcholin-esterase histochemistry. Neuroscience 12:669–686

    CAS  PubMed  Google Scholar 

  • Mesulam MM, Rosen AD, Mufson EJ (1984b) Regional variations in cortical cholinergic innervation: chemoarchitectonics of acetylcholinesterase-containing fibers in the macaque brain. Brain Res 311:245–258

    CAS  PubMed  Google Scholar 

  • Mesulam MM, Mufson EJ, Wainer BH (1986) Threedimensional representation and cortical projection topography of the nucleus basalis (Ch4) in the macaque: concurrent demonstration of choline acetyltransferase and retrograde transport with a stabilized tetramethylbenzidine method for horseradish peroxidase. Brain Res 367:301–308

    CAS  PubMed  Google Scholar 

  • Metzner W (1996) Anatomical basis for audio-vocal integration in echolocating horseshoe bats. J Comp Neurol 368:252–269

    CAS  PubMed  Google Scholar 

  • Metzner W, Radtke-Schuller S (1987) The nuclei of the lateral lemniscus in the rufous horseshoe bat, Rhinolophus rouxi. A neurophysiological approach. J Comp Physiol 160:395–411

    CAS  Google Scholar 

  • Meyer RP (1981) Central connections of the olfactory bulb in the American opossum (Didelphis virgiana): a light microscopic degeneration study. Anat Rec 201:141–156

    CAS  PubMed  Google Scholar 

  • Müller-Preuss P, Jürgens U (1975) Projections from the “cingular” vocalization area in the squirrel monkey. Brain Res 103:29–43

    Google Scholar 

  • Miceli MO, Malsbury CW (1985) Brainstem origins and projections of the cervical and abdominal vagus in the golden hamster: a horseradish peroxidase study. J Comp Neurol 237:65–76

    CAS  PubMed  Google Scholar 

  • Middleton FA, Strick PL (1994) Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science 266:458–461

    CAS  PubMed  Google Scholar 

  • Mihailoff GA (1993) Cerebellar nuclear projections from the basilar pontine nuclei and nucleus reticularis tegmenti pontis as demonstrated with PHA-L tracing in the rat. J Comp Neurol 330:130–146

    CAS  PubMed  Google Scholar 

  • Mihailoff GA, Kosinski RJ, Azizi SA, Border BG (1989) Survey of noncortical afferent projections to the basilar pontine nuclei: a retrograde tracing study in the rat. J Comp Neurol 282:617–643

    CAS  PubMed  Google Scholar 

  • Mikkelsen JD, Vrang N (1994) A direct pretectosuprachiasmatic projection in the rat. Neuroscience 62:497–505

    CAS  PubMed  Google Scholar 

  • Miller RA, Strominger NL (1973) Efferent connections of the red nucleus in the brainstem and spinal cord of the rhesus monkey. J Comp Neurol 152:327–346

    CAS  PubMed  Google Scholar 

  • Mulhouse OE (1979) A Golgi anatomy of the rodent hypothalamus. In: Morgane PJ, Panksepp J (eds) Handbook of the hypothalamus, vol 1. Dekker, New York, pp 221–265

    Google Scholar 

  • Mulhouse OE, de Olmos J (1983) Neuronal configurations in lateral and basolateral amygdala. Neuroscience 10:1269–1300

    Google Scholar 

  • Mulhouse OE, Heimer L (1984) Cell configurations in the olfactory tubercle of the rat. J Comp Neurol 228:571–597

    Google Scholar 

  • Misgeld U, Frotscher M (1986) Postsynaptic-GABAergic inhibition of non-pyramidal neurons in the guinea-pig hippocampus. Neuroscience 19:193–206

    CAS  PubMed  Google Scholar 

  • Mishkin M (1978) Memory in monkeys severely impaired by combined but not separate removal of amygdala and hippocampus. Nature 273:297–298

    CAS  PubMed  Google Scholar 

  • Mishkin M (1982) A memory system in the monkey. Philos Trans R Soc Lond B Biol Sci 298:85–95

    Google Scholar 

  • Misson J-P, Austin CP, Takahashi T, Cepko CL, Caviness VS Jr (1991) The alignment of migrating neural cells in relation to the murine neopallial radial glial fiber system. Cerebral Cortex 1:221–229

    CAS  PubMed  Google Scholar 

  • Miyara M, Sasaki K (1984) Horseradish peroxidase studies on thalamic and striatal connections of the medial part of area 6 in the monkey. Neurosci Lett 49:127–133

    Google Scholar 

  • Miyashita E, Tamai Y (1989) Subcortical connections of frontal ‘oculomotor’ areas in the cat. Brain Res 502:75–87

    CAS  PubMed  Google Scholar 

  • Miyata H, Kawaguchi S, Kato N (1984) Postnatal development of the thalamocortical projection of the primary auditory cortex in the cat. J Physiol Soc Jpn 46:399

    Google Scholar 

  • Miyazaki S (1985a) Bilateral innervation of the superior oblique muscle by the trochlear nucleus. Brain Resa 348:52–56

    CAS  Google Scholar 

  • Miyazaki S (1985b) Location of motoneurons in the oculomotor nucleus and the course of their axons in the oculomotor nerve. Brain Resb 348:57–63

    CAS  Google Scholar 

  • Miyazaki T, Yoshida Y, Hirano M, Shin T, Kanaseki T (1981) Central location of the motoneurons supplying the thyrohyoid and the geniohyoid muscles as demonstrated by horseradish peroxidase method. Brain Res 219:423–427

    CAS  PubMed  Google Scholar 

  • Mizuno N, Matsuda K, Iwahori N, Uemura-Sumi M, Kume M, Matsushima R (1981) Representation of the masticatory muscles in the motor trigeminal nucleus of the macaque monkey. Neurosci Lett 21:19–22

    CAS  PubMed  Google Scholar 

  • Mizuno N, Nakano K, Imaizumi M, Okamoto M (1967) The lateral cervical nucleus of the Japanese monkey (Macaca fuscata). J Comp Neurol 129:375–384

    CAS  PubMed  Google Scholar 

  • Mizuno N, Mochizuki K, Aikimoto C, Matsushima R (1973) Pretectal projection of the inferior olive in the rabbit. Exp Neurol 39:498–506

    CAS  PubMed  Google Scholar 

  • Mizuno N, Nakamura Y, Iwahori N (1974) An electron microscope study of the dorsal cap of the inferior olive in the rabbit, with special reference to the pretecto-olivary fibers. Brain Res 77:385–395

    CAS  PubMed  Google Scholar 

  • Mizuno N, Mochizuki K, Akimoto C, Matsushima R, Sasaki K (1975) Projections from the parietal cortex to the brain stem nuclei in the cat, with special reference to the parietal cerebro-cerebellar system. J Comp Neurol 147:511–522

    Google Scholar 

  • Mizuno N, Matsuda K, Iwahori N, Uemurasumi M, Kume N, Matsushima R (1981) Representation of the masticatory muscles in the motor trigeminal nucleus of the macaque monkey. Neurosci Lett 21:19–22

    CAS  PubMed  Google Scholar 

  • Mizuno N, Takahashi O, Satoda T, Matsushima R (1985) Amygdaloid projections in the macaque monkey. Neurosci Lett 53:327–330

    CAS  PubMed  Google Scholar 

  • Mizuno N, Sumi MU, Tashiro T, Takahashi O, Satoda T (1991) Retinofugal projections in the house musk shrew, Sunctus murinus. Neurosci Lett 125:133–135

    CAS  PubMed  Google Scholar 

  • Mogenson GJ (1984) Limbic-motor integration — with emphasis on initiation of exploratory and goal-directed locomotion. In: Bandler R (ed) Modulation of sensorimotor activity during alterations in behavioral states. Liss, New York, pp 121–137

    Google Scholar 

  • Mogenson GJ, Nielsen MA (1983) Evidence that an accumbens to subpallidal GABA-ergic projection contributes to Locomotor activity. Brain Res Bull 11:309–314

    CAS  PubMed  Google Scholar 

  • Mogenson GJ, Jones DL, Yim CY (1980) From motivation to action: functional interface between the limbic system and the motor system. Prog Neurobiol 14:69–97

    CAS  PubMed  Google Scholar 

  • Mogenson GJ, Swanson LW, Wu M (1984) Evidence that projections from substantia innominata zona incerta mesencephalic locomotor region contribute to locomotor activity. Brain Res 334:65–76

    Google Scholar 

  • Molander C, Grant G (1985) Cutaneous projections from the rat hindlimb foot to the substantia gelatinosa of the spinal cord studied by transganglionic transport of WGA-HRP conjugate. J Comp Neurol 237:476–484

    CAS  PubMed  Google Scholar 

  • Molander C, Grant G (1995) Spinal cord cytoarchitecture. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic, San Diego, pp 39–45

    Google Scholar 

  • Molander C, Xu Q, Grant G (1984) The cytoarchitectonic organization of the spinal cord in the rat. I. The lower thoracic and lumbosacral cord. J Comp Neurol 230:133–141

    CAS  PubMed  Google Scholar 

  • Molander C, Xu Q, Rivero-Melian C, Grant G (1989) Cytoarchitectonic organization of the spinal cord in the rat: II. The cervical and upper thoracic cord. J Comp Neurol 289:375–385

    CAS  PubMed  Google Scholar 

  • Molenaar I, Kuypers HG (1978) Cells of origin of propriospinal fibers and of fibers ascending to supraspinal levels. A HRP study in cat and rhesus monkey. Brain Res 152:429–450

    CAS  PubMed  Google Scholar 

  • Molinari HH (1984) Ascending somatosensory projections to the dorsal accessory olive: an anatomical study in cats. J Comp Neurol 223:110–123

    CAS  PubMed  Google Scholar 

  • Molinari HH (1985) Ascending somatosensory projections to the medial accessory portion of the inferior olive: a retrograde study in cats. J Comp Neurol 232:523–534

    CAS  PubMed  Google Scholar 

  • Molinari M, Bentivoglio M, Minciacchi D, Granato A, Macchi G (1987) Spinal afferents and cortical efferents of the anterior intralaminar nuclei. An anterograde-retrograde tracing study. Neurosci Lett 72:258–264

    Google Scholar 

  • Molliver ME, Van der Loos H (1970) The ontogenesis of cortical circuitry: the spatial distribution of synapses in somesthetic cortex of newborn dog. Ergeb Anat Entw Gesch 42:1–53

    Google Scholar 

  • Mooney RD, Rhoades RW (1993) Determinants of axonal and dendritic structure in the superior colliculus. In: Hicks TP, Molotchnikoff S, Ono (eds) Progress in brain research, vol 95. Elsevier Science, Amsterdam, pp 57–67

    Google Scholar 

  • Moore JK (1980) The primate cochlear nuclei: loss of lamination as a phylogenetic process. J Comp Neurol 193:609–629

    CAS  PubMed  Google Scholar 

  • Moore JK (1987) The human auditory brain stem: a comparative view. Hearing Res 29:1–32

    CAS  Google Scholar 

  • Moore JK (1988) Auditory brainstem of the ferret: sources of projections to the inferior colliculus. J Comp Neurol 269:342–354

    CAS  PubMed  Google Scholar 

  • Moore JK, Moore RY (1971) A comparative study of the superior olivary complex in the primate brain. Folia Primatol 16:35–51

    CAS  PubMed  Google Scholar 

  • Moore RY (1978) Central neural control of circadian rhythm. Front Neuroendocrinol 5:185–206

    CAS  Google Scholar 

  • Moore RY, Bloom FE (1979) Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine systems. Annu Rev Neurosci 2:113–168

    CAS  PubMed  Google Scholar 

  • Moore RY, Card JP (1986) Visual pathways and the entrainment of circadian rhythms. Ann NY Acad Sci 453:123–133

    Google Scholar 

  • Moore RY, Goldberg JM (1963) Ascending projections of the inferior colliculus in the cat. J Comp Neurol 121:109–135

    Google Scholar 

  • Moore RY, Halaris AE, Jones BE (1980) Serotonin neurons of the midbrain raphe: ascending projections. J Comp Neurol 180:417–438

    Google Scholar 

  • Morest DK (1961) Connexions of the dorsal tegmental nucleus in rat and rabbit. J Anat 95:229–246

    CAS  PubMed  Google Scholar 

  • Morest DK (1965) The laminar structure of the medial geniculate body in the cat. J Anat 99:143–160

    CAS  PubMed  Google Scholar 

  • Morest DK (1967a) The collateral system of the medial nucleus of the trapezoid body of the cat, its neuronal architecture and relation to the olivo-cochlear bundle. Brain Res 9:288–311

    Google Scholar 

  • Morest DK (1967b) Experimental study of the projections of the nucleus of the tractus solitarius and the area postrema in the cat. J Comp Neurol 130:277–300

    CAS  PubMed  Google Scholar 

  • Morest DK, Oliver DL (1984) The neuronal architecture of the inferior colliculus in the cat: defining the functional anatomy of the auditory midbrain. J Comp Neurol 222:209–236

    CAS  PubMed  Google Scholar 

  • Morgan C, Nadelhaft I, De Groat WC (1981) The distribution of visceral primary afferents from the pelvic nerve to Lissauer’s tract and the spinal gray matter and its relationship to the sacral parasympathetic nucleus. J Comp Neurol 201:415–440

    CAS  PubMed  Google Scholar 

  • Morgane PJ, Glezer II, Jacobs MS (1990) Comparative and evolutionary anatomy of the visual cortex of the dolphin. In: Jones EG, Peters A (eds) Comparative structure and evolution of cerebral cortex, part II. Plenum, New York, pp 215–262 (Cerebral cortex, vol 8B)

    Google Scholar 

  • Morgane PJ, Jacobs MS (1972) Comparative anatomy of the cetacean nervous system. In: Harrison RJ (ed) Functional anatomy of marine mammals. Academic, New York, pp 117–244

    Google Scholar 

  • Morgane PJ, Jacobs MS, Mcfarland WL (1980) The anatomy of the brain of the bottlenose dophin (Tursiops truncatus). Surface configurations of the telencephalon of the bottle-nose dolphin with comparative anatomical observations in four other cetacean species. Brain Res Bull 5[Suppl 3]:1–108

    Google Scholar 

  • Mori S, Ueda S, Yamada H, Takino T, Sano Y (1985) Immunohistochemical demonstration of serotonin nerve fibers in corpus striatum of the rat, cat and monkey. Anat Embryol (Berl) 173:1–5

    CAS  Google Scholar 

  • Moriizumi T, Leduc-Cross B, Hattori T (1991) Cholinergic nigrotectal projections in the rat. Neurosci Lett 132:69–72

    CAS  PubMed  Google Scholar 

  • Morin F, Catalano JV (1955) Central connections of a cervical nucleus (nucleus cervicalis lateralis of the cat). J Comp Neurol 103:17–32

    CAS  PubMed  Google Scholar 

  • Moriizumi T, Leduc-Cross B, Hattori T (1991) Cholinergic nigrotectal projections in the rat. Neurosci Lett 132:69–72

    CAS  PubMed  Google Scholar 

  • Moriya T, Yamadori T (1993) Correlative study of the morphology and central connections of ipsilaterally projecting retinal ganglion cells in the albino rat. Exp Eye Res 56:79–83

    CAS  PubMed  Google Scholar 

  • Morris RJ, Beech JN, Heizmann CW (1988) Two distinct phases and mechanisms of axonal growth shown by primary vestibular fibres in the brain, demonstrated by parvalbumin immunohistochemistry. Neuroscience 27:571–596

    CAS  PubMed  Google Scholar 

  • Morrison JH, Magistretti PJ (1983) Monoamines and peptides in cerebral cortex. Contrasting principles of cortical organization. Trends Neurosci 6:146–151

    CAS  Google Scholar 

  • Morrison JH, Grzanna R, Molliver ME, Coyle JT (1978) The distribution and orientation of noradrenergic fibers in neocortex of the rat: an immunofluorescence study. J Comp Neurol 181:17–40

    CAS  PubMed  Google Scholar 

  • Morrison JH, Molliver ME, Grzanna R, Coyle JT (1980) Noradrenergic innervation patterns in three regions of medial cortex: an immunofluorescence characterization. Brain Res Bull 4:849–857

    Google Scholar 

  • Morrison JH, Foote SL, O’Connor D, Bloom FE (1982) Laminar, tangential and regional organization of the noradrenergic innervation of monkey cortex: dopamine-8-hydroxylase immunohistochemistry. Brain Res Bull 9:309–319

    CAS  PubMed  Google Scholar 

  • Moschovakis AK, Karabelas AB (1985) Observations on the somatodendritic morphology and axonal trajectory of intracellularly HRP-labeled efferent neurons located in the deeper layers of the superior colliculus of the cat. J Comp Neurol 239:276–308

    CAS  PubMed  Google Scholar 

  • Moschovakis AK, Karabelas AB, Highstein SM (1988a) Structure function relationships in the primate superior colliculus. I. Morphological classification of efferent neurons. J Neurophysiol 60:232–262

    CAS  PubMed  Google Scholar 

  • Moschovakis AK, Karabelas AB, Highstein SM (1988b) Structure-function relationships in the primate superior colliculus. II. Morphological identity of presaccadic neurons. J Neurophysiol 60:263–302

    CAS  PubMed  Google Scholar 

  • Mountcastle VB (1957) Modality and topographic properties of single neurones of cat’s somatic sensory cortex. J Neurophysiol 20:408–434

    CAS  PubMed  Google Scholar 

  • Mountcastle VB (1979) An organizing principle for cerebral function: the unit module and distributed system. In: Schmitt FO, Worden FG (eds) The neurosciences fourth study program. MIT Press, Cambridge, pp 21–42

    Google Scholar 

  • Mower G, Gibson A, Glickstein M (1979) Tectopontine pathway in the cat: laminar distribution of cells of origin and visual properties of target cells in dorsolateral pontine nucleus. J Neurophysiol 42:1–15

    CAS  PubMed  Google Scholar 

  • Mower G, Gibson A, Robinson F, Stein J, Glickstein M (1980) Visual pontocerebellar projections in the cat. J Neurophysiol 43:355–366

    CAS  PubMed  Google Scholar 

  • Mrzljak L, Uylings HBM, Kostovic I, Van Eden CG (1988) Prenatal development of neurons in the human prefrontal cortex: I. A qualitative Golgi study. J Comp Neurol 271:355–386

    CAS  PubMed  Google Scholar 

  • Mrzljak L, Uylings HBM, Van Eden CG, Judas M (1990) Neuronal development in human prefrontal cortex in prenatal and postnatal stages. Progr Brain Rese 85:185–222

    CAS  Google Scholar 

  • Mufson EJ, Mesulam M-M (1982) Insula of the old world monkey. II. Afferent cortical input and comments on the claustrum. J Comp Neurol 212:23–27

    CAS  PubMed  Google Scholar 

  • Mufson EJ, Mesulam MM, Pandya DN (1981) Insular interconnections with the amygdala in the rhesus monkey. Neuroscience 6:1231–1248

    CAS  PubMed  Google Scholar 

  • Mufson EJ, Martin TL, Mash DC, Wainer BH, Mesulam M-M (1986) Cholinergic projections from the parabigeminal nucleus (Ch8) to the superior colliculus in the mouse: a combined analysis of horseradish peroxidase transport and choline acetyltransferase immunohistochemistry. Brain Res 370:144–148

    CAS  PubMed  Google Scholar 

  • Mugnaini E (1972) The histology and cytology of the cerebellar cortex. The comparative anatomy and histology of the cerebellum. The human cerebellum, cerebellar connections, and cerebellar cortex. University of Minnesota, Minneapolis, pp 201–264

    Google Scholar 

  • Mugnaini E, Floris A (1994) The unipolar brush cell: a neglected neuron of the mammalian cerebellar cortex. J Comp Neurol 339:174–180

    CAS  PubMed  Google Scholar 

  • Mugnaini E, Morgan JI (1987) The neuropeptide cerebellin is a marker for two similar neuronal circuits in rat brain. Proc Natl Acad Sci USA 84:8692–8696

    CAS  PubMed  Google Scholar 

  • Mugnaini E, Warr WB, Osen KK (1980) Distribution and light microscopic features of granule cells in the cochlear nuclei of cat, rat, and mouse. J Comp Neurol 191:581–606

    CAS  PubMed  Google Scholar 

  • Mugnaini E, Oertel WH, Wouterlood FF (1984a) Immunocy-tochemical localization of GABA neurons and dopamine neurons in the rat main and accessory olfactory bulbs. Neurosci Lett 47:221–226

    CAS  PubMed  Google Scholar 

  • Mugnaini E, Wouterlood FG, Dahl A-L, Oertel WH (1984b) Immunocytochemical identification of GABAergic neurons in the main olfactory bulb of the rat. Arch Ital Biol 122:83–112

    CAS  PubMed  Google Scholar 

  • Mulligan K, Ulinski PS (1990) Organization of the geniculo-cortical projection in turtles: isoatimuth lamellae in the visual cortex. J Comp Neurol 296:531–547

    CAS  PubMed  Google Scholar 

  • Munk H (1881) Über die Funktionen der Grosshirnrinde. Hirschwald, Berlin

    Google Scholar 

  • Munoz A, Munoz M, Gonzalez A, Ten Donkelaar HJ (1997) Spinal ascending pathways in amphibians: cells of origin and main targets. J Comp Neurol 378:205–228

    CAS  PubMed  Google Scholar 

  • Munoz DG (1990) Monodendritic neurons: a cell type in the human cerebellar cortex identified by chromogranin A-like immunoreactivity. Brain Res 528:335–338

    CAS  PubMed  Google Scholar 

  • Münzer E, Wiener H (1902) Das Zwischen und Mittelhirn des Kaninchens und die Beziehungen dieser Teile zum übrigen Zentralnervensystem, mit besonderer Berücksichtigung der Pyramidenbahn und der Schleife. Monatsschr Psychiatr Neurol 12:241–279

    Google Scholar 

  • Murphy EH, Garone M, Tashayyod D, Baker R (1986) Innervation of extraocular muscles in the rabbit. J Comp Neurol 254:78–90

    CAS  PubMed  Google Scholar 

  • Murray EA (1991) Contributions of the arnygdalar complex to behavior in macaque monkeys. Prog Brain Res 87:167–180

    CAS  PubMed  Google Scholar 

  • Murray EA, Coulter JD (1981) Organization of corticospinal neurons in the monkey. J Comp Neurol 195:339–365

    CAS  PubMed  Google Scholar 

  • Murray EA, Coulter JD (1982) Organization of tectospinal neurons in the cat and rat superior colliculus. Brain Res 243:201–214

    CAS  PubMed  Google Scholar 

  • Murray EA, Mishkin M (1984) Severe tactual as well as visual memory déficits follow combined removal of the amygdala and hippocampus in monkeys. J Neurosci 4:2563–2580

    Google Scholar 

  • Murray EA, Mishkin M (1985) Amygdalectomy impairs crossmodal association in monkeys. Science 228:604–606

    CAS  PubMed  Google Scholar 

  • Murray M, Murphy CA, Ross LL, Haun F (1994) The role of the habenula-interpeduncular pathway in modulating levels of circulating adrenal hormones. Restor Neurol Neurosci 6(4):301–307

    CAS  PubMed  Google Scholar 

  • Mustari MJ, Fuchs AF, Kaneko CRS, Robinson FR (1994) Anatomical connections of the primate pretectal nucleus of the optic tract. J Comp Neurol 349:111–128

    CAS  PubMed  Google Scholar 

  • Nadelhaft I, Roppolo J, Morgan C, De Groat WC (1983) Parasympathetic preganglionic neurons and visceral primary afferents in monkey sacral spinal cord revealed following application of horseradish peroxidase to pelvic nerve. J Comp Neurol 216:36–52

    CAS  PubMed  Google Scholar 

  • Nadol JB (1983a) Serial section reconstruction of the neural poles of hair cells in the human organ of Corti. I. Inner hair cells. Laryngoscopea 93:599–614

    Google Scholar 

  • Nadol JB (1983b) Serial section reconstruction of the neural poles of hair cells in the human organ of Corti. II. Outer hair cells. Laryngoscopeb 93:780–791

    Google Scholar 

  • Nagai T, Kimura H, Maeda T, McGeer PL, Peng F, McGeer EG (1982) Cholinergic projections from the basal forebrain of the rat to the amygdala. J Neurosci 2:513–520

    CAS  PubMed  Google Scholar 

  • Nagelhus FA, Lehmann A, Ottersen OP (1993) Neuronal-glial exchange of taurine during hypo-osmotic stress: a combined immunocytochemical and biochemical analysis in rat cerebellar cortex. Neuroscience 54:615–631

    CAS  PubMed  Google Scholar 

  • Nagy JI, Hunt SP (1983) The termination of primary afferents within the rat dorsal horn: evidence for rearrangement following capsaicin treatment. J Comp Neurol 218:145–158

    CAS  PubMed  Google Scholar 

  • Naito A, Kita H (1994) The cortico-nigral projection in the rat: an anterograde tracing study with biotinylated dextran amine. Brain Res 637:317–322

    CAS  PubMed  Google Scholar 

  • Nakagawa S, Hasegawa Y, Tokushige A, Kubozono T, Nakano K (1988) Retinal projection to the formatio reticularis tegmenti mesencephali in the old world monkeys. Exp Brain Res 69:373–377

    CAS  PubMed  Google Scholar 

  • Nakamura Y, Mizuno N (1971) An electron microscopic study of the interposito-rubral connections in the cat and rabbit. Brain Res 35:283–286

    CAS  PubMed  Google Scholar 

  • Nakamura Y, Tokuno H, Moriizumi T, Kitao Y, Kudo M (1989) Monosynaptic nigral inputs to the pedunculopontine tegmental nucleus neurons which send their axons to the medial reticular formation in the medulla oblongata. An electron microscopic study in the cat. Neurosci Lett 103:145–150

    CAS  PubMed  Google Scholar 

  • Napier JR, Napier PH (1967) A handbook of living primates. Academic, New York

    Google Scholar 

  • Nasution ID, Shigenaga Y (1987) Ascending and descending internuclear projections within the trigeminal sensory nuclear complex. Brain Res 425:234–247

    CAS  PubMed  Google Scholar 

  • Nathan PW, Smith MC (1955) Long descending tracts in man. I. Review of present knowledge. Brain 78:248–303

    CAS  PubMed  Google Scholar 

  • Nathan PW, Smith MC (1959) Fasciculi proprii of the spinal cord in man: review of present knowledge. Brain 82:610–668

    CAS  PubMed  Google Scholar 

  • Naus CG, Flumerfelt BA, Hrycyshyn AW (1985) An HRP-TMB ultrastructural study of rubral afferents in the rat. J Comp Neurol 239:453–465

    CAS  PubMed  Google Scholar 

  • Nauta HJW (1974) Evidence of a pallidohabenular pathway in the cat. J Comp Neurol 156:19–27

    CAS  PubMed  Google Scholar 

  • Nauta HJW, Cole M (1978) Efferent projections of the subthalamic nucleus: an autoradiographic study in monkey and cat. J Comp Neurol 180:1–16

    CAS  PubMed  Google Scholar 

  • Nauta WJH (1958) Hippocampal projections and related neural pathways to the midbrain in the cat. Brain 81:319–340

    CAS  PubMed  Google Scholar 

  • Nauta WJH (1961) Fibre degeneration following lesions of the amygdaloid complex in the monkey. J Anat (Lond) 95:515–532

    CAS  Google Scholar 

  • Nauta WJH (1963) Central nervous organization and the endocrine motor system. In: Nalbanov AV (ed) Advances in neuroendocrinology. University of Illinois, Urbana, pp 5–21

    Google Scholar 

  • Nauta WJH (1973) Connections of the frontal lobe with the limbic system. In: Laitinen LV, Livingston KE (eds) Surgical approaches in psychiatry. Medical and Technical Publishing, Lancester, pp 303–314

    Google Scholar 

  • Nauta WJH (1986) Circuitous connections linking cerebral cortex, limbic system, and corpus striatum. In: Doane BK, Livingston KE (eds) The limbic system: functional organization and clinical disorders. Raven, New York, pp 43–54

    Google Scholar 

  • Nauta WJH, Haymaker W (1969) Hypothalamic nuclei and fiber connections. In: Haymaker W, Anderson E, Nauta WJH (eds) The hypothalamus. Thomas, Springfield, pp 136–209

    Google Scholar 

  • Nauta WJH, Kuypers HGJM (1958) Some ascending pathways in the brain stem reticular formation. In: Jasper HH, Procter LD (eds) Reticular formation of the brain. Little Brown, Toronto, pp 3–31

    Google Scholar 

  • Nauta WJH, Mehler WR (1966) Projections of the lentiform nucleus in the monkey. Brain Res 1:3–42

    CAS  PubMed  Google Scholar 

  • Nauta WJH, Smith GP, Faull RLM, Domesick VB (1987) Efferent connection and nigral afferents of the nucleus accumbens septi in the rat. Neuroscience 3:385–401

    Google Scholar 

  • Neafsey EJ, Hurley-Gius KM, Arvanitis D (1986) The topographical organization of neurons in the rat medial frontal, insular and olfactory cortex projecting to the solitary nucleus, olfactory bulb, periaqueductal gray and superior colliculus. Brain Res 377:261–270

    CAS  PubMed  Google Scholar 

  • Neary TJ (1990) The pallium of anuran amphibians. In: Jones EG, Peters A (eds) Comparative structure and evolution of cerebral cortex, part I. Plenum, New York, pp 107–138 (Cerebral cortex, vol 8A)

    Google Scholar 

  • Newman HM, Stevens RT, Apkarian AV (1996) Direct spinal projections to limbic and striatal areas: anterograde transport studies from the upper cervical spinal cord and the cervical enlargement in squirrel monkey and rat. J Comp Neurol 365:640–658

    CAS  PubMed  Google Scholar 

  • Nicolelis MA, Chapin JK, Lin RC (1992) Somatotopic maps within the zona incerta relay parallel GABAergic somatosensory pathways to the neocortex, superior colliculus, and brainstem. Brain Res 577:134–141

    CAS  PubMed  Google Scholar 

  • Nieuwenhuys R (1964) Comparative anatomy of the spinal cord. In: Eccles JC, Schade JP (eds) Organization of the spinal cord. Elsevier, Amsterdam, pp 1–57 (Progress in brain research, vol 11)

    Google Scholar 

  • Nieuwenhuys R (1977) Aspects of the morphology of the striatum. In: Cools AR, Lohman AHM, Van den Bercken JHL (eds) Psychobiology of the striatum. Elsevier/North-Holland, Amsterdam, pp 1–19

    Google Scholar 

  • Nieuwenhuys R (1985) Chemoarchitecture of the brain. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Nieuwenhuys R (1994) The neocortex: an overview of its evolutionary development, structural organization and synaptology. Anat Embryol (Berl) 190:307–337

    CAS  Google Scholar 

  • Nieuwenhuys R (1996) The greater limbic system, the emotional motor system and the brain. Progr Brain Res 107:551–580

    CAS  Google Scholar 

  • Nieuwenhuys R, Geeraedts LMG, Veening JG (1982) The medial forebrain bundle of the rat: I General introduction. J Comp Neurol 206:49–81

    CAS  PubMed  Google Scholar 

  • Nieuwenhuys R, Voogd J, Van Huijzen C (1988) The human central nervous system. A synopsis and atlas, 3rd rev edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Nieuwenhuys R, Veening JG, Van Domburg P (1989) Core and paracores; some new chemoarchitectural entities in the mammalian neuraxis. Acta Morphol Neerl Scand 26:131–163

    CAS  Google Scholar 

  • Niimi K, Takemura A, Suzuki H, Sasaki J (1962) The nuclear configuration of the dorsal thalamus of the mole. Tokushima J Exp Med 9:75–98

    Google Scholar 

  • Niimi K, Kanaseki T, Takimoto T (1963) The comparative anatomy of the ventral nucleus of the lateral geniculate body in mammals. J Comp Neurol 121:313–323

    CAS  PubMed  Google Scholar 

  • Nomura S, Mizuno N (1981) Central distribution of afferent and efferent components of the chorda tympani in the cat as revealed by the horseradish peroxidase method. Brain Res 214:229–237

    CAS  PubMed  Google Scholar 

  • Nomura S, Mizuno N (1982) Central distribution of afferent and efferent components of the glossopharyngeal nerve: an HRP study in the cat. Brain Res 236:1–13

    CAS  PubMed  Google Scholar 

  • Nomura S, Mizuno N (1986) Histochemical demonstration of vibrissae-representing patchy patterns of cytochrome oxidase activity within the trigeminal sensory nuclei in the cat. Brain Res 380:167–171

    CAS  PubMed  Google Scholar 

  • Nomura S, Mizuno N, Itoh K, Matsuka K, Sugimoto T, Nakamura Y (1979) Localization of parabrachial nucleus neurons projecting to the thalamus or the amygdala in the cat using horseradish peroxidase. Exp Neurol 64:375–385

    CAS  PubMed  Google Scholar 

  • Nomura S, Itoh K, Sugimoto T, Yasui Y, Kamiya H, Mizuno N (1986) Mystacial vibrissae representation within the trigeminal sensory nuclei of the cat. J Comp Neurol 253:121–133

    CAS  PubMed  Google Scholar 

  • Norgren R (1976) Taste pathways to hypothalamus and amygdala. J Comp Neurol 166:17–30

    CAS  PubMed  Google Scholar 

  • Norgren R (1984) Central neural mechanisms of taste. In: Darien-Smith (ed) Handbook of physiology, Sect 1. American Physiology Society, Washington DC, vol III, pp 1087–1128

    Google Scholar 

  • Norgren R (1990) Gustatory system. In: Paxinos G (ed) The human nervous system. Academic, San Diego, pp 845–861

    Google Scholar 

  • Norgren R (1995) Gustatory system. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic, San Diego, pp 751–771

    Google Scholar 

  • Noriega AL, Wall JT (1991) Parcellated organization in the trigeminal and dorsal column nuclei of primates. Brain Res 565:188–194

    CAS  PubMed  Google Scholar 

  • Norita M (1980) Neurons and synaptic patterns in the deep layers of the superior colliculus of the cat. A Golgi and electron microscopic study. J Comp Neurol 190:29–48

    CAS  PubMed  Google Scholar 

  • Norita M, Kawamura K (1980) Subcortical afferents to the monkey amygdala: an HRP study. Brain Res 190:225–230

    CAS  PubMed  Google Scholar 

  • Norita M, McHaffie JG, Shimizu H, Stein BE (1991) The corticostriatal and corticotectal projections of the feline lateral suprasylvian cortex demonstrated with anterograde biocytin and retrograde fluorescent techniques. Neurosci Res 10:149–155

    CAS  PubMed  Google Scholar 

  • Northcutt RG, Kicliter E (1980) Organization of the amphibian telencephalon. In: Ebbesson SOE (ed) Comparative neurology of the telencephalon. Plenum, New York, pp 203–255

    Google Scholar 

  • Northcutt RG, Royce GJ (1975) Olfactory bulb projections in the bullfrog, R. catesbeina Shaw. J Morphol 145:251–268

    CAS  PubMed  Google Scholar 

  • Novacek MJ (1986) The skull of leptictid insectivorans and the higher-level classification of eutherian mammals. Bull Am Mus Nat Hist 183:1–112

    Google Scholar 

  • Novacek MJ (1992) Mammalian phylogeny: shaking the tree. Nature 356:121–125

    CAS  PubMed  Google Scholar 

  • Nudo RJ, Masterton RB (1988) Descending pathways to the spinal cord: a comparative study of 22 mammals. J Comp Neurol 277:53–79

    CAS  PubMed  Google Scholar 

  • Nudo RJ, Masterton RB (1989) Descending pathways to the spinal cord: II. Quantitative study of the tectospinal tract in 23 mammals. J Comp Neurol 286:96–119

    CAS  PubMed  Google Scholar 

  • Nudo RJ, Masterton RB (1990a) Descending pathways to the spinal cord. III. Sites of origin of the corticospinal tract. J Comp Neurol 296:559–583

    CAS  PubMed  Google Scholar 

  • Nudo RJ, Masterton RB (1990b) Descending pathways to the spinal cord. IV. Some factors related to the amount of cortex devoted to the corticospinal tract. J Comp Neurol 296:584–597

    CAS  PubMed  Google Scholar 

  • Nunes Cardozo JJ, Van der Want JJL (1987) Synaptic organization of the nucleus of the optic tract in the rabbit: a combined Golgi-electron microscopic study. J Neurocytol 16:389–401

    CAS  PubMed  Google Scholar 

  • Nunes Cardozo B, Wortel J (1993) Projections from and to the superior colliculus in the nucleus of the optic tract combined with postembedding GABA immunocytochemistry in the rabbit. Eur J Morphol 31:92–96

    CAS  PubMed  Google Scholar 

  • Nunes Cardozo B, Mize RR, Van der Want JJ (1994) GABAergic and non-GABAergic neurons in the nucleus of the optic tract project to the superior colliculus: an ultrastructural retrograde tracer and immunocytochemical study in the rabbit. J Comp Neurol 350(4):646–656

    CAS  PubMed  Google Scholar 

  • Nusser Z, Mulvihill E, Streit P, Somogyi P (1994) Subsynaptic segregation of metabotropic and ionotropic glutamate receptors as revealed by immunogold localization. Neuroscience 61:421–427

    CAS  PubMed  Google Scholar 

  • Nyberg-Hansen (1964) Origin and termination of fibers from the vestibular nuclei descending in the medial longitudinal fasciculus. An experimental study with silver impregnation methods in the cat. J Comp Neurol 122:355–383

    CAS  PubMed  Google Scholar 

  • Nyberg-Hansen R (1975) Anatomical aspects of the functional organization of the vestibulospinal pathways. In: Naunton R (ed) The vestibular system, pp 71-96

    Google Scholar 

  • Nyberg-Hansen R, Brodai A (1964) Sites and mode of termination of rubrospinal fibres in the cat. An experimental study with silver impregnation methods. J Anat (Lond) 98:235–253

    CAS  Google Scholar 

  • Obenchain JB (1925) The brains of the South American marsupials Caenolestes and Orolestes. Publ 224 Field Mus Nat Hist Zool Ser 14:175–232

    Google Scholar 

  • Obersteiner H (1912) Anleitung beim Studium des Baues der Nervösen Zentralorgane im gesunden und kranken Zustande. Deuticke, Leipzig and Vienna

    Google Scholar 

  • Oboussier H (1972a) Evolution of the mammalian brain: some evidence on the phylogeny of the antelope species. Acta Anat 83:70–80

    CAS  PubMed  Google Scholar 

  • Oboussier H (1972b) Morphologische und quantitative Neocortexuntersuchungen bei Boviden, ein Beitrag zur Phylogie dieser Familie. III. Formen grossen Körpergewichts (über 75 kg). Mitt Hamburg Zool Mus Inst 68:271–292

    Google Scholar 

  • Oertel WH (1993) Neurotransmitters in the cerebellum. Scientific aspects and clinical relevance. In: Harding AE, Deufel T (eds) Advances in neurology, vol 61. Raven, New York

    Google Scholar 

  • Oertel WH, Mugnaini E (1984) Immunocytochemical studies of GABA-ergic neurons in the rat basal ganglia and their relations to other neuronal systems. Neurosci Lett 15:159–164

    Google Scholar 

  • Ogawa T (1934) Beitrage zur vergleichenden Anatomie des Zentralnervensystems der Wassersäugetiere: über das vierte oder subkortikale graue Lager, Stratum griseum quartum s. subcorticale, im Kleinhirn des Seebären (Callorhinus ursinus Gray). Arb Anat Inst Sendai 16:83–96

    Google Scholar 

  • Ogawa T (1935a) Beiträge zur vergleichenden Anatomie des Zentralnervensystems der Wassersäugetiere: über die Kleinhirnkerne der Pinnepedien und Cetaceen. Arb Anat Inst Sendai 17:63–136

    Google Scholar 

  • Ogawa T (1935b) Über den Nucleus ellipticus und den Nucleus ruber beim Delphin. Arb Anat Inst Sendaia 17:55–61

    Google Scholar 

  • Ogawa T (1939a) The tractus tegmenti medialis and its connections with the inferior olive in the cat. J Comp Neurol 70:181–191

    Google Scholar 

  • Ogawa T (1939b) Experimentelle Untersuchungen über die mediale und zentrale Haubenbahnen bei der Katze. Arch Psychiatr Nervenkr 110:365–444

    Google Scholar 

  • Ogawa T, Arifuku S (1948) On the acoustic system in the cetacean brains. Sci Rep Whales Res Inst Tokyo 2:1–20

    Google Scholar 

  • Ohkawa K (1957) Comparative anatomical studies of cerebellar nuclei of mammals. Arch Hist Jpn 13:21–58

    Google Scholar 

  • Ohtsuki H, Tokunaga A, Ono K, Hasebe S, Tadokoro Y (1992) Distribution of efferent neurons projecting to the tectum and cerebellum in the rat prepositus hypoglossi nucleus. Invest Ophthalmol Vis Sci 33:2567–2574

    CAS  PubMed  Google Scholar 

  • Ojima H, Honda CN, Jones EG (1991) Patterns of axon collateralization of identified supragranular pyramidal neurons in the cat auditory cortex. Cerebral Cortex 1:80–94

    CAS  PubMed  Google Scholar 

  • Oka H (1988) Functional organization of the parvocellular red nucleus in the cat. Behav Brain Res 28:23–240

    Google Scholar 

  • Oka H, Jinnai K, Yamamoto T (1979) The parieto-rubroolivary pathway in the cat. Exp Brain Res 37:115–125

    CAS  PubMed  Google Scholar 

  • O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Clarendon, Oxford

    Google Scholar 

  • Olavarria J, Van Sluyters RC (1982) The projection from striate and extrastriate cortical areas to the superior colliculus in the rat. Brain Res 242:332–336

    CAS  PubMed  Google Scholar 

  • Olazébal UE, Moore JK (1989) Nigrotectal projection to the inferior colliculus: horseradish peroxidase transport and tyrosine hydroxylase immunohistochemical studies in rats, cats, and bats. J Comp Neurol 282:98–118

    Google Scholar 

  • Oldfield BJ, McKinley MJ (1995) Circumventricular organs. In: Paxinos G (ed) The rat nervous system. Academic, San Diego, pp 391–403

    Google Scholar 

  • O’Leary JL (1937) Structure of the primary olfactory cortex of the mouse. J Comp Neurol 67:1–31

    Google Scholar 

  • Oliver DL (1984) Dorsal cochlear nucleus projections to the inferior colliculus in the cat: a light and electron microscopic study. J Comp Neurol 224:155–172

    CAS  PubMed  Google Scholar 

  • Oliver DL, Morest DK (1984) The central nucleus of the inferior colliculus in the cat. J Comp Neurol 222:237–264

    CAS  PubMed  Google Scholar 

  • Oliver DL, Shneiderman A (1989) An EM study of the dorsal nucleus of the lateral lemniscus: inhibitory, commissural, synaptic connections between ascending auditory pathways. J Neurosci 9:967–982

    CAS  PubMed  Google Scholar 

  • Oliver JE, Bradley WE, Fletcher TF (1969) Identification of preganglionic parasympathetic neurons in the sacral spinal cord of the cat. J Comp Neurol 137:321–328

    PubMed  Google Scholar 

  • Oliver DL, Kuwada S, Yin TC, Haberly LB, Henkel CK (1991) Dendritic and axonal morphology of HRP-injected neurons in the inferior colliculus of the cat. J Comp Neurol 303:75–100

    CAS  PubMed  Google Scholar 

  • Olszewski J (1950) On the anatomical and functional organization of the spinal trigeminal nucleus. J Comp Neurol 92:401–413

    CAS  PubMed  Google Scholar 

  • Olszewski J, Baxter D (1954) Cyto architecture of the human brain stem. Karger, Basel

    Google Scholar 

  • Onodera S (1984) Olivary projections from the mesodiencephalic structures in the cat studied by means of axonal transport of horseradish peroxidase and tritiated aminoacids. J Comp Neurol 227:37–49

    CAS  PubMed  Google Scholar 

  • Onuf B (1902) On the arrangement and function of the cell groups of the sacral region of the spinal cord in man. Arch Neurol Psychopathol 3:387–412

    Google Scholar 

  • Oorschot DE (1996) Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: a stereological study using the Cavalieri and optical disector methods. J Comp Neurol 366:580–599

    CAS  PubMed  Google Scholar 

  • Ortega F, Donate-Oliver F, Grandes P (1993) Retinal afferents on Golgi-identified vertical neurons in the superior colliculus of the rabbit. A Golgi-EM, degenerative and autoradiographic study. Histol Histopathol 8:105–111

    CAS  PubMed  Google Scholar 

  • Oscarsson O (1973) Functional organization of spinocerebellar paths. In: Iggo A (ed) Somatosensory systems. Springer, Berlin Heidelberg New York, pp 339–380 (Handbook of sensory physiology, vol 2)

    Google Scholar 

  • Osen KK (1969) Cytoarchitecture of the cochlear nuclei in the cat. J Comp Neurol 136:453–484

    CAS  PubMed  Google Scholar 

  • Osen KK (1972) Projection of the cochlear nuclei on the inferior colliculus in the cat. J Comp Neurol 144:355–372

    CAS  PubMed  Google Scholar 

  • Osen KK, Jansen J (1965) The cochlear nuclei in the common porpoise, Phocaena phocaena. J Comp Neurol 125:223–258

    Google Scholar 

  • Ostapoff EM, Morest DK, Potashner SJ (1990) Uptake and retrograde transport of [3H]GABA from the cochlear nucleus to the superior olive in the guinea pig. J Chem Neuroanat 3:285–295

    CAS  PubMed  Google Scholar 

  • Oswaldo-Cruz E, Rocha-Miranda CE (1967) The diencephalon of the opossum in stereotaxic coordinates. II. The ventral thalamus and hypothalamus. J Comp Neurol 129:39–48

    Google Scholar 

  • Oswaldo-Cruz E, Rocha-Miranda CE (1968) The brain of the opossum (Didelphis Marsupialis). Inst de Biofisica, Rio de Janeiro, Brasil

    Google Scholar 

  • Otake K, Ezure K, Lipski J, Wong She RB (1992) Projections from the commissural subnucleus of the nucleus of the solitary tract: an anterograde tracing study in the cat. J Comp Neurol 324:365–378

    CAS  PubMed  Google Scholar 

  • Ottersen OP (1980) Afferent connections to the amygdaloid complex of the rat and cat. II. Afférents from the hypothalamus and the basal telencephalon. J Comp Neurol 194:267–289

    CAS  PubMed  Google Scholar 

  • Ottersen OP (1981) Afferent connections to the amygdaloid complex of the rat with some observations in the cat. III. Afférents from the lower brainstem. J Comp Neurol 202:335–356

    CAS  PubMed  Google Scholar 

  • Ottersen OP (1982) Connections of the amygdala of the rat. IV. Corticoamygdaloid and intraamygdaloid connections as studied with axonal transport of horseradish peroxidase. J Comp Neurol 205:30–48

    CAS  PubMed  Google Scholar 

  • Ottersen OP, Ben-Ari Y (1979) Afferent connections to the amygdaloid complex of the rat and cat. I. Projections from the thalamus. J Comp Neurol 187:401–424

    CAS  PubMed  Google Scholar 

  • Ottersen OP, Storm-Mathisen J (1984) GABA-containing neurons in the thalamus and pretectum of the rodent. Anat Embryol (Bed) 170:197–207

    CAS  Google Scholar 

  • Padel Y, Angaut P, Massion J, Sedan R (1981) Comparative study of the posterior red nucleus in baboons and gibbons. J Comp Neurol 202:421–438

    CAS  PubMed  Google Scholar 

  • Padel Y, Bourbonnais D, Sybirska E (1986) A new pathway from primary afferents to the red nucleus. Neurosci Lett 64:75–88

    CAS  PubMed  Google Scholar 

  • Palay SL, Chan-Palay V (1974) Cerebellar cortex: cytology and organization. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Paloff AM, Usunoff KG (1992) Projections to the inferior colliculus from the dorsal column nuclei. An experimental electron microscopic study in the cat. J Hirnforsch 33:597–610

    CAS  PubMed  Google Scholar 

  • Paloff AM, Usunoff KG, Hinova-Palova DV (1982) Ultrastructure of Golgi-impregnated and gold-toned neurons in the central nucleus of the inferior colliculus in the cat. J Hirnforsch 33:361–407

    Google Scholar 

  • Pandya DN (1987) Association cortex. In: Adelman G (ed) Encyclopedia of neuroscience, vol I. Birkhäuser, Boston, pp 80–83

    Google Scholar 

  • Pandya DN, Yeterian EH (1985) Architecture and connections of cortical association areas. In: Peters A, Jones EG (eds) Association and auditory cortices. Plenum, New York, pp 3–61 (Cerebral cortex, vol 4)

    Google Scholar 

  • Pandya DN, Van Hoesen GW, Domesick VB (1973) A cinguloamygdaloid projection in the rhesus monkey. Brain Res 61:369–373

    CAS  PubMed  Google Scholar 

  • Panneton WM, Burton H (1983) Origin of intratrigeminal pathways in the cat. Brain Res 236:463–470

    Google Scholar 

  • Panneton WM, Martin GF (1983) Brainstem projections to the facial nucleus of the opossum. A study using axonal transport techniques. Brain Res 267:19–33

    CAS  PubMed  Google Scholar 

  • Papez JW (1927) Subdivisions of the facial nucleus. J Comp Neurol 43:159–191

    Google Scholar 

  • Papez JW (1929) The central acoustic tract in cat and man. Anat Rec 42:60

    Google Scholar 

  • Papez JW (1932) The thalamic nuclei of the nine-banded armadillo (Tatusia novemcincta). J Comp Neurol 56:49–103

    Google Scholar 

  • Papez JW (1937) A proposed mechanism of emotion. Arch Neurol Psychiatry 42:725–743

    Google Scholar 

  • Parent A (1979) Identification of the pallidal and peri-pallidal cells projecting to the habenula in monkey. Neurosci Lett 15:159–164

    CAS  PubMed  Google Scholar 

  • Parent A, DeBellefeuille L (1983) The pallidointralaminar and pallidonigral projections in primate as studied by retrograde double-labeling method. Brain Res 278:11–28

    CAS  PubMed  Google Scholar 

  • Parent A, Hazrati L-N (1995a) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev 20:91–127

    CAS  PubMed  Google Scholar 

  • Parent A, Hazrati L-N (1995b) Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Rev 20:128–154

    CAS  PubMed  Google Scholar 

  • Parent A, Descarries L, Beaudet A (1981) Organization of ascending serotonin systems in adult rat brain. A radioautographic study after intraventricular administration of [3H]5-HT. Neuroscience 6:115–138

    CAS  PubMed  Google Scholar 

  • Parent A, Poitras D, Dubé L (1984) Comparative anatomy of central monoaminergic systems. In: Bjorklund A, Hökfelt T (eds) Classical transmitters in the CNS, part 1. Elsevier Science, Amsterdam, pp 409–439 (Handbook of chemical neuroanatomy, vol 2)

    Google Scholar 

  • Parnavelas JG (1984) Physiological properties of identified neurons. In: Jones EG, Peters A (eds) Functional properties of cortical cells. Plenum, New York, pp 205–240 (Cerebral cortex, vol 2)

    Google Scholar 

  • Parnavelas JG, Sullivan K, Lieberman AR, Webster KE (1977) Neurons and their synaptic organization in the visual cortex of the rat: electron microscopy of Golgi preparations. Cell Tissue Res 183:499–517

    CAS  PubMed  Google Scholar 

  • Parnavelas JG, Edmunds SM (1983) Further evidence that Cajal-Retzius cells transform to nonpyramidal neurons in the developing rat visual cortex. J Neurocytol 12:863–871

    CAS  PubMed  Google Scholar 

  • Parnavelas JG, Kelly W, Franke E, Eckenstein F (1986) Cholinergic neurons and fibres in the rat visual cortex. J Neurocytol 15:329–336

    CAS  PubMed  Google Scholar 

  • Parnavelas JG, Barfield JA, Luskin MB (1991) Separate progenitor cells give rise to pyramidal and nonpyramidal neurons in the rat telencephalon. Cerebral Cortex 1:463–468

    CAS  PubMed  Google Scholar 

  • Pasik P, Pasik T, Pecci Saavedra J, Holstein GR (1981) Light and electron microscopic immunocytochemical localization of serotonin in the basal ganglia of cats and monkeys. Anat Rec 199:194

    Google Scholar 

  • Pasquier DA, Villar MJ (1982) Subcortical projections to the lateral geniculate body in the rat. Exp Brain Res 48:409–419

    CAS  PubMed  Google Scholar 

  • Paxinos G (1995) The rat nervous system. Academic, San Diego

    Google Scholar 

  • Pearson JC, Haines DE (1980) Somatosensory thalamus of a prosimian primate (Galago senegalensis). I. Configuration of nuclei and termination of spinothalamic fibers. J Comp Neurol 190:533–558

    CAS  PubMed  Google Scholar 

  • Pearson JC, Jennes L (1988) Localization of serotonin-and substance P-like immunofluorescence in the caudal spinal trigeminal nucleus of the rat. Neurosci Lett 88:151–156

    CAS  PubMed  Google Scholar 

  • Pearson RCA, Gatter KC, Brodai P, Powell TSP (1982) The projection of the basal nucleus of Meynert upon the neocortex in the monkey. Brain Res 259:132–136

    Google Scholar 

  • Paxinos G, Tork I, Halliday G, Mehler WR (1990a) Human homologes to brainstem nuclei identified in other animals as revealed by acetylcholinesterase activity. In: Paxinos G (ed) The human nervous system. Academic, San Diego, pp 149–202

    Google Scholar 

  • Pearson J, Halliday G, Sakamoto N, Michel J-P (1990b) Cate-cholaminergic neurons. In: Paxinos G (ed) The human nervous system. Academic, San Diego, pp 1023–1049

    Google Scholar 

  • Peerbolte ML (1932) De loop van de achterwortelvezels, die in de achterstrengen van het ruggemerg opstijgen. Proefschrift. N. Samson N.V. — Alphen aan den Rijn

    Google Scholar 

  • Peinado A, Katz LC (1990) Development of cortical spiny stellate cells: retraction of a transient apical dendrite. Soc Neurosci Abstr 16:1127

    Google Scholar 

  • Pennartz CMA, Groenewegen HJ, Lopes Da Silva FH (1994) The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural electrophysiological and anatomical data. Prog Neurobiol 42:719–761

    CAS  PubMed  Google Scholar 

  • Penney JB Jr, Young AB (1986) Striatal inhomogeneities and basal ganglia function. Mov Disord 1:3–15

    PubMed  Google Scholar 

  • Penny GR, Wilson CJ, Kitai ST (1988) Relationship of the axonal and dendritic geometry of spiny projection neurons to the compartmental organizaiton of the neostriatum. J Comp Neurol 269:275–289

    CAS  PubMed  Google Scholar 

  • Penny JE (1982) Cyto architectural and dendritic patterns of the dorsal column nuclei of the opossum. J Hirnforsch 23:315–330

    CAS  PubMed  Google Scholar 

  • Perachio AA, Kevetter GA (1989) Identification of vestibular efferent neurons in gerbil: histochemical and retrograde labeling. Exp Brain Res 78:315–326

    CAS  PubMed  Google Scholar 

  • Percheron G, Filion M (1991) Parallel processing in the basal ganglia: up to a point. Trends Neurosci 14:55–56

    CAS  PubMed  Google Scholar 

  • Percheron G, Yelnik J, Francois C (1984a) The primate striato-pallido-nigral system: an integrative system for cortical information. In: MacKenzie JS, Kemm RE, Wilcock LN (eds) The basal ganglia: structure and function. Plenum, New York, pp 87–105

    Google Scholar 

  • Percheron G, Yelnik J, Francois C (1984b) A Golgi analysis of the primate globus pallidus. III. Spatial organization of the striatopallidal complex. J Comp Neurol 227:214–227

    CAS  PubMed  Google Scholar 

  • Perkins RE, Morest DK (1975) A study of cochlear innervation patterns in cats and rats with the Golgi method and normarski optics. J Comp Neurol 163:129–158

    CAS  PubMed  Google Scholar 

  • Perry VH (1980) A tectocortical visual pathway in the rat. Neuroscience 5:915–927

    CAS  PubMed  Google Scholar 

  • Pert CB, Kuhar MJ, Snyder SH (1976) Opiate receptor: auto-radiographic localization in rat brain. Proc Natl Acad Sci USA 73:3729–3733

    CAS  PubMed  Google Scholar 

  • Peschanski M, Mantyh PW, Besson JM (1983) Spinal afferents to the ventrobasal thalamic complex in the rat: an anatomical study using wheat-germ agglutinin conjugated to horseradish peroxidase. Brain Res 278:40–244

    Google Scholar 

  • Peters A (1984a) Chandelier cells. In: Peters A, Jones EG (eds) Cellular components of the cerebral cortex. Plenum, New York, pp 361–380 (Cerebral cortex, vol 1)

    Google Scholar 

  • Peters A (1984b) Bipolar cells In: Peters A, Jones EG (eds) Cellular components of the cerebral cortex. Plenum, New York, pp 381–408 (Cerebral cortex, vol 1)

    Google Scholar 

  • Peters A (1985) The visual cortex of the rat. In: Jones EG, Peters A (eds) Visual cortex. Plenum, New York, pp 19–80 (Cerebral cortex, vol 3)

    Google Scholar 

  • Peters A (1987a) Cortical neurons. In: Adelman G (ed) Encyclopedia of neuroscience, vol 1. Birkhäuser, Boston, pp 282–284

    Google Scholar 

  • Peters A (1987b) Number of neurons and synapses in primary visual cortex. In: Jones EG, Peters A (eds) Further aspects of cortical function, including hippocampus. Plenum, New York, pp 267–294 (Cerebral cortex, vol 6)

    Google Scholar 

  • Peters A, Fairén A (1978) Smooth and sparsely-spined stellate cells in the visual cortex of the rat: a study using a combined Golgi-electron microscope technique. J Comp Neurol 181:129–172

    CAS  PubMed  Google Scholar 

  • Peters A, Harriman KM (1988) Enigmatic bipolar cell of rat visual cortex. J Comp Neurol 267:409–432

    CAS  PubMed  Google Scholar 

  • Peters A, Jones EG (1984a) Classification of cortical neurons. In: Peters, A, Jones EG (eds.) Cellular components of the cerebral cortex. Plenum, New York, pp 107–122 (Cerebral cortex, vol 1)

    Google Scholar 

  • Peters A, Jones EG (eds) (1984b) Cellular components of the cerebral cortex. Plenum, New York (Cerebral cortex, vol 1)

    Google Scholar 

  • Peters A, Kimerer LM (1981) Bipolar neurons in rat visual cortex: a combined Golgi-electron microscope study. J Neurocytol 10:921–946

    CAS  PubMed  Google Scholar 

  • Peters A, Saint Marie PL (1984) Smooth and sparsely spinous nonpyramidal cells forming local axonal plexuses. In: Peters A, Jones EG (eds) Cellular components of the cerebral cortex. Plenum, New York, pp 419–445 (Cerebral cortex, vol 1)

    Google Scholar 

  • Peters A, Sethares C (1991) Organization of pyramidal neurons in area 17 of monkey visual cortex. J Comp Neurol 306:1–23

    CAS  PubMed  Google Scholar 

  • Peters A, Walsh TM (1972) A study of the organization of apical dendrites in the somatic sensory cortex of the rat. J Comp Neurol 144:253–268

    CAS  PubMed  Google Scholar 

  • Peters A, Proskauer CC, Ribak CE (1982) Chandelier cells in rat visual cortex. J Comp Neurol 206:397–416

    CAS  PubMed  Google Scholar 

  • Peters A, Kara DA, Harriman KM (1985) The neuronal composition of area 17 of rat visual cortex III. Numerical considerations. J Comp Neurol 238:263–274

    CAS  PubMed  Google Scholar 

  • Peters A, Meinecke DL, Karamanlidis AN (1987) Vasoactive intestinal polypeptide immunoreactive neurons in cat primary visual cortex. J Neurocytol 16:23–38

    CAS  PubMed  Google Scholar 

  • Petras JM (1969) Some efferent connections of the motor and somatosensory cortex of simian primates and felid, canid and procyonid carnivores. Ann NY Acad Sci 167:469–505

    Google Scholar 

  • Petras JM (1977) Spinocerebellar neurons in the rhesus monkey. Brain Res 130:146–151

    CAS  PubMed  Google Scholar 

  • Petras JM, Cummings JF (1977) The origin of spinocerebellar pathways. III. The nucleus centrobasalis of the cervical enlargement and the nucleus dorsalis of the thoracolumbar spinal cord. J Comp Neurol 173:693–716

    CAS  PubMed  Google Scholar 

  • Petras JM, Lehman RAW (1966) Corticospinal fibers in the raccoon. Brain Res 3:195–197

    CAS  PubMed  Google Scholar 

  • Petrovich GD, Risold PY, Swanson LW (1996) Organization of projections from the basomedial nucleus of the amygdala: a PHAL study in the rat. J Comp Neurol 374:387–420

    CAS  PubMed  Google Scholar 

  • Petrovicky P (1966a) A comparative study of the reticular formation of the guinea pig. J Comp Neurol 128:85–108

    CAS  PubMed  Google Scholar 

  • Petrovicky P (1966b) Formatio reticularis of the hedgehog (Erinaceus europaeus). Acta Univ Carol Med 12:293–307

    CAS  Google Scholar 

  • Petrovicky P (1967) The reticular formation in the bat (Myotis myotis Borkh). Folia Morphol (Praha) 146-152

    Google Scholar 

  • Pettigrew JD (1986) Flying primates? Megabats have the advanced pathway from eye to midbrain. Science 231:1304–1306

    CAS  PubMed  Google Scholar 

  • Petursdottir G (1990) Vestibulo-ocular projections in the 11-day chicken embryo: pathway specificity. J Comp Neurol 297:283–297

    CAS  PubMed  Google Scholar 

  • Phelps PE, Houser SR, Vaughn JE (1985) Immunocytochemical localization of choline acetyltransferase within the rat neostriatum: a correlated light and electron microscopic study of cholinergic neurons and synapses. J Comp Neurol 238:286–307

    CAS  PubMed  Google Scholar 

  • Pierson Pentney R, Cotter JR (1976) Retinofugal projections in an echolocating bat. Brain Res 115:479–484

    Google Scholar 

  • Pierson RJ, Carpenter MB (1974) Anatomical analysis of pupillary reflex pathways in the rhesus monkey (1976). J Comp Neurol 158:121–144

    CAS  PubMed  Google Scholar 

  • Pijnenburg AJJ, Honig WMM, Van der Heyden JAM, Van Rossum JM (1976) Effects of chemical stimulation of the mesolimbic dopamine system upon locomotor activity. Eur J Pharmacol 35:45–58

    CAS  PubMed  Google Scholar 

  • Pilleri G (1959a) Beiträge zur vergleichenden Morphologie des Nagetiergehirnes. 1. Sciuromorpha. Acta Anat 38 [Suppl]:1–42

    Google Scholar 

  • Pilleri G (1959b) Beiträge zur vergleichenden Morphologie des Nagetiergehirnes. 2. Hystricomorpha. Acta Anat 38 [Suppl]:43–95

    Google Scholar 

  • Pilleri G (1959c) Beiträge zur vergleichenden Morphologie des Nagetiergehirnes. 3. Das Gehirn der Wassernager (Castor canadensis, Ondatra zibethica, Myocastor coypus). Acta Anat 38 [Suppl]:96–123

    Google Scholar 

  • Pilleri G (1960a) Beiträge zur vergleichenden Morphologie des Nagetiergehirnes. 4. Zentralnervensystem, Körperorgane und stammesgeschichtliche Verwandtschaft der Aplodontia rufa Refinesque (Rodentia, Aplodontoidea). Acta Anat 40 [Suppl]:5–35

    Google Scholar 

  • Pilleri G (1960b) Beiträge zur vergleichenden Morphologie des Nagetiergehirnes. 5. Vergleichend-morphologische Untersuchungen über das Zentralnervensystem nearktischer Sciuromorpha und Bemerkungen zum Problem Hirnform und Taxonomie. Acta Anat 40 [Suppl]:36–68

    Google Scholar 

  • Pilleri G (1960c) Beiträge zur vergleichenden Morphologie des Nagetiergehirnes. 6. Materiale zur vergleichenden Anatomie des Gehirns der Myomorpha. Acta Anat 40 [Suppl]:69–88

    Google Scholar 

  • Pilleri G (1964) Morphologie des Gehirnes des Southern Right Whale, Eubalaena australis Desmoulins (Cetacea, Mysticeti, Balaenidae). Acta Zool (Stockh) 46:245–272

    Google Scholar 

  • Pilleri G (1966a) Morphologie des Gehirnes des Seiwals, Balaenoptera borealis Lesson (Cetacea, Mysticeti, Balaenopteridae). J Hirschforscha 8:221–267

    CAS  Google Scholar 

  • Pilleri G (1966b) Morphologie des Gehirnes des Buckelwals, megaptera novaeangliae Borowski (Cetacea, Mysticeti, Balaenopteridae). J Hirnforsch 8:437–491

    CAS  PubMed  Google Scholar 

  • Pilleri G, Gihr M (1969a) Das Zentralnervensystem der Zahn-und Bartenwale. Rev Suisse Zool 76:995–1037

    CAS  PubMed  Google Scholar 

  • Pilleri G, Gihr M (1969b) On the anatomy and behavior of Risso’s dolphin (Grampus griseus G. Cuvier). Invest Cetacea 1:74–93

    Google Scholar 

  • Pilleri G, Kraus C (1969) Zum Aufbau des Cortex bei Cetaceen. Rev Suisse Zool 76:760–767

    CAS  PubMed  Google Scholar 

  • Pinchitpornchai C, Rawson JA, Rees S (1994) Morphology of parallel fibres in the cerebellar cortex of the rat: an experimental light and electron microscopic study with biocytin. J Comp Neurol 342:206–220

    Google Scholar 

  • Pindzola RR, Ho RH, Martin GF (1988) Catecholaminergic innervation of the spinal cord in the North American opossum, Didelphis virginiana. Brain Behav Evol 32:281–292

    CAS  PubMed  Google Scholar 

  • Pirlot P (1981) A quantitative approach to the marsupial brain in an eco-ethological perspective. Rev Can Biol 40:229–250

    CAS  PubMed  Google Scholar 

  • Pirlot P, Kamiya T (1985) Qualitative and quantitative brain morphology in the sirenian Dujong dujon. Z Zool Syst Evol Forsch 23:147–155

    Google Scholar 

  • Pirlot P, Nelson J (1978) Volumetric analysis of Monotreme brains. Austr Zool 20:171–179

    Google Scholar 

  • Pitkänen A, Amaral DJ (1991) Demonstration of projections from the lateral nucleus to the basal nucleus: a PHA-L study in the monkey. Exp Brain Res 83:465–470

    PubMed  Google Scholar 

  • Pitkänen A, Stefanacci L, Farb C, Go C-G, LeDoux JE, Amaral DG (1995) Intrinsic connections of the rat amygdaloid complex: projections originating in the lateral nucleus. J Comp Neurol 356:288–310

    PubMed  Google Scholar 

  • Plecha DM, Randall WC, Geis GS, Wurster RD (1988) Localization of vagal preganglionic somata controlling sinoatrial and atrioventricular nodes. Am J Physiol 255:703–717

    Google Scholar 

  • Pohlenz-Kleffner W (1969) Vergleichende Untersuchungen zur Evolution der Gehrine von Edentaten. Hirnform und Hirnfurchen. Z Zool Syst Evol Forsch 7:181–208

    Google Scholar 

  • Poirier LJ, Bouvier G (1966) The red nucleus and its efferent nervous pathways in the monkey. J Comp Neurol 128:223–244

    CAS  PubMed  Google Scholar 

  • Poljakow GI (1979) Entwicklung der Neuronen der menschlichen Grosshirnrinde. Thieme, Leipzig

    Google Scholar 

  • Polyak S (1957) The vertebrate visual system. University of Chicago Press, Chicago

    Google Scholar 

  • Pompeiano O, Brodai A (1957a) Spinovestibular fibers in the cat: an experimental study. J Comp Neurol 108:353–382

    CAS  PubMed  Google Scholar 

  • Pompeiano O, Brodai A (1957b) Experimental demonstration of a somatotopical origin of rubrospinal fibers in the cat. J Comp Neurol 108:225–252

    CAS  PubMed  Google Scholar 

  • Porrino JL, Crane AM, Goldman-Rakic PS (1981) Direct and indirect pathways from the amygdala to the frontal lobe in the rhesus monkey. J Comp Neurol 198:121–136

    CAS  PubMed  Google Scholar 

  • Porter JD, Guthrie BL, Sparks DL (1983) Innervation of monkey extraocular muscles: localization of sensory and motor neurons by retrograde transport of horseradish peroxidase. J Comp Neurol 218:208–219

    CAS  PubMed  Google Scholar 

  • Porter R (1985) The corticomotoneuronal component of the pyramidal tract: corticomotoneuronal connections and functions in primates. Brain Res Rev 10:1–26

    Google Scholar 

  • Potter H, Nauta WJH (1979) A note on the problem of olfactory associations of the orbitofrontal cortex in the monkey. Neuroscience 4:361–367

    CAS  PubMed  Google Scholar 

  • Powell TPS (1981) Certain aspects of the intrinsic organization of the cerebral cortex. In: Pompeiano O, Ajmone Marsan C (eds) Brain mechanisms and perceptual awareness. Raven, New York, pp 1–19

    Google Scholar 

  • Precechtl A (1925) Some notes upon the finer anatomy of the brain stem and basal ganglia of Elephas indicus. Verh Kon Adak Wetensch Amsterdam Proc 28:81–92

    Google Scholar 

  • Price JL (1973) An autoradiographic study of complementary laminar patterns of termination of afferent fibers to the olfactory cortex. J Comp Neurol 150:87–108

    CAS  PubMed  Google Scholar 

  • Price JL, Amaral DG (1981) An autoradiographic study of the projections of the central nucleus of the monkey amygdala. JNeurosci 1:1242–1259

    CAS  Google Scholar 

  • Price JL, Russchen FT, Amaral DG (1987) The limbic region. II. The amygdaloid complex. In: Bjorklund A, Hökfelt T, Swanson LW (eds) Integrated systems of the CNS, part I. Elsevier, Amsterdam, pp 279–388 (Handbook of chemical neuroanatomy, vol 5)

    Google Scholar 

  • Price JL, Slotnick BM, Revial M-F (1991) Olfactory projections to the hypothalamus. J Comp Neurol 306:447–461

    CAS  PubMed  Google Scholar 

  • Probst M (1899) Über vom Vierhugel, von der Brücke und vom Kleinhirn absteigende Bahnen. Dtsch Ztschr Nervenheilkd 15:192–221

    Google Scholar 

  • Prothero JW, Sundsten JW (1984) Folding of the cerebral cortex in mammals. A scaling model. Brain Behav Evol 24:152–167

    CAS  PubMed  Google Scholar 

  • Provis J (1977) The organization of the facial nucleus of the brush-tailed possum (Trichosurus vulpecula). J Comp Neurol 172:177–188

    CAS  PubMed  Google Scholar 

  • Pubols BHJ, Haring JH (1995) The raccoon spinocervical and spinothalamic tracts: a horseradish peroxidase study. Brain Res Rev 20:196–208

    PubMed  Google Scholar 

  • Pubols BH, Pubols LM (1966) Somatic sensory representation in the thalamic ventrobasal complex of the Virginia opossum. J Comp Neurol 127:19–34

    PubMed  Google Scholar 

  • Pujol R, Carlier E, Lenoir M (1980) Ontogenetic approach to inner and outer hair cell function. Hearing Res 2:223–230

    Google Scholar 

  • Purves D, Riddle DR, LaMantia AS (1992) Iterated patterns of brain circuitry (or how the cortex gets its spots). Trends Neurosci 15:362–368

    CAS  PubMed  Google Scholar 

  • Qvist H (1989a) Demonstration of axonal branching of fibres from certain precerebellar nuclei to the cerebellar cortex and nuclei: a retrograde fluorescent double-labelling study in the cat. Exp Brain Res 75:15–27

    CAS  PubMed  Google Scholar 

  • Qvist H (1989b) The cerebellar nuclear afferent and efferent connections with the lateral reticular nucleus in the cat as studied with retrograde transport of WGA-HRP. Anat Embryol 179:471–483

    CAS  PubMed  Google Scholar 

  • Qvist H, Dietrichs E, Walberg F (1984) An ipsilateral projection from the red nucleus to the lateral reticular nucleus in the cat. Anat Embryol (Bed) 170:327–330

    CAS  Google Scholar 

  • Raappana P, Arvidsson J (1993) Location, morphology, and central projections of mesencephalic trigeminal neurons innervating rat masticatory muscles studied by axonal transport of choleragenoid-horseradish peroxidase. J Comp Neurol 328:103–114

    CAS  PubMed  Google Scholar 

  • Radinsky L (1968) Evolution of somatic sensory specialization in otter brains. J Comp Neurol 134:495–506

    CAS  PubMed  Google Scholar 

  • Radinsky L (1973a) Are sting badgers skunks? Implications of neuroanatomy for mustelid phylogeny. J Mammal 54:585–594

    Google Scholar 

  • Radinsky L (1973b) Evolution of the canid brain. Brain Behav Evol 7:169–202

    CAS  PubMed  Google Scholar 

  • Radinsky L (1975) Evolution of the felid brain. Brain Behav Evol 11:214–254

    CAS  PubMed  Google Scholar 

  • Radinsky L (1976) Oldest horse brains: more advanced than previously realized. Science 194:626–627

    CAS  PubMed  Google Scholar 

  • Radinsky L (1977) Early primate brains: facts and fiction. J Hum Evol 6:79–86

    Google Scholar 

  • Ragsdale CW Jr, Graybiel AM (1988) Fibers from the basolateral nucleus of the amygdala selectively innervate striosomes in the caudate nucleus of the cat. J Comp Neurol 269:506–522

    PubMed  Google Scholar 

  • Rakic P (1971) Guidance of neurons migrating to the fetal monkey neocortex. Brain Res 33:471–476

    CAS  PubMed  Google Scholar 

  • Rakic P (1972) Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol 145:61–84

    CAS  PubMed  Google Scholar 

  • Rakic P (1978) Neuronal migration and contact guidance in the primate telencephalon. Postgrad Med J 54:25–40

    PubMed  Google Scholar 

  • Rakic P (1988) Specification of cerebral cortex areas. Science 241:170–176

    CAS  PubMed  Google Scholar 

  • Ralston DD, Milroy AM, Ralston H Jr (1987) Non-myelinated axons are rare in the medullary pyramids of the macaque monkey. Neurosci Lett 73:215–219

    CAS  PubMed  Google Scholar 

  • Ralston DD, Ralston H Jr (1985) The terminations of corticospinal tract axons in the macaque monkey. J Comp Neurol 242:325–337

    CAS  PubMed  Google Scholar 

  • Ralston HJI (1965) The organization of the substantia gelatinosa Rolandi in the cat lumbosacral spinal cord. Z Zellforsch 67:1–23

    PubMed  Google Scholar 

  • Ralston HJI (1968) Dorsal root projections to dorsal horn neurons in the cat spinal cord. J Comp Neurol 132:303–330

    PubMed  Google Scholar 

  • Ralston HJI, Ralston DD (1992) The primate dorsal spinothalamic tract: evidence for a specific termination in the posterior nuclei (Po/SG) of the thalamus. Pain 48:107–118

    PubMed  Google Scholar 

  • Ramon Y Cajal S (1909) Histologie du système nerveux de l’homme et des vertèbres, vol. 1. Maloine Paris

    Google Scholar 

  • Ramon-Moliner E (1979) A retrothalamic system of collateral fibers from the cerebral peduncle. Brain Res 170:1–21

    CAS  PubMed  Google Scholar 

  • Ramon-Moliner E (1984) Subcortical projections of the pericruciate cortex of cat. An autoradiography study. J Hirnforsch 25:445–459

    CAS  PubMed  Google Scholar 

  • Ranson SW (1913) The course within the spinal cord of the non-medullated fibres of the dorsal roots. A study of Lissauer’s tract in the cat. J Comp Neurol 23:259–281

    Google Scholar 

  • Rapaport DH, Wilson PD (1983) Retinal ganglion cell size groups projecting to the superior colliculus and the dorsal lateral geniculate nucleus in the North American opossum. J Comp Neurol 213:74–85

    CAS  PubMed  Google Scholar 

  • Rasmussen DD (1989) The projection pattern of forepaw nerves to the cuneate nucleus of the raccoon. Neurosci Lett 98:129–134

    Google Scholar 

  • Ray JP, Price JL (1992) The organization of the thalamocortical connections of the mediodorsal thalamic nucleus in the rat, related to the ventral forebrain-prefrontal cortex topography. J Comp Neurol 323:167–197

    CAS  PubMed  Google Scholar 

  • Ray JP, Price JL (1993) The organization of the projections from the mediodorsal nucleus of the thalamus to orbital and medial prefrontal cortex in the monkey. J Comp Neurol 337:1–31

    CAS  PubMed  Google Scholar 

  • Reddy VK, Cassini P, Ho RH, Martin GF (1990) Origins and terminations of bulbospinal axons that contain serotonin and either enkephalin or substance-P in the North American Opossum. J Comp Neurol 294:96–108

    CAS  PubMed  Google Scholar 

  • Redgrave P, Marrow L, Dean P (1992) Topographical organization of the nigrotectal projection in rat: evidence for segregated channels. Neuroscience 50:571–595

    CAS  PubMed  Google Scholar 

  • Redgrave P, Mitchell IJ, Dean P (1987) Descending projections from the superior colliculus in rat: a study using orthograde transport of wheatgerm-agglutinin conjugated horseradish peroxidase. Exp Brain Resb 68:147–167

    CAS  Google Scholar 

  • Redgrave P, Mitchell IJ, Dean P (1987) Further evidence for segregated output channels from superior colliculus in rat: ipsilateral tecto-pontine and tecto-cuneiform projections have different cells of origin. Brain Resa 413:170–174

    CAS  Google Scholar 

  • Redgrave P, Odekunle A, Dean P (1986) Tectal cells of origin of predorsal bundle in rat: location and segregation from ipsilateral descending pathway. Exp Brain Res 63:279–293

    CAS  PubMed  Google Scholar 

  • Reep R (1984) Relationship betwen prefrontal and limbic cortex: a comparative anatomical review. Brain Behav Evol 25:5–80

    CAS  PubMed  Google Scholar 

  • Reep RL, O’Shea TJ (1990) Regional brain morphometry and lissencephaly in the Sirenia. Brain Behav Evol 35:185–194

    CAS  PubMed  Google Scholar 

  • Rees D, Hore J (1970) The motor cortex of the brush-tailed possum (Trichosurus vulpecula): motor representation, motor function and the pyramidal tract. Brain Res 20:439–451

    CAS  PubMed  Google Scholar 

  • Regidor J, Divac I (1987) Architectonics of the thalamus in the echidna. Brain Behav Evol 30:328–41

    CAS  PubMed  Google Scholar 

  • Rehkämper G, Necker R, Nevo E (1994) Functional anatomy of the thalamus in the blind mole rat Spalax ehrenbergi: an architectonic and electrophysiologicaal controlled tracing study. J Comp Neurol 347:570–584

    PubMed  Google Scholar 

  • Reiner A (1991) A comparison of neurotransmitter-specific and neuropeptide-specific neuronal cell types present in the dorsal cortex in turtles with those present in the isocortex in mammals: implications for the evolution of isocortex. Brain Behav Evol 38:53–91

    CAS  PubMed  Google Scholar 

  • Reiter RJ (1981) The mammalian pineal gland: structure and function. Am J 162:287–313

    CAS  Google Scholar 

  • Reiter RJ (1993) The melatonin rhythm — both a clock and a calendar. Experientia 49:654–664

    CAS  PubMed  Google Scholar 

  • Renaud LP, Hopkins DA (1977) Amygdala afferents from the mediobasal hypothalamus: An electrophysiological and neuroanatomical study in the rat. Brain Res 121:201–213

    CAS  PubMed  Google Scholar 

  • Rethelyi M, Szentagothai J (1969) The large synaptic complexes of the substantia gelatinosa. Exp Brain Res 7:258–274

    CAS  PubMed  Google Scholar 

  • Rethelyi M, Szentagothai J (1973) Distribution and connections of afferent fibres in the spinal cord. In: Iggo A (ed) Handbook of sensory physiology. Vol. II. Somatosensory system. Berlin Heidelberg New York vol. II.: pp. 207-252

    Google Scholar 

  • Rethelyi M, Light AR, Perl ER (1982) Synaptic complexes formed by functionally defined primary afferent units with fine myelinated fibers. J Comp Neurol 207:381–393

    CAS  PubMed  Google Scholar 

  • Rexed B (1952) The cytoarchitectonic organization of the spinal cord in the cat. J Comp Neurol 96:415–496

    Google Scholar 

  • Rexed B (1954) A cytoarchitectonic atlas of the spinal cord in the cat. J Comp Neurol 100:297–379

    CAS  PubMed  Google Scholar 

  • Rexed B, Brodai A (1951) The nucleus cervicalis lateralis. A spino-cerebellar relay nucleus. J Neurophysiol 14:399–407

    CAS  PubMed  Google Scholar 

  • Rhoades RW, Fish SE, Chiaia NL, Bennett-Clarke C, Mooney RD (1989) Organization of the projections from the trigeminal brainstem complex to the superior colliculus in the rat and hamster: anterograde tracing with Phaseolus vulgaris Leucoagglutinin and intra-axonal injection. J Comp Neurol 289:641–656

    CAS  PubMed  Google Scholar 

  • Rhoades RW, Kuo DC, Poker JD, Fish SE, Voneida TJ (1982) Indirect visual cortical input to the deep layers of the hamster’s superior colliculus via the basal ganglia. J Comp Neurol 208:239–254

    CAS  PubMed  Google Scholar 

  • Rhoton AL, O’Leary JL, Ferguson P (1966) The trigeminal, facial, vagal, and glossopharyngeal nerves in the monkey. Arch Neurol 14:530–540

    PubMed  Google Scholar 

  • Ribak CE (1978) Aspinous and sparsely-spinous stellate neurons in the visual cortex of rats contain glutamic acid carboxylase. J. Neurocytol. 7:461–478

    CAS  PubMed  Google Scholar 

  • Ricardo JA (1980) Efferent connections of the subthalamic region in the rat. I. The subthalamic nucleus of Luys. Brain Res 202:257–271

    CAS  PubMed  Google Scholar 

  • Ricardo JA (1983) Hypothalamic pathways involved in metabolic regulatory functions, as identified by tracktracing methods. Adv Metab Dis 10:1–30

    CAS  Google Scholar 

  • Ricardo JA, Koh ET (1978) Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures of the rat. Brain Res 153:1–26

    CAS  PubMed  Google Scholar 

  • Ricardo JA, Koh ET (1978) Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat. Brain Res 153:1–26

    CAS  PubMed  Google Scholar 

  • Richmond FJ, Courville J, Saint-Cyr JA (1982) Spino-olivary projections from the upper cervical spinal cord: an experimental study using autoradiography and horseradish peroxidase. Exp Brain Res 47:239–251

    CAS  PubMed  Google Scholar 

  • Richter E (1966) Über die Entwicklung des Globus pallidus und des Corpus subthalamicum beim Menschen. In: Hassler R, Stephan H (eds) Evolution of the forebrain: phylogenesis and ontogenesis of the forebrain. Thieme, Stuttgart

    Google Scholar 

  • Ridgway SH, Demski LS, Schwanzel-Fukuda M (1987) The terminal nerve in odontocete cetaceans. Ann NY Acad Sci 519:201–212

    CAS  PubMed  Google Scholar 

  • Rieck RW, Huerta MF, Harting JK, Weber JT (1986) Hypothalamic and ventral thalamic projections to the superior colliculus in the cat. J Comp Neurol 243:249–265

    CAS  PubMed  Google Scholar 

  • Riley HA (1928) A comparative study of the Arbor Vitae and the folial pattern of the mammalian cerebellum. Archiv Neurol Psychiatr 20:895–1034

    Google Scholar 

  • Rioch DM (1929) Studies on the diencephalon of Carnivora, part I. The nuclear configuration of the thalamus, epithalamus, and hypothalamus of the dog and cat. J Comp Neurol 49:1–119

    Google Scholar 

  • Risold PY, Canteras NS, Swanson LW (1994) Organization of projections from the anterior hypothalamic nucleus: a Phaseolus vulgaris-leucoagglutinin study in the rat. J Comp Neurol 348:1–40

    CAS  PubMed  Google Scholar 

  • Roberts GW, Woodhams PL, Polak JM, Crow TJ (1982) Distribution of neuropeptides in the limbic system of the rat: The amygdaloid complex. Neuroscience 7:99–131

    CAS  PubMed  Google Scholar 

  • Robertson B, Grant G, Bjorkeland M (1983) Demonstration of spinocerebellar projections in cat using anterograde transport of WGA-HRP, with some observations on spinomesencephalic and spinothalamic projections. Exp Brain Res 52:99–104

    CAS  PubMed  Google Scholar 

  • Robertson LT, Stotler WA (1974) The structure and connections of the developing inferior olivary nucleus of the rhesus monkey. J Comp Neurol 158:167–182

    CAS  PubMed  Google Scholar 

  • Robertson RT (1983) Efferents of the pretectal complex: separate populations of neurons project to lateral thalamus and to inferior olive. Brain Res 258:91–95

    CAS  PubMed  Google Scholar 

  • Robinson FR, Cohen JL, May J, Sestokas AK, Glickstein M (1987a) Cerebellar targets of visual pontine cells in the cat. J Comp Neurol 223:471–482

    Google Scholar 

  • Robinson FR, Houk JC, Gibson AR (1987b) Limb specific connections of the cat magnocellular red nucleus. J Comp Neurol 257:553–577

    CAS  PubMed  Google Scholar 

  • Rocha-Miranda CE, Cavalcante LA, Gawryszewski LG, Linden R, Volchan E (1978) The vertical meridian representation and the pattern of retinotectal projections in the opossum. In: Rocha-Miranda CE, Lent R (eds) Opossum neurobiology (Neurobiologia do Gamba). Academia Brasileira de Ciencias, Rio de Janeiro, pp 113–126

    Google Scholar 

  • Rockel AJ, Hiorns RW, Powell TPS (1974) Numbers of neurons through the full depth of neocortex. J. Anat 118:371

    CAS  PubMed  Google Scholar 

  • Rockel AJ, Hiorns RW, Powell TPS (1980) The basic uniformity in structure of the neocortex. Brain 103:221–244

    CAS  PubMed  Google Scholar 

  • Rockland KS, Lund JS (1982) Widespread periodic intrinsic connections in the tree shrew visual cortex. Science 215:1532–1534

    CAS  PubMed  Google Scholar 

  • Rodieck RW, Watanabe M (1993) Survey of the morphology of macaque retinal ganglion cells that project to the pretectum, superior colliculus, and parvicellular laminae of the lateral geniculate nucleus. J Comp Neurol 338(2):289–303

    CAS  PubMed  Google Scholar 

  • Roeling TAP, Veening JG, Kruk MR, Peters JPW, Vermelis MEJ, Nieuwenhuys R (1994) Efferent connections of the hypothalamic “aggression area” in the rat. Neuroscience 59:1001–1024

    CAS  PubMed  Google Scholar 

  • Roger M, Cadusseau J (1985) Afférents to the zona incerta in the rat: a combined retrograde and anterograde study. J Comp Neurol 241:480–492

    CAS  PubMed  Google Scholar 

  • Roger M, Cadusseau J (1987) Anatomical evidence of a reciprocal connection between the posterior thalamic nucleus and the parvocellular division of the red nucleus in the rat. A combined retrograde and anterograde study. Neuroscience 21:573–583

    CAS  PubMed  Google Scholar 

  • Rogers JH, Resibois A (1992) Calretinin and calbindin-D28K in rat brain: patterns of partial co-localization. Neuroscience 51:853–865

    Google Scholar 

  • Rolls ET (1992) Neurophysiology and functions of the primate amygdala. In: Aggleton JP (ed) The amygdala: neurobiological aspects of emotion, memory and mental dysfunction. Wiley-Liss, New York, pp 143–167

    Google Scholar 

  • Romanes GJ (1951) The motor cell columns of the lumbosacral cord of the cat. J Comp Neurol 94:313–364

    CAS  PubMed  Google Scholar 

  • Romanowski CAJ, Mitchell IJ, Crossman AR (1985) The organization of the efferent projections of the zona incerta. J Anat 143:75–95

    CAS  PubMed  Google Scholar 

  • Romer AS (1962) The vertebrate body, 3rd edn. Saunders, Philadelphia

    Google Scholar 

  • Roney KJ, Scheibel AB, Shaw GL (1979) Dendritic bundles: survey of anatomical experiments and physiological theories. Brain Res Rev 1:225–271

    Google Scholar 

  • Room P, Groenewegen HJ (1986) The connections of the parahippocampal cortex in the cat. II. Subcortical afferents. J Comp Neurol 251:451–473

    CAS  PubMed  Google Scholar 

  • Roppolo JR, Nadelhaft I, De Groat WC (1985) The organization of pudendal motoneurons and primary afferent projections in the spinal cord of the rhesus monkey revealed by horseradish peroxidase. J Comp Neurol 234:475–488

    CAS  PubMed  Google Scholar 

  • Rosa MG, Schmid LM (1994) Topography and extent of visual-field representation in the superior colliculus of the megachiropteran Pteropus. Vis Neurosci 11:1037–1057

    CAS  PubMed  Google Scholar 

  • Rose JE (1942) The thalamus of the sheep: cellular and fibrous structure and comparison with pig, rabbit and cat. J Comp Neurol 77:469–523

    Google Scholar 

  • Rose JE (1952) The cortical connections of the reticular complex of the thalamus. Res Publ Assoc Res Nerv Ment Dis 30:454–479

    CAS  PubMed  Google Scholar 

  • Rose JE (1960) Organization of frequency sensitive neurons in the cochlear nuclear complex of the cat. In: Grant L, Rasmussen GL, Windle WF (eds) Neural mechanisms of the auditory and vestibular systems, chap 9. Thomas, Springfield, pp 116–136

    Google Scholar 

  • Rose JE, Mountcastle VB (1959) Touch and kinesthesis. In: Field J (ed) Neurophysiology. American Physiology Society, Washington, DC, Sect 1, vol 1, pp 387–429

    Google Scholar 

  • Rose JE, Woolsey CN (1949) Organization of the mammalian thalamus and its relationships to the cerebral cortex. Electroencephalogr Clin Neurophysiol 1:391–403

    CAS  PubMed  Google Scholar 

  • Rose M (1935) Cytoarchitektonik und Myeloarchitektonik der Grosshirnrinde. In: Bumke O, Foerster O (eds) Handbuch der Neurologie, vol I: Allgemeine Neurologie I, Anatomic Springer, Berlin Heidelberg New York, pp 588–778

    Google Scholar 

  • Rose PK, MacDonald J, Abrahams VC (1991) Projections of the tectospinal tract to the upper cervical spinal cord of the cat: a study with the anterograde tracer PHA-L. J Comp Neurol 314:91–105

    CAS  PubMed  Google Scholar 

  • Ross CA, Ruggiero DA, Reis DJ (1985) Projections from the nucleus tractus solitarii to the rostral ventrolateral medulla. J Comp Neurol 242:511–534

    CAS  PubMed  Google Scholar 

  • Ross CD, Godfrey DA (1985) Distributions of choline acetyl-transferase and acetylcholinesterase activities in layers of rat superior colliculus. J Histochem Cytochem 33:631–641

    CAS  PubMed  Google Scholar 

  • Ross MD (1977) The tectorial membrane of the rat. Am J Anat 139:449–482

    Google Scholar 

  • Ross LS, Pollak GD, Zook JM (1988) Origin of ascending projections to an isofrequency region of the mustache bat’s inferior colliculus. J Comp Neurol 270:488–505

    CAS  PubMed  Google Scholar 

  • Rossi GF, Brodai A (1956) Spinal afferents to the trigeminal sensory nuclei and the nucleus of the solitary tract. Confin Neurol (Basel) 16:321–332

    Google Scholar 

  • Rouiller EM, Capt M, Dolivo M, De Ribaupierre F (1986) Tensor tympani reflex pathways studied with retrograde horseradish peroxidase and transneuronal viral tracing techniques. Neurosci Lett 72:247–252

    CAS  PubMed  Google Scholar 

  • Rowe M (1990) Organization of the cerebral cortex in Monotremes and Marsupials. In: Jones EG, Peters A (eds) Cerebral cortex, vol 8B, part II. Plenum, New York, pp 263–334

    Google Scholar 

  • Royce G, Ward JP, Harting JK (1976) Retinofugal pathways in two marsupials. J Comp Neurol 170:391–414

    CAS  PubMed  Google Scholar 

  • Royce GJ (1987) Recent research on the centromedian and parafascicular nuclei. In: Carpenter MB, Jayaraman A (eds) The basal ganglia II: structure and function-current concepts, vol 32: advances in behavioural biology. Plenum, New York, pp 293–319

    Google Scholar 

  • Royce GJ, Mourey RJ (1985) Efferent connections of the centromedian and parafascicular thalamic nuclei: an autoradiographic investigation in the cat. J Comp Neurol 235:277–300

    CAS  PubMed  Google Scholar 

  • Royce GJ, Bromley S, Gracco C, Beckstead RM (1989) Thalamocortical connections of the rostral intralaminar nuclei: an autoradiographic analysis in the cat. J Comp Neurol 288:555–582

    CAS  PubMed  Google Scholar 

  • Rubertone JA, Haines DE (1982) The vestibular complex in a prosimian primate (Galago senegalensis): morphological and spinovestibular connections. Brain Behav Evol 20:129–155

    CAS  PubMed  Google Scholar 

  • Rubertone JA, Mehler WR (1980) Afférents to the vestibular complex in rat: a horseradish peroxidase study. Neurosci Abstr 6:225

    Google Scholar 

  • Rubertone JA, Mehler WR, Cox GE (1983) The intrinsic organization of the vestibular complex: evidence for internuclear connectivity. Brain Res 263:137–141

    CAS  PubMed  Google Scholar 

  • Rubertone JA, Mehler WR, Voogd J (1995) The vestibular nuclear complex. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic, San Diego, pp 773–796

    Google Scholar 

  • Rubin E, Purves D (1980) Segmental organization of sympathetic preganglionic neurons in the mammalian spinal cord. J Comp Neurol 192:163–174

    CAS  PubMed  Google Scholar 

  • Ruda MA, Coffield J, Steinbusch HWM (1982) Immunocytochemical analysis of serotonergic axons in laminae I and II of the lumbar spinal cord of the cat. J Neurosci 2:1660–1671

    CAS  PubMed  Google Scholar 

  • Rudebeck B (1945) Contributions to forebrain morphology in dipnoi. Acta Zool 26:10–157

    Google Scholar 

  • Ruggiero DA, Ross CA, Kumada M, Reis DJ (1982) Réévaluation of projections from the mesencephalic trigeminal nucleus to the medulla and spinal cord: new projections. A combined retrograde and anterograde horseradish peroxidase study. J Comp Neurol 206:278–292

    CAS  PubMed  Google Scholar 

  • Ruigrok TJH, Cella F (1995) Precerebellar nuclei and red nucleus. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic, San Diego, pp 277–306

    Google Scholar 

  • Ruigrok TJH, Voogd J (1990) Cerebellar nucleo-olivary projections in the rat: an anterograde tracing study with Phaseolus vulgaris Leucoagglutinin (PHA-L). J Comp Neurol 298:315–333

    CAS  PubMed  Google Scholar 

  • Ruigrok TJ, Cella F, Voogd J (1995) Connections of the lateral reticular nucleus to the lateral vestibular nucleus in the rat. An anterograde tracing study with Phaseolus vulgaris leucoagglutinin. Eur J Neurosci 7:1410–1413

    CAS  PubMed  Google Scholar 

  • Ruiz-Marcos A, Valverde F (1970) Dynamic architecture of the visual cortex. Brain Res 19:25–39

    CAS  PubMed  Google Scholar 

  • Rushlow W, Flumerfelt BA, Naus CCG (1995) Colocalization of somatostatin, neuro-peptide Y, and NADPH-diaphorase in the caudate-putamen of the rat. J Comp Neurol 351:499–508

    CAS  PubMed  Google Scholar 

  • Russchen FT (1982a) Amygdalopetal projections in the cat. I. Cortical afferent connections. A study with retrograde and anterograde tracing techniques. J Comp Neurol 206:159–179

    CAS  PubMed  Google Scholar 

  • Russchen FT (1982b) Amygdalopetal projections in the cat. II. Subcortical afferent connections. A study with retrograde tracing techniques. J Comp Neurol 207:157–176

    CAS  PubMed  Google Scholar 

  • Russchen FT (1986) Cortical and subcortical afferents of the amygdaloid complex. In: Ben-Ari Y, Schwarcz R (eds) Excitatory amino acids and epilepsy. Plenum, New York, pp 35–52

    Google Scholar 

  • Russchen FT, Price JL (1984) Amygdalostriatal projections in the rat. Topographical organizational and fiber morphology shown using the lectin PHA-L as an anterograde tracer. Neurosci Lett 47:15–22

    CAS  PubMed  Google Scholar 

  • Russchen FT, Bakst I, Amaral DG, Price JL (1985a) The amygdalostriatal projections in the monkey. An anterograde tracing study. Brain Res 329:241–257

    CAS  PubMed  Google Scholar 

  • Russchen FT, Amaral DG, Price JL (1985b) The afferent connections of the substantia innominata in the monkey, Macaca fascicularis. J Comp Neurol 242:1–27

    CAS  PubMed  Google Scholar 

  • Russchen FT, Amaral DG, Price JL (1987) The afferent input to the magnocellular division of the mediodorsal thalamic nucleus in the monkey, Macaca fascicularis. J Comp Neurol 256:175–210

    CAS  PubMed  Google Scholar 

  • Rustioni A (1973) Non-primary afferents to the nucleus gracilis from the lumbar cord of the cat. Brain Res 51:81–95

    CAS  PubMed  Google Scholar 

  • Rustioni A (1975) Dorsal column nuclei afferents in the lateral funiculus of the cat: distribution pattern and absence of sprouting after chronic deafferentation. Exp Brain Res 23:1–12

    CAS  PubMed  Google Scholar 

  • Rustioni A (1977) Spinal neurons project to the dorsal column nuclei of rhesus monkeys. Science 196:656–658

    CAS  PubMed  Google Scholar 

  • Rustioni A, Hayes NL (1981) Corticospinal tract collaterals to the dorsal column nuclei of cats: an anatomical single and double retrograde tracer study. Exp Brain Res 43:237–245

    CAS  PubMed  Google Scholar 

  • Rustioni A, Kaufman AB (1977) Identification of cells or origin of non-primary afferents to the dorsal column nuclei of the cat. Exp Brain Res 18:1–14

    Google Scholar 

  • Rustioni A, Sanyal S, Kuypers HGJM (1971a) A histochemical study of the distribution of the trigeminal divisions in the substantia gelatinosa of the rat. Brain Res 32:45–52

    CAS  PubMed  Google Scholar 

  • Rustioni A, Kuypers HGJM, Holstege G (1971b) Propriospinal projections from the ventral and lateral funiculi of the motoneurons in the lumbosacral cord of the cat. Brain Res 34:255–276

    CAS  PubMed  Google Scholar 

  • Rustioni A, Hayes NL, O’Neill S (1979) Dorsal column nuclei and ascending spinal afferents in macaque. Brain 102:95–125

    CAS  PubMed  Google Scholar 

  • Rutherford JG, Gwyn DG (1982) A light and electron microscopic study of the interstitial nucleus of Cajal in rat. J Comp Neurol (205):327–340

    CAS  PubMed  Google Scholar 

  • Rutherford JG, Zulk-Harper A, Gwyn DG (1989) A comparison of the distribution of the cerebellar and cortical connections of the nucleus of Darkschewitsch (ND) in the cat: a study using anterograde and retrograde HRP tracing techniques. Anat Embryol (Berl) 180:585–496

    Google Scholar 

  • Rye DB, Wainer BH, Mesulam M-M, Mufson EJ, Saper CB (1984) Cortical projections arising from the basal forebrain: a study of cholinergic and noncholinergic components combining retrograde tracing and immunohistochemical localization of choline acetyltransferase. Neuroscience 13:627–643

    CAS  PubMed  Google Scholar 

  • Rye DB, Saper CB, Wainer BH (1987) Pedunculopontine tegmental nucleus of the rat: cytoarchitecture, cytochemistry, and some extrapyramidal connections of the meso-pontine tegmentum. J Comp Neurol 259:483–528

    CAS  PubMed  Google Scholar 

  • Sachs GM, Schneider GE (1984) The morphology of optic tract axons arborizing in the superior colliculus of the hamster. J Comp Neurol 230:155–167

    CAS  PubMed  Google Scholar 

  • Sadikot AF, Parent A, Francois C (1992a) Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a PHA-L study of subcortical projections. J Comp Neurol 315:137–159

    CAS  PubMed  Google Scholar 

  • Sadikot AF, Parent A, Smith Y, Bolam JP (1992b) Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a light and electron microscopic study of the thalamostriatal projection in relation to striatal heterogeneity. J Comp Neurol 320:228–242

    CAS  PubMed  Google Scholar 

  • Saint-Cyr JA (1983) The projection from the motor cortex to the inferior olive in the cat. Neuroscience 10:667–684

    CAS  PubMed  Google Scholar 

  • Saint-Cyr JA (1987) Anatomical organization of corticomesencephalo-olivary pathways in cat, as demonstrated with axonal transport techniques. J Comp Neurol 257:39–59

    CAS  PubMed  Google Scholar 

  • Saint-Cyr JA, Courville J (1980) Projections from the motor cortex, mid-brain and vestibular nuclei to the inferior olive in the cat. Anatomical organization and functional correlates. In: Courville J, De Montigny C, Lamarre Y (eds) The Inferior Olivary Nucleus. Raven, New York, pp 97–124

    Google Scholar 

  • Saint-Cyr JA, Courville J (1981) Sources of descending afferents to the inferior olive from the upper brain stem in the cat as revealed by the retrograde transport of horseradish peroxidase. J Comp Neurol 198:567–581

    CAS  PubMed  Google Scholar 

  • Saint-Cyr JA, Courville J (1982a) Projection from the vestibular nuclei to the inferior olive in the cat: an autoradiographic and horseradish peroxidase study. Brain Res 165:189–200

    Google Scholar 

  • Saint-Cyr JA, Courville J (1982b) Descending projections to the inferior olive from the mesencephalon and superior colliculus in the cat. An autoradiographic study. Exp Brain Res 45:333–348

    CAS  PubMed  Google Scholar 

  • Saint Marie RL, Baker RA (1990) Neurotransmitter-specific uptake and retrograde transport of [3H]glycine from the inferior colliculus by ipsilateral projections of the superior olivary complex and nuclei of the lateral lemniscus. Brain Res 524:244–253

    CAS  PubMed  Google Scholar 

  • Saint Marie RL, Peters A (1985) The morphology and synaptic connections of spiny stellate neurons in monkey visual cortex (area 17): a Golgi-electron microscopic study. J Comp Neurol 233:213–235

    CAS  PubMed  Google Scholar 

  • Sakai ST (1988) Corticonigral projections from area 6 in the raccoon. Exp Brain Res 73:498–504

    CAS  PubMed  Google Scholar 

  • Sakla FB (1969) Quantitative studies on the postnatal growth of the spinal cord and the vertebral column of the albino mouse. J Comp Neurol 136:237–252

    CAS  PubMed  Google Scholar 

  • Saldana E, Merchán MA (1992) Intrinsic and commissural connections of the rat inferior colliculus. J Comp Neurol 319:417–437

    CAS  PubMed  Google Scholar 

  • Saldana E, Feliciano M, Mugnaini E (1996) Distribution of descending projections from primary auditory neocortex to inferior colliculus mimics the topography of intracollicular projections. J Comp Neurol 371:15–50

    CAS  PubMed  Google Scholar 

  • Sanderson KJ (1974) Lamination of the dorsal lateral geniculate nucleus in carnivores of the weasel (Mustellidae), Raccoon (Procyonidae) and fox (Canidae) families. J Comp Neurol 153:239–266

    Google Scholar 

  • Sandrew BB, Edwards DL, Poletti CE, Foote WE (1986) Amygdalospinal projections in the cat. Brain Res 373:235–239

    CAS  PubMed  Google Scholar 

  • Sanghera MK, Rolls ET, Roper-Hall A (1979) Visual responses of neurons in the dorsolateral amygdala of the alert monkey. Exp Neurol 63:610–626

    CAS  PubMed  Google Scholar 

  • Sanides D, Sanides F (1974) A comparative Golgi study of the neocortex in insectivores and rodents. Z Mikrosk Anat Forsch 88:957–977

    CAS  PubMed  Google Scholar 

  • Sanides D, Fries W, Albus K (1978) The corticopontine projection from the visual cortex of the cat. An autoradiographic investigation. J Comp Neurol 179:77–88

    CAS  PubMed  Google Scholar 

  • Sanides F (1970) Functional architecture of motor and sensory cortices in primates in the light of a new concept of neocortex evolution. In: Noback CR, Montagna W (eds) The primate brain. Meredith, New York, pp 137–208 (Advances in primatology, vol 1)

    Google Scholar 

  • Sanides F (1972) Representation in the cerebral cortex and its areal lamination patterns. In: Bourne G (ed) The structure and function of nervous tissue, vol V. Academic, New York, pp 329–453

    Google Scholar 

  • Sanides F, Sanides D (1972) The ‘extraverted neurons’ of the mammalian cerebral cortex. Z Anat Entw Gesch 136:272–293

    CAS  Google Scholar 

  • Saper CB (1982) Convergence of autonomic and limbic connections in the insular cortex of the rat. J Comp Neurol 210:163–173

    CAS  PubMed  Google Scholar 

  • Saper CB (1985) Organization of cerebral cortical afferent systems in the rat. II. Hypothalamocortical projections. J Comp Neurol 237:21–46

    CAS  PubMed  Google Scholar 

  • Saper CB (1990) Cholinergic system. In: Paxinos G (ed) The human nervous system. Academic, San Diego, pp 1095–1113

    Google Scholar 

  • Saper CB (1995) Central autonomic system. In: Paxinos G (ed) The rat nervous system. Academic, San Diego, pp 107–135

    Google Scholar 

  • Saper CB, Chelimski TC (1984) A cytoarchitectonic and histochemical study of nucleus basalis and associated cell groups in the normal human brain. Neuroscience 13:1023–1037

    CAS  PubMed  Google Scholar 

  • Saper CB, Loewy AD (1980) Efferent connections of the parabrachial nucleus in the rat. Brain Res 197:291–317

    CAS  PubMed  Google Scholar 

  • Saper CB, Loewy AD, Swanson LW, Cowan WM (1976a) Direct hypothalamo-autonomic connections. Brain Res 117:305–312

    CAS  PubMed  Google Scholar 

  • Saper CB, Swanson LW, Cowan WM (1976b) The efferent connections of the ventromedial nucleus of the hypothalamus of the rat. J Comp Neurol 169:409–442

    CAS  PubMed  Google Scholar 

  • Sarter M, Markowitsch HJ (1983) Convergence of basolateral amygdaloid and mediodorsal thalamic projections in different areas of the frontal cortex in the rat. Brain Res Bull 10:607–622

    CAS  PubMed  Google Scholar 

  • Sarter M, Markowitsch HJ (1984) Collateral innervation of the medial and lateral prefrontal cortex by amygdaloid, thalamic, and brainstem neurons. J Comp Neurol 224:445–460

    CAS  PubMed  Google Scholar 

  • Sato Y (1977) Comparative morphology of the visual system of some Japanese species of Soricoidea (Superfamily) in relation to leif habits. J Hirnforsch 18:531–546

    CAS  PubMed  Google Scholar 

  • Satoda T, Takahashi O, Tashiro T, Matsushima R, Uemura-Sumi M, Mizuno N (1987) Representation of the main branches of the facial nerve within the facial nucleus of the Japanese monkey (Macaca fuscata). Neurosci Lett 78:283–287

    CAS  PubMed  Google Scholar 

  • Satoda T, Takahashi O, Uchida T, Mizuno N (1995) An anterograde-retrograde labeling study of the carotid sinus nerve of the Japanese monkey (Macaca fuscata). Neurosci Res 22:381–387

    CAS  PubMed  Google Scholar 

  • Satoh K, Fibiger HC (1986) Cholinergic neurons of the laterodorsal tegmental nucleus: efferent and afferent connections. J Comp Neurol 253:277–302

    CAS  PubMed  Google Scholar 

  • Satomi H, Takahashi K, Kosaka I, Aoki M (1989) Reappraisal of projection levels of the corticospinal fibers in the cat, with special reference to the fibers descending through the dorsal funiculus: a WGA-HRP study. Brain Res 492:255–260

    CAS  PubMed  Google Scholar 

  • Savander V, Go C-G, LeDoux JE, Pitkänen A (1995) Intrinsic connections of the rat amygdaloid complex: projections originating in the basal nucleus. J Comp Neurol 361:345–368

    CAS  PubMed  Google Scholar 

  • Savander V, Go C-G, LeDoux JE, Pitkänen A (1996) Intrinsic connections of the rat amygdaloid complex: projections originating in the accessory basal nucleus. J Comp Neurol 374:291–313

    CAS  PubMed  Google Scholar 

  • Sawaguchi T, Kubota K (1986) A hypothesis on the primate neocortex evolution: column-multiplication hypothesis. Int J Neurosci 30:57–64

    CAS  PubMed  Google Scholar 

  • Sawchenko PE, Swanson LW (1982) The organization of noradrenergic pathways form the brainstem to the para-ventricular and supraoptic nuclei in the rat. Brain Res Rev 4:275–325

    Google Scholar 

  • Scalia F (1966) Some olfactory pathways in the rabbit brain. J Comp Neurol 126:285–310

    CAS  PubMed  Google Scholar 

  • Scalia F (1968) A review of recent experimental studies on the distribution of the olfactory tracts in mammals. Brain BehavEvol 1:101–123

    Google Scholar 

  • Scalia F (1972) The termination of retinal axons in the pretectal region of mammals. J Comp Neurol 145:223–258

    CAS  PubMed  Google Scholar 

  • Scalia F (1976) Structure of the olfactory and accessory olfactory systems. In: Llinás R, Precht W (eds) Frog neurobiology. Springer, Berlin Heidelberg New York, pp 213–233

    Google Scholar 

  • Scalia F, Winans SS (1975) The differential projections of the olfactory bulb and the accessory olfactory bulb in mammals. J Comp Neurol 161:31–56

    CAS  PubMed  Google Scholar 

  • Scheibel AB (1979) Development of axonal and dendritic neuropil as a function of evolving behavior. In: Schmidt FO, Worden FG (eds) The neurosciences fourth study program. MIT Press, Cambridge, pp VII+1185

    Google Scholar 

  • Scheibel ME, Scheibel AB (1958) Structural substrates for integrative patterns in the brain stem reticular core. In: Jasper HH, Procter LD Reticular formation of the brain, chap II. Little Brown, Boston, pp 31–55

    Google Scholar 

  • Scheibel ME, Scheibel AB (1966a) Spinal motorneurons, interneurons and Renshaw cells. A Golgi study. Arch Ital Biol 104:328–353

    Google Scholar 

  • Scheibel ME, Scheibel AB (1966b) The organization of the nucleus reticularis thalami: a Golgi study. Brain Res 1:43–62

    CAS  PubMed  Google Scholar 

  • Scheibel ME, Scheibel AB (1968) Terminal axonal patterns in cat spinal cord. II. The dorsal horn. Brain Res 9:32–58

    CAS  PubMed  Google Scholar 

  • Scheibel ME, Scheibel AB (1970a) Organization of spinal motoneuron dendrites in bundles. Exp Neurol 28:106–112

    CAS  PubMed  Google Scholar 

  • Scheibel ME, Scheibel AB (1970b) Elementary processes in selected thalamic and cortical subsystems — the structural substrates. In: Schmitt FO (ed) The neurosciences second study program. Rockefeller University Press, New York, pp 443–457

    Google Scholar 

  • Scheibel ME, Scheibel AB (1978) The dendritic structure of the human Betz cell. In: Brazier MAB, Petsche H (eds) Architectonics of the cerebral cortex. Raven, New York, pp 43–57

    Google Scholar 

  • Scheich H, Langner G, Tidemann C, Coles RB, Guppy A (1986) Electroreception and electrolocation in platypus. Nature 319:401–402

    CAS  PubMed  Google Scholar 

  • Schmahmann JD, Pandya DN (1989) Anatomical investigation of projections to the basis pontis from posterior association cortices in the rhesus monkey. J Comp Neurol 289:53–73

    CAS  PubMed  Google Scholar 

  • Schmahmann JD, Pandya DN (1991) Projections to the basis pontis from the superior temporal region in the rhesus monkey. J Comp Neurol 308:224–248

    CAS  PubMed  Google Scholar 

  • Schmahmann JD, Pandya DN (1993) Prelunate, occipitotemporal, and parahippocampal projections to the basis pontis in rhesus monkey. J Comp Neurol 337:94–112

    CAS  PubMed  Google Scholar 

  • Schmahmann JD, Pandya DN (1995) Prefrontal cortex projections to the basilar pons in rhesus monkey: implications for the cerebellar contribution to higher function. Neurosci Lett 199:175–178

    CAS  PubMed  Google Scholar 

  • Schmidt M, Zhang H-Y, Hoffmann K-P (1993) OKN-related neurons in the rat nucleus of the optic tract and dorsal terminal nucleus of the accessory optic system receive a direct cortical input. J Comp Neurol 330:147–157

    CAS  PubMed  Google Scholar 

  • Schmidt M, Schiff D, Bentivoglio M (1995) Independent efferent populations in the nucleus of the optic tract: an anatomical and physiological study in rat and cat. J Comp Neurol 360:271–285

    CAS  PubMed  Google Scholar 

  • Schnurr B, Spatz WB, Illing R-B (1992) Similarities and differences between cholinergic systems in the superior colliculus of guinea pig and rat. Exp Brain Res 90:291–296

    CAS  PubMed  Google Scholar 

  • Schober W, Brauer K (1974) Makromorphologie des Zentralnervensystems. II. Teil. Das Gehirn. In: Helmcke JG, Starck D, Wermuth H (eds) Handbuch der Zoologie, vol 8(52). De Gruyter, Berlin, New York, pp 1–26

    Google Scholar 

  • Schoen JHR (1964) Comparative aspects of the descending fibre systems in the spinal cord. Progress in Brain Resarch 11:203–222

    CAS  Google Scholar 

  • Schoenen J (1982) The dendritic organization of the human spinal cord: the dorsal horn. Neuroscience 7:2057–2087

    CAS  PubMed  Google Scholar 

  • Schoenen J, Faull RLM (1990) 2. Spinal cord: cytoarchitectural, dendroarchitectural, and myeloarchitectural organization. In: Paxinos G (ed) The human nervous system. Academic, San Diego, p 19–5

    Google Scholar 

  • Schofield BR, Hallman LE, Lin CS (1987) Morphology of corticotectal cells in the primary visual cortex of hooded rats. J Comp Neurol 261:85–97

    CAS  PubMed  Google Scholar 

  • Schölten JM (1946) De plaats van den paraflocculus in het geheel der cerebellaire correlaties. Thesis, University of Amsterdam

    Google Scholar 

  • Schröder KF, Hopf A, Lange H, Thörner G (1975) Morphometrisch-statistische Strukturanalysen des Striatum, Pallidum und Nucleus subthalamicus beim Menschen. I. Striatum. J Hirnforsch 16:333–350

    PubMed  Google Scholar 

  • Schümann R (1987) Course and origin of the crossed parabigeminotectal pathway in rat. A retrograde HRP-study. J Histochem 28:585–590

    Google Scholar 

  • Schwaber JS, Kapp BS, Higgins GA, Rapp PR (1982) Amygdaloid and basal forebrain direct connections with the nucleus of the solitary tract and the dorsal motor nucleus. J Neurosci 2:1424–1438

    CAS  PubMed  Google Scholar 

  • Schwanzel-Fukuda M, Fadem BH, Soledad Garcia M, Pfaff DW (1987) The immunocytochemical localizatio of luteinizing hormone-releasing hormone in the brain of the gray short-tailed opossum (Monodelphis domestica). Ann NY Acad Sci 519:213–228

    CAS  PubMed  Google Scholar 

  • Schwanzel-Fukuda M, Pfaff DW (1994) Luteinizing hormonereleasing hormone (LHRH) and neural cell adhesion molecule (NCAM)-immunoreactivity in development of the forebrain and reproductive system. Ann Endocrinol [Paris] 55:235–241

    CAS  Google Scholar 

  • Schwartzkroin PA, Kunkel DD (1985) Morphology of identified interneurons in the CA1 regions of guinea pig hippocampus. J Comp Neurol 232:205–218

    CAS  PubMed  Google Scholar 

  • Schwartzkroin PA, Mathers LH (1978) Physiological and morphological identification of a nonpyramidal hippocampal cell type. Brain Res 157:1–10

    CAS  PubMed  Google Scholar 

  • Schwerdtfeger WK, Löpez-García C (1986) GABAergic neurons in the cerebral cortex of the brain of a lizard (Podarcis hispanica). Neurosci Lett 68:117–121

    CAS  PubMed  Google Scholar 

  • Schwerdtfeger WK, Lorente M-J (1988a) GABA-immunoreactive neurons in the medial and dorsomedial cortices of the lizard telencephalon. Some data on their structure, distribution and synaptic relations. In: Schwerdtfeger WK, Smeets WJAJ (eds) The forebrain of reptiles. Karger, Basel, pp 110–121

    Google Scholar 

  • Schwerdtfeger WK, Lorente M-J (1988b) Laminar distribution and morphology of gamma-aminobutyric-acid (GABA)-immunoreactive neurons in the medial and dorsomedial areas of the cerebral cortex of the lizard Podarcis hispanica. J Comp Neurol 278:473–485

    CAS  PubMed  Google Scholar 

  • Schwindt PC, Precht W, Richter A (1974) Monosynaptic excitatory and inhibitory pathways from medial midbrain nuclei to trochlear motoneurons (1964). Exp Brain Res 20:223–238

    CAS  PubMed  Google Scholar 

  • Scott TG (1981) A unique pattern of localization within the cerebellum of the mouse. J Comp Neurol 122:1–8

    Google Scholar 

  • Sefton AJ, Mackay-Sim A, Baur LA, Cottee LJ (1981) Cortical projections to visual centres in the rat: an HRP study. Brain Res 215:1–13

    CAS  PubMed  Google Scholar 

  • Segovia S, Guilamön A (1993) Sexual dimorphism in the vemeronasal pathway and sex differences in reproductive behaviors. Brain Res Rev 18:51–74

    CAS  PubMed  Google Scholar 

  • Seki Y (1958) Observations on the spinal cord of the right whale. Sci Rep Whales Res Inst 13:231–251

    Google Scholar 

  • Seki Y, Murakoshi F, Miyoshi M (1963) Comparative anatomical and experimental studies on the anterior pyramidal tract. Nihon Univ J Med 5:1–32

    Google Scholar 

  • Selemon LD, Goldman-Rakic PS (1985) Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 5:776–794

    CAS  PubMed  Google Scholar 

  • Selemon LD, Goldman-Rakic PS (1988) Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the Rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior. J Neurosci 8:4049–4068

    CAS  PubMed  Google Scholar 

  • Selemon LD, Goldman-Rakic PS (1990) Topographic intermingling of striatonigral and striatopallidal neurons in the rhesus monkey. J Comp Neurol 297:359–376

    CAS  PubMed  Google Scholar 

  • Shapiro RE, Miselis RR (1985) The central neural connections of the area postrema of the rat. J Comp Neurol 234:344–364

    CAS  PubMed  Google Scholar 

  • Shaw MD, Alley KE (1981) Generation of the ocular motor nuclei and their cell types in the rabbit. J Comp Neurol 200:69–82

    CAS  PubMed  Google Scholar 

  • Shen JM, Kriegstein AR (1987) Turtle hippocampal cortex contains distinct cell types, burstfiring neurons, and an epileptogenic subfield. J Neurophysiol 56:1616–1649

    Google Scholar 

  • Shepherd GM, Gréer CA (1990) Olfactory bulb. In: Shepherd GM (ed) The synaptic organization of the brain, 3rd edn. Oxford University Press, Oxford, pp 133–169

    Google Scholar 

  • Sherk H (1979) Connections and visual-field mapping in cat’s tectoparabigeminal circuit. J Neurophysiol 42:1656–1668

    CAS  PubMed  Google Scholar 

  • Sherk H (1986) The claustrum and the cerebral cortex. In: Jones EG, Peters A (eds) Sensory-motor areas and aspects of cortical connectivity. Plenum, New York, pp 467–499 (Cerebral cortex, vol 5)

    Google Scholar 

  • Shimizu H, Norita M (1991) Connections of the insular cortex in kittens: an anatomical demonstration with wheatgerm agglutinin conjugated to horseradish peroxidase technique. Int J Dev Neurosci 9:479–491

    CAS  PubMed  Google Scholar 

  • Shink E, Bevan MD, Bolam JP, Smith Y (1996) The subthalamic nucleus and the external pallidum: two tightly interconnected structures that control the output of the basal ganglia in the monkey. Neuroscience 73:335–357

    CAS  PubMed  Google Scholar 

  • Shinoda Y, Sugiuchi Y, Futami T, Izawa R (1992) Axon collaterals of mossy fibers from the pontine nucleus in the cere-bellar dentate nucleus. J Neurophysiol 67:547–560

    CAS  PubMed  Google Scholar 

  • Shinonaga Y, Takada M, Mizuno N (1994) Topographic organization of collateral projections from the basolateral amygdaloid nucleus to both the prefrontal cortex and nucleus accumbens in the rat. Neuroscience 58:389–397

    CAS  PubMed  Google Scholar 

  • Shipley MT (1974) Presubiculum afferents to the entorhinal area and the Papez circuit. Brain Res 67:162–168

    CAS  PubMed  Google Scholar 

  • Shipley MT, Adamek GD (1984) The conncctions of the mouse olfactory bulb: a study using orthograde and retrograde transport of wheat germ agglutinin conjugated to horseradish peroxidase. Brain Res Bull 12:669–688

    CAS  PubMed  Google Scholar 

  • Shipley MT, McLean JH, Ennis M (1995) Olfactory system. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic, San Diego, pp 899–926

    Google Scholar 

  • Shipley MT, Murphy AZ, Rizvi TA, Ennis M, Behbehani MM (1996) Olfaction and brainstem circuits of reproductive behavior in the rat. Prog Brain Res 107:355–377

    CAS  PubMed  Google Scholar 

  • Shneiderman A, Oliver DL, Henkel CK (1988) Connections of the dorsal nucleus of the lateral lemniscus: an inhibitory parallel pathway in the ascending auditory system? J Comp Neurol 276:188–208

    CAS  PubMed  Google Scholar 

  • Shneiderman A, Chase MB, Rockwood JM, Benson CG, Potashner SJ (1993) Evidence for a GABAergic projection from the dorsal nucleus of the lateral lemniscus to the inferior colliculus. J Neurochem 60:72–82

    CAS  PubMed  Google Scholar 

  • Shriver JE, Stein BM, Carpenter MB (1968) Central projections of spinal dorsal roots in the monkey. I. Cervical and upper thoracic dorsal roots. Am J Anat 123:27–74

    CAS  PubMed  Google Scholar 

  • Shute CC, Lewis PR (1967) The ascending cholinergic reticular system: neocortical, olfactory and subcortical projections. Brain 90:497–520

    CAS  PubMed  Google Scholar 

  • Sie PG (1956) Localization of fibre systems within the white matter of the medulla oblongata and the cervical cord in man. Thesis, University of Leiden

    Google Scholar 

  • Siegborn J, Grant G (1983) Brainstem projections of different branches of the vestibular nerve: an experimental study by transganglionic transport of horseradish peroxidase in the cat. I. The horizontal ampullar and utricular nerves. Arch Ital Biol 121:237–248

    CAS  PubMed  Google Scholar 

  • Siegborn J, Yingcharoen K, Grant G (1991) Brainstem projections of different branches of the vestibular nerve: an experimental study by transganglionic transport of horseradish peroxidase in the cat. II. The anterior and posterior ampullar nerves. Anat Embryol 184:291–299

    CAS  PubMed  Google Scholar 

  • Sillito AM, Jones HE, Gerstein GL, West DC (1994) Featurelinked synchronization of thalamic relay cell firing induced by feedback from the visual cortex. Nature 369:479–482

    CAS  PubMed  Google Scholar 

  • Simerly RB (1995) Anatomical substrates of hypothalamic integration. In: Paxinos G (ed) The rat nervous system. Academic, San Diego, pp 353–376

    Google Scholar 

  • Simerly RB, Swanson LW (1986) The organization of neural imputs to the medial preoptic nucleus of the rat. J Comp Neurol 246:312–342

    CAS  PubMed  Google Scholar 

  • Siminoff R, Schwassmann O, Kruger L (1966) An electrophysiological study of the visual projection to the superior colliculus of the rat. J Comp Neurol 127:435–444

    CAS  PubMed  Google Scholar 

  • Simmons RMT (1979) The diencephalon of Ptilocercus lowii (pen-tailed tree-shrew). J Hirnforsch 20:69–92

    CAS  PubMed  Google Scholar 

  • Simmons RMT (1980a) The morphology of the diencephalon in the Prosimii. II. The lemuroidea and lorisoidea, part I. Thalamus and metathalamus. J Hirnforsch 21:449–491

    CAS  PubMed  Google Scholar 

  • Simmons RMT (1980b) The morphology of the diencephalon in the Prosimii. II. The Lemuroidea and Lorisoidea, part II. Epithalamus, subthalamus and hypothalamus. J Hirnforsch 21:493–514

    CAS  PubMed  Google Scholar 

  • Simmons RMT (1981) Bearing of the diencephalon on the taxonomic status of the Tupaioidea. J Hirnforsch 22:129–152

    CAS  PubMed  Google Scholar 

  • Simmons RMT (1982) The morphology of the diencephalon in the Prosimii. III. The Tarsioidea. J Hirnforsch 23:149–173

    CAS  PubMed  Google Scholar 

  • Simp LS, Donate-Oliver F (1991) Superficial tectal neurons projecting to the dorsolateral pontine nucleus in the rabbit. Exp Brain Res 87:696–699

    Google Scholar 

  • Simpson GG (1981) The principles of classification and a classification of mammals. Bull Am Mus Nat Hist 85:vii, 349

    Google Scholar 

  • Simpson JI (1988) The accessory optic system. Annu Rev Neurosci 7:13–41

    Google Scholar 

  • Simpson JI, Leonard CS, Soodak RE (1957) The accessory optic system of rabbit. II. Spatial organization of direction selectivity. J Neurophysiol 60:2055–2072

    Google Scholar 

  • Simpson JI, Graf W, Leonard C (1981) The coordinate system of visual climbing fibers to the flocculus. In: Fuchs A, Becker (eds) Progress in oculomotor research. Elsevier/ North Holland, Amsterdam, pp 475–484

    Google Scholar 

  • Simpson JI, Wylie DR, De Zeeuw CI (1996) On climbing fiber signals and their consequence(s). Behav Brain Sci 19:384–398

    Google Scholar 

  • Skeen LC, Hall WC (1977) Efferent projections of the main and accessory olfactory bulb in the tree shrew (Tupaia glis). J Comp Neurol 172:1–36

    CAS  PubMed  Google Scholar 

  • Skeen LC, Pindzola RR, Schofield BR (1984) Tangential organization of olfactory association, and commissural projections to olfactory cortex in a species of reptile (Trionyx spiniferus), bird (Aix sponsa), and mammal (Tupaia glis). Brain Behav Evol 25:206–216

    CAS  PubMed  Google Scholar 

  • Skinner RD, Garcia-Rill E (1984) The mesencephalic locomotor region (MLR) in the rat. Brain Res 323:385–389

    CAS  PubMed  Google Scholar 

  • Sloper JJ, Powell TPS (1979) An experimental electron microscopic study of afferent connections to the primate motor and somatic sensory cortices. Philos Trans R Soc Lond Ser B 285:199–226

    CAS  Google Scholar 

  • Slugg RM, Light AR (1994) Spinal cord and trigeminal projections to the pontine parabrachial region in the rat as demonstrated with Phaseolus vulgaris leucoagglutinin. J Comp Neurol 339:49–61

    CAS  PubMed  Google Scholar 

  • Smart IHM, McSherrey GM (1986) Gyms formation in the cerebral cortex in the ferret. I. Description of the external changes. J Anat 146:141–152

    CAS  PubMed  Google Scholar 

  • Smith LM, Ebner FF, Colonnier M (1980) The thalamocortical projection in Pseudemys turtles: a quantitative electron microscope study. J Comp Neurol 190:445–462

    CAS  PubMed  Google Scholar 

  • Smith MV, Apkarian AV (1991) Thalamically projecting cells of the lateral cervical nucleus in monkey. Brain Res 555:10–18

    CAS  PubMed  Google Scholar 

  • Smith OC (1930) The corpus striatum, amydala, and stria terminalis of tamandua tetradactyla. J Comp Neurol 51:65–127

    Google Scholar 

  • Smith PH, Joris PX, Carney LH, Yin TC (1991) Projections of physiologically characterized globular bushy cell axons from the cochlear nucleus of the cat. J Comp Neurol 304:387–407

    CAS  PubMed  Google Scholar 

  • Smith RL (1975) The ascending fiber projections from the principal sensory trigeminal nucleus in the rat. J Comp Neurol 148:423–446

    Google Scholar 

  • Smith RL (1991) Axonal projections and connections of the principal sensory trigeminal nucleus in the monkey. J Comp Neurol 163:347–376

    Google Scholar 

  • Smith Y, Parent A (1986) Differential connections of caudate nucleus and putamen in the squirrel monkey (Saimiri sciureus). Neuroscience 18:347–371

    CAS  PubMed  Google Scholar 

  • Smith Y, Paré D (1994) Intra-amygdaloid projections of the lateral nucleus in the cat: PHA-L anterograde labeling combined with postembedding GABA and glutamate immunocytochemistry. J Comp Neurol 342:232–248

    CAS  PubMed  Google Scholar 

  • Smith Y, Hazrati L-N, Parent A (1990) Efferent projections of the subthalamic nucleus in the squirrel monkey as studied by the PHA-L anterograde tracing method. J Comp Neurol 294:306–323

    CAS  PubMed  Google Scholar 

  • Smithson KG, Weiss ML, Hatton GI (1989) Supraoptic nucleus afferents from the main olfactory bulb. I. Anatomical evidence from anterograde and retrograde tracers in rat. Neuroscience 31:277–287

    CAS  PubMed  Google Scholar 

  • Snyder RL (1977) A comparative study of the neurons of origin of cerebellar afferents in the rat, cat and squirrel monkey based on the horseradish peroxidase (HRP) retrograde tracer technique: the spinal afferents. Anat Rec 187:719

    Google Scholar 

  • Snyder RL, Faull RLM, Mehler WR (1978) A comparative study of the neurons of origin of the spino-cerebellar afferents in the rat, cat and squirrel monkey based on the retrograde transport of horseradish peroxidase. J Comp Neurol 181:833–852

    CAS  PubMed  Google Scholar 

  • Solnitzky O (1938) The thalamic nuclei of Sus scrofa. J Comp Neurol 69:121–169

    Google Scholar 

  • Somogyi P (1977) A specific axo-axonal interneuron in the visual cortex of the rat. Brain Res 136:345–350

    CAS  PubMed  Google Scholar 

  • Somogyi P, Cowey A (1981) Combined Golgi and electron microscopic study on the synapses formed by double bouquet cells in the cerebral cortex of the cat and monkey. J Comp Neurol 195:547–566

    CAS  PubMed  Google Scholar 

  • Somogyi P, Cowey A (1984) Double bouquet cells. In: Peters A, Jones EG (eds) Cellular components of the cerebral cortex. Plenum, New York, pp 337–360 (Cerebral cortex, vol 1)

    Google Scholar 

  • Somogyi P, Hodgson AJ (1985) Antisera to GABA III. Demonstration of GABA in Golgi-impregnated neurons and in conventional electron microscopic sections of cat striate cortex. J Histochem Cytochem 33:249–257

    CAS  PubMed  Google Scholar 

  • Somogyi P, Soltész I (1986) Immunogold demonstration of GABA in synaptic terminals of intracellularly recorded, horseradish peroxidase-filled basket cells and clutch cells in the cat’s visual cortex. Neuroscience 19:1051–1065

    CAS  PubMed  Google Scholar 

  • Somogyi P, Hodgson AJ, Smith AD (1979) An approach to tracing neuron networks in the cerebral cortex and basal ganglia: combination of Golgi staining, retrograde transport of horseradish peroxidae and anterograde degeneration of synaptic boutons in the same material. Neuroscience 4:1805–1852

    CAS  PubMed  Google Scholar 

  • Somogyi P, Bolam JP, Tottersdell S, Smith AD (1981) Monosynaptic input from the nucleus accumbens ventral striatum region to retrogradely labelled nigrostriatal neurons. Brain Res 217:245–263

    CAS  PubMed  Google Scholar 

  • Somogyi P, Freund TF, Cowey A (1982) The axo-axonic interneuron in the cerebral cortex of the rat, cat and monkey. Neuroscience 7:2577–2607

    CAS  PubMed  Google Scholar 

  • Somogyi P, Kisvarday ZF, Martin KAC, Whitteridge D (1983a) Synaptic connections of morphologically identified and physiologically characterized large basket cells in the striate cortex of cat. Neuroscience 10:261–294

    CAS  PubMed  Google Scholar 

  • Somogyi P, Nunzi MG, Gorio A, Smith AD (1983b) A new type of specific interneuron in the monkey hippocampus forming synapses exclusively with the axon inital segments of pyramidal cells. Brain Res 259:137–142

    CAS  PubMed  Google Scholar 

  • Somogyi P, Freund TF, Hodgson AJ, Somogyi J, Beroukas D, Chubb IW (1985) Identified axo-axonic cells are immunoreactive for GABA in the hippocampus and visual cortex of the cat. Brain Res 332:143–149

    CAS  PubMed  Google Scholar 

  • Soriano E, Frotscher M (1989) A GABAergic axo-axonic cell in the fascia dentata controls the main excitatory hippocampal pathway. Brain Res 503:170–174

    CAS  PubMed  Google Scholar 

  • Sotelo C, Llinas R, Baker R (1974) Structural study of inferior olivary nucleus of the cat: morphological correlates of electronic coupling (1969). J Neurophysiol 37:541–559

    CAS  PubMed  Google Scholar 

  • Sousa-Pinto A (1969) Experimental anatomical demonstration of a cortico-olivary projection from area 6 (supplementary motor area?) in the cat. Brain Res 16:73–83

    CAS  PubMed  Google Scholar 

  • Sousa-Pinto A, Brodai A (1969) Demonstration of a somatotopical pattern in the cortico-olivary projection in the cat: an experimental anatomical study. Exp Brain Res 8:364–386

    CAS  PubMed  Google Scholar 

  • Spangler KM, Cant NB, Henkel CK, Farley GR, Warr WB (1987) Descending projections from the superior olivary complex to the cochlear nucleus of the cat. J Comp Neurol 259:452–465

    CAS  PubMed  Google Scholar 

  • Spann BM, Grofova I (1989) Origin of ascending and spinal pathways from the nucleus tegmenti pedunculopontinus in the rat. J Comp Neurol 283:13–27

    CAS  PubMed  Google Scholar 

  • Spann BM, Grofova I (1991) Nigropedunculopontine projection in the rat: an antero-grade tracing study with phaseolus vulgaris-leucoagglutinin (PHA-L). J Comp Neurol 311:375–388

    CAS  PubMed  Google Scholar 

  • Spear PD, Smith DC, Williams LL (1977) Visual receptivefield properties of single neurons in the cat’s ventral-lateral geniculate nucleus. J Neurophysiol 40:390–409

    CAS  PubMed  Google Scholar 

  • Spence SJ, Saint-Cyr JA (1988) Mesodiencephalic projections to the vestibular complex in the cat. J Comp Neurol 268:375–388

    CAS  PubMed  Google Scholar 

  • Spencer RF, Baker R, McCrea RA (1980) Localization and morphology of cat retractor bulbi moto-neurons. J Neurophysiol 43:754–770

    CAS  PubMed  Google Scholar 

  • Spencer RF, Porter JD (1981) Innervation and structure of extraocular muscles in the monkey in comparison to those of the cat. J Comp Neurol 198:649–665

    CAS  PubMed  Google Scholar 

  • Spencer RF, Wenthold RJ, Baker R (1989) Evidence for glycine as an inhibitory neurotransmitter of vestibular, reticular and prepositus hypoglossi neurons that project to the cat abducens nucleus. J Neurosci 9:2718–2736

    CAS  PubMed  Google Scholar 

  • Spirou GA, Brownell WE, Zidanic M (1990) Recordings from cat trapezoid body and HRP labeling of globular bushy cell axons. J Neurophysiol 63:1169–1190

    CAS  PubMed  Google Scholar 

  • Spoendlin H (1985) Anatomy of cochlear innervation. Am J Otolaryngol 6:453–467

    CAS  PubMed  Google Scholar 

  • Spooren WP, Veening JG, Cools AR (1993) Descending efferent connections of the subpallidal areas in the cat: projections to the subthalamic nucleus, the hypothalamus, and the midbrain. Synapse 15:104–123

    CAS  PubMed  Google Scholar 

  • Spooren WPJM, Veening JG, Groenewegen HJ, Cools AR (1991) Efferent connections of the striatopallidal and amygdaloid components of the substantia innominata in the cat: projections to the nucleus accumbens and caudate nucleus. Neuroscience 44:431–447

    CAS  PubMed  Google Scholar 

  • Spooren WPJM, Lynd-Balta E, Mitchell S, Haber SN (1996) Ventral pallidostriatal pathway in the monkey: evidence for modulation of basal ganglia circuits. J Comp Neurol 370:295–312

    CAS  PubMed  Google Scholar 

  • Sreesai M (1973) Cerebellar cortical projections of the opossum (Didelphis marsupialis virginiana). J Hirnforsch 15:530–544

    Google Scholar 

  • Sripanidkulchai K, Sripanidkulchai B, Wyss JM (1984) The cortical projection of the basolateral amygdaloid nucleus in the rat: a retrograde fluorescent dye study. J Comp Neurol 229:419–431

    CAS  PubMed  Google Scholar 

  • Stanton GB, Goldberg ME, Bruce CJ (1988) Frontal eye field efferents in the macaque monkey: II. Topography of terminal fields in midbrain and pons. J Comp Neurol 271:493–506

    CAS  PubMed  Google Scholar 

  • Steele GE, Weiler RE (1993) Subcortical connections of subdivisions of inferior temporal cortex in squirrel monkeys. Vis Neurosci 10:563–583

    CAS  PubMed  Google Scholar 

  • Steiger HJ, Büttner-Ennever JA (1976) Oculomotor nucleus afferents in the monkey demonstrated with horseradish peroxidase. Brain Res 160:1–15

    Google Scholar 

  • Stein BE (1981) Organization of the rodent superior colliculus: some comparisons with other mammals. Behav Brain Res 3:175–188

    CAS  PubMed  Google Scholar 

  • Stein BE, Spencer RF, Edwards SB (1983) Corticotectal and corticothalamic efferent projections of SIV somatosensory cortex in cat. J Neurophysiol 50:896–909

    CAS  PubMed  Google Scholar 

  • Steinbusch HWM (1981) Distribution of serotoninimmunoreactivity in the central nervous system of the rat — cell bodies and terminals. Neuroscience 6:557–618

    CAS  PubMed  Google Scholar 

  • Steinbusch HWM (1984) Serotonin-immunoreactive neurons and their projections in the CNS. In: Bjorklund A, Hokfelt T, Kuhar MJ (eds) Classical transmitters and transmitter receptors in the CNS, part II, vol 3. Elsevier, Amsterdam, pp 68–113

    Google Scholar 

  • Steininger TL, Rye DB, Wainer BH (1992) Afferent projections to the cholinergic pedunculopontine tegmental nucleus and adjacent midbrain extrapyramidal area in the albino rat. I. Retrograde tracing studies. J Comp Neurol 321:515–543

    CAS  PubMed  Google Scholar 

  • Stephan H (1967) Zur Entwicklungshohe der Insektivoren nach Merkmalen des Gehirns und die Definition der “Basalen Insektivoren”. Zool Anz 179:177–199

    Google Scholar 

  • Stephan H (1969) Quantitative investigations on visual structures in primate brains. II. Neurology. Proceedings of the 2nd internationl congress on primatology, Atlanta, vol 3, pp 34–42

    Google Scholar 

  • Stephan H (1975) Handbuch der Mikroskopischen Anatomie des Menschen, vol 4, part 9: Allocortex. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Stephan H (1984) Morphology of the brain in Tarsius. In: Niemitz C (ed) Biology of tarsiers. Fisher, Stuttgart, pp 319–344

    Google Scholar 

  • Stephan H, Andy OJ (1964) Quantitative comparisons of brain structures from insectivores to primates. Am Zool 4:59–74

    CAS  PubMed  Google Scholar 

  • Stephan H, Andy O (1969) Quantitative comparative neuroanatomy of primates: an attempt at a phylogenetic interpretation. Comparative and evolutionary aspects of the vertebrate central nervous system. Ann N Y Acad Sci 167:370–387

    Google Scholar 

  • Stephan H, Andy OJ (1977) Quantitative comparison of the amygdala in insectivores and primates. Acta Anat 98:130–153

    CAS  PubMed  Google Scholar 

  • Stephan H, Pirlot P (1970) Volumetric comparisons of brain structures in bats. Z Zool Syst Evol Forsch 8:200–236

    Google Scholar 

  • Stephan H, Spatz H (1962) Vergleichend-anatomische Untersuchungen an Insektivorengehirnen. IV. Gehirne afrikanischer Insektivoren. Versuch einer Zuordnung von Hirnbau und Lebensweise. Morphol Jahrbuch 103:108–174

    Google Scholar 

  • Stephan H, Baron G, Schwerdtfeger WK (1980) The brain of the common marmoset (Callithrix jacchus). Springer, Berlin Heidelberg New York

    Google Scholar 

  • Stephan H, Pirlot P, Schneider R (1974) Volumetric analysis of pteropid brains. Acta Anat 87:161–192

    CAS  PubMed  Google Scholar 

  • Stephan H, Frahm H, Bauchot R (1977) Vergleichende Untersuchungen an den Gehirnen madagassischer Halbaffen I. Encephalisation und makromorphologie. J Hirnforsch 18:115–147

    CAS  PubMed  Google Scholar 

  • Stephan H, Frahm H, Baron G (1981) New and revisited data on volumes of brain structures in insectivores and primates. Folia Primatol 35:1–29

    CAS  PubMed  Google Scholar 

  • Stephan H, Frahm HD, Baron G (1987) Comparison of brain structure volumes in Insectivora and primates. VII. Amygdaloid components. J Hirnforsch 28:571–584

    CAS  PubMed  Google Scholar 

  • Stephan H, Baron G, Frahm HD (1990) Comparative brain research in mammals, vol 1: insectivora with a stereotaxic atlas of the hedgehog brain. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Stephan H, Baron G, Frahm HD (1991) Insectivora. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Steriade M, Llinás RR (1988) The functional states of the thalamus and the associated neuronal interplay. Physiol Rev 68:649–742

    CAS  PubMed  Google Scholar 

  • Sterling P (1971) Receptive fields and synaptic organization of the superficial gray layer of the cat superior colliculus. Vision Res [Suppl] 3:309–328

    Google Scholar 

  • Sterling P (1973) Quantitative mapping with the electron microscope: retinal terminals in the superior colliculus. Brain Res 54:347–354

    CAS  PubMed  Google Scholar 

  • references>Sterling P, Kuypers HGJM (1967) Anatomical organization of the brachial spinal cord of the cat. II. The motoneuron plexus. Brain Res 4:16–32

    CAS  PubMed  Google Scholar 

  • Stevens CF (1969) Structure of cat frontal olfactory cortex. J Neurophysiol 32:184–192

    CAS  PubMed  Google Scholar 

  • Stevens RT, Hodge CJJ, Apkarian AV (1989) Medial, intralaminar, and lateral terminations of lumbar spinothalamic tract neurons: a fluorescent double-label study. Somatosens Mot Res 6:285–308

    CAS  PubMed  Google Scholar 

  • Stevens RT, Apkarian AV, Hodge CJJ (1991) The location of spinothalamic axons within spinal cord white matter in cat and squirrel monkey. Somatosens Mot Res 8:97–102

    CAS  PubMed  Google Scholar 

  • Strack AM, Sawyer WB, Hughes JH, Platt KB, Loewy AD (1989) A general pattern of CNS innervation of the sympathetic outflow demonstrated by transneuronal pseudorabies viral infections. Brain Res 491:156–162

    CAS  PubMed  Google Scholar 

  • Strominger NL, Truscott C, Miller RA, Royce GJ (1979) An autoradiographic study of the rubro-olivary tract in the rhesus monkey. J Comp Neurol 83:33–46

    Google Scholar 

  • Strominger NL, Nelson LR, Strominger RN (1985) Banding of rubro-olivary terminations in the principal inferior olivary nucleus of the chimpanzee. Brain Res 16:185–187

    Google Scholar 

  • Stroud BB (1895) The mammalian cerebellum. J Comp Neurol 5:71–118

    Google Scholar 

  • Stuesse SL, Newman DB (1990) Projections from the medial agranular cortex to brain stem visuomotor centers in rats. Exp Brain Res 80:532

    CAS  PubMed  Google Scholar 

  • Stumpf WE (1975) The brain: an endocrine gland and hormone target. In: Stumpf WE, Grant LD (eds) Anatomical neuroendocrinology. Karger, Basel, pp 2–8

    Google Scholar 

  • Stumpf WE, Sar M (1978) Anatomical distribution of estrogen, androgen, progestin, corticosteroid and thyroid hormone target sites in the brain of mammals: phylogeny and ontogeny. Am Zool 18:435–445

    CAS  Google Scholar 

  • Stuurman FJ (1906) Die Localisation der Zungenmuskeln im Nucleus Hypoglossi. Anat Anz 48:593–610

    Google Scholar 

  • Sugimoto T, Itoh K, Mizuno N (1978) Direct projections from the Edinger-Westphal nucleus to the cerebellum and spinal cord in the cat: an HRP study. Neurosci Lett 9:17–22

    CAS  PubMed  Google Scholar 

  • Sugimoto T, Itoh K, Mizuno N, Nomura S, Konishi A (1979) The site of origin of cardiac preganglionic fibers of the vagus nerve: an HRP study in the cat. Neursci Lett 12:53–58

    CAS  Google Scholar 

  • Sugita S, Otani K, Tokunaga A, Terasawa K (1983) Laminar origin of the tecto-thalamic projections in the albino rat. Neurosci Lett 43:143–147

    CAS  PubMed  Google Scholar 

  • Sultan F, Braitenberg V (1993) Shapes and sizes of different mammalian cerebella. A study in quantitative comparative neuroanatomy. J Hirnforsch 34:79–92

    CAS  PubMed  Google Scholar 

  • Swanson LW (1976) An autoradiographic study of the efferent connections of the preoptic region in the rat. J Comp Neurol 167:227–256

    CAS  PubMed  Google Scholar 

  • Swanson LW (1982) Normal hippocampal circuitry. Neurosci Res Prog Bull 20:624–637

    Google Scholar 

  • Swanson LW (1987) The hypothalamus. In: Björklund A, Swanson LW (eds) Integrated systems of the CNS, part I. Elsevier, Amsterdam, pp 125–277 (Handbook of chemical neuroanatomy, vol 5)

    Google Scholar 

  • Swanson LW (1989) The neural basis of motivated behavior. Acta Morphol Neerl-Scand 26:165–176

    CAS  Google Scholar 

  • Swanson LW, Cowan WM (1977) An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat. J Comp Neruol 172:49–84

    CAS  Google Scholar 

  • Swanson LW, Cowan WM (1979) The connections of the septal region in the rat. J Comp Neurol 186:621–655

    CAS  PubMed  Google Scholar 

  • Swanson LW, Hartman BK (1983) The central adrenergic system. An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-B-hydroxylase as a marker. J Comp Neurol 163:467–505

    Google Scholar 

  • Swanson LW, Mogenson GJ (1981) Neural mechanisms for the functional coupling of autonomic, enocrine and somatomotor responses in adaptive behavior. Brain Res Rev 3:1–34

    CAS  Google Scholar 

  • Swanson LW, Cowan WM, Jones EG (1974) An autoradiographic study of the efferent connections of the ventral lateral geniculate nucleus in the albino rat and cat (1975). J Comp Neurol 156:143–164

    CAS  PubMed  Google Scholar 

  • Swanson LW, Mogenson GJ, Gerfen CR, Robinson P (1984) Evidence for a projection from the ateral preoptic area and substantia innominata to the ‘mesencephalic locomotor region’ in the rat. Brain Res 295:161–178

    CAS  PubMed  Google Scholar 

  • Swanson LW, Köhler C, Björklund A (1987a) The limbic region. I: The septohippocampal system. In: Björklund A, Hökfelt T, Swanson LW (eds) Integrated systems of the CNS, part I. Elsevier, Amsterdam, pp 125–277 (Handbook of chemical neuroanatomy, vol 5)

    Google Scholar 

  • Swanson LW, Mogenson GJ, Simerly RB, Wu M (1987b) Anatomical and electrophysiological evidence for a projection from the medial preoptic area to the ‘mesencephalic and subthalamic locomotor regions’ in the rat. Brain Res 405:108–122

    CAS  PubMed  Google Scholar 

  • Swenson RS, Castro AJ (1983a) The afferent connections of the inferior olivary complex in rat: a study using the retrograde transport of horseradish peroxidase. Am J Anat 166:329–341

    CAS  PubMed  Google Scholar 

  • Swenson RS, Castro AJ (1983b) The afferent connections of the inferior olivary complex in rats. An anterograde study using autoradiographic and axonal degeneration techniques. Neuroscience 8:259–275

    CAS  PubMed  Google Scholar 

  • Swindale NV (1990) Is the cerebral cortex modular? Trends Neurosci 13:487–492

    CAS  PubMed  Google Scholar 

  • Szabo J (1980a) Distribution of striatal afferents from the mesencephalon in the cat. Brain Res 188:3–21

    CAS  PubMed  Google Scholar 

  • Szabo J (1980b) Organization of the ascending striatal afferents in monkeys. J Comp Neurol 189:307–321

    CAS  PubMed  Google Scholar 

  • Szekely G, Matesz C (1948) The efferent system of cranial nerve nuclei: a comparative neuromorphological study. Adv Anat Embryol Cell Biol 128:5103–5109

    Google Scholar 

  • Szekely G, Matesz C (1982) The accessory motor nuclei of the trigeminal, facial, and abducens nerves in the rat. J Comp Neurol 210:258–264

    CAS  PubMed  Google Scholar 

  • Szentagothai J (1958) The representation of facial and scalp muscles in the facial nucleus. J Comp Neurol 88:207–220

    Google Scholar 

  • Szentágothai J (1964a) Neuronal and synaptic arrangement in the substantia gelatinosa Rolandi. J Comp Neurol 122:40

    Google Scholar 

  • Szentágothai J (1964b) The anatomical basis of synaptic transmission of excitation and inhibition in motoneurons. Acta Morphol Acad Sci Hung 8:287–309

    Google Scholar 

  • Szentágothai J (1975) The ‘module-concept’ in cerebral cortex architecture. Brain Res 95:475–496

    PubMed  Google Scholar 

  • Szentágothai J (1978) The neuron network of the cerebral cortex: a functional interpretation. Proc R Soc Lond Ser B 201:219–248

    Google Scholar 

  • Szentagothai J (1979) Local neuron ciruits of the neocortex. In: Schmitt FO, Worden FG (eds) The neurosciences fourth study program. MIT Press, Cambridge, pp 399–415

    Google Scholar 

  • Szentágothai J (1983) The modular architectonic principle of neural centers. Rev Physiol Biochem Pharmacol 98:11–61

    PubMed  Google Scholar 

  • Szentagothai-Schimert J (1941) Die Endigungsweise der absteigenden Rückenmarksbannen. Z Anat Entwickl Gesch 111:322–330

    Google Scholar 

  • Taber E (1961) The cytoarchitecture of the brain stem of the cat. I. Brain stem nuclei of cat. J Comp Neurol 116:27–70

    CAS  PubMed  Google Scholar 

  • Taber E, Brodai A, Walberg F (1960) The raphe nuclei of the brain stem in the cat. I. Normal topography and cytoarchitecture and general discussion. J Comp Neurol 114:161–187

    CAS  PubMed  Google Scholar 

  • Tagliavini F, Pietrini V (1984) On the variability of the human flocculus and paraflocculus accessorius. J Hirnforsch 25:163–170

    CAS  PubMed  Google Scholar 

  • Takada M, Li ZK, Hattori T (1988) Collateral projection from the substantia nigra to the striatum and superior colliculus in the rat. Neuroscience 25:563–568

    CAS  PubMed  Google Scholar 

  • Takada M, Tokuno H, Ikai Y, Mizuno N (1994) Direct projections from the entopeduncular nucleus to the lower brain stem in the rat. J Comp Neurol 342:409–429

    CAS  PubMed  Google Scholar 

  • Takahashi K (1965) Slow and fast groups of pyramidal tract cells and their respective membrane properties. J Neurophysiol 28:980–924

    Google Scholar 

  • Takeda T, Maekawa K (1976) Origin of the pretecto-olivary tract. A study using the horseradish peroxidase method. Brain Res 117:319–325

    CAS  PubMed  Google Scholar 

  • Takemoto I, Sasa M, Takaori S (1978) Role of the locus coeruleus in transmission onto anterior colliculus neurons. Brain Res 158:269–278

    CAS  PubMed  Google Scholar 

  • Takeuchi Y, Sano Y (1983) Immunohistochemical demonstration of serotonin nerve fibers in the neocortex of the monkey (Macaca fuscata). Anat Embryol (Berl) 166:155–168

    CAS  Google Scholar 

  • Takeuchi Y, McLean JH, Hopkins DA (1982) Reciprocal connections between the amygdala and parabrachial nuclei: ultrastructural demonstration by degeneration and axonal transport of horseradish peroxidase in the cat. Brain Res 239:583–588

    CAS  PubMed  Google Scholar 

  • Takeuchi Y, Matsushima S, Matsushima R, Hopkins DA (1983) Direct amygdaloid projections to the dorsal motor nucleus of the vagus nerve: a light and electron microscopic study in the rat. Brain Res 280:143–147

    CAS  PubMed  Google Scholar 

  • Tallaksen-Greene SJ, Eelde R, Wessendorf MW (1993) Regional distribution of serotonin and substance P coexisting in nerve fibers and terminals in the brainstem of the rat. Neuroscience 53:1127–1142

    CAS  PubMed  Google Scholar 

  • Tamai Y, Waters RS, Asanuma H (1984) Caudal cuneate nucleus projection to the direct thalamic relay to motor cortex in cat: an electrophysiological and anatomical study. Brain Res 323:360–364

    CAS  PubMed  Google Scholar 

  • Tan J, Simpson J, Voogd J (1995a) Anatomical compartments in the white matter of the rabbit flocculus. J Comp Neurol 356:1–22

    CAS  PubMed  Google Scholar 

  • Tan J, Gerrits NM, Nanhoe R, Simpson JI, Voogd J (1995b) Zonal organization of the climbing fiber projection to the flocculus and nodulus of the rabbit. A combined axonal tracing and acetylcholaminesterase histochemical study. J Comp Neurol 356:23–50

    CAS  PubMed  Google Scholar 

  • Tan J, Epema AH, Voogd J (1995c) Zonal organization of the flocculovestibular nucleus projection in the rabbit. A combined axonal tracing and acetylcholinesterase histochemical study. J Comp Neurol 356:51–71

    CAS  PubMed  Google Scholar 

  • Tanaka C, Ishikawa M, Shimada S (1982) Histochemical mapping of catecholaminergic neurons and their ascending fiber pathways in the rhesus monkey brain. Brain Res Bull 9:255–270

    CAS  PubMed  Google Scholar 

  • Tanaka K, Otani K, Tokunaga A, Sugita S (1985) The organization of neurons in the nucleus of the lateral lemniscus projecting to the superior and inferior colliculi in the rat. Brain Res 341:252–260

    CAS  PubMed  Google Scholar 

  • Tarlov E, Tarlov SR (1971) The representation of extraocular muscles in the oculomotor nuclei: experimental studies in the cat. Brain Res 34:36–52

    CAS  PubMed  Google Scholar 

  • Ten Donkelaar HJ (1988) Evolution of the red nucleus and rubrospinal tract. Behav Brain Res 28:9–20

    PubMed  Google Scholar 

  • Ten Donkelaar HJ, Lammers GJ, Gribnau AAM (1979) Neurogenesis in the amygdaloid nuclear complex in a rodent (the Chinese hamster). Brain Res 165:348–353

    PubMed  Google Scholar 

  • Ter Horst GJ, Copray JCVM, Liem RSB, Van Willigen JD (1991) Projections from the rostral parvocellular reticular formation to pontine and medullary nuclei in the rat: involvement in autonomie regulation and orofacial motor control. Neuroscience 40:735–758

    PubMed  Google Scholar 

  • Ter Horst GJ, Luiten PG, Kuipers F (1984) Descending pathways from hypothalamus to dorsal motor vagus and ambiguus nuclei in the rat. J Auton Nerv Syst 11:59–75

    PubMed  Google Scholar 

  • Terasawa K, Otani K, Yamada J (1979) Descending pathways of the nucleus of the optic tract in the rat. Brain Res 173:405–417

    CAS  PubMed  Google Scholar 

  • Terubayashi H, Fujisawa H (1984) The accessory optic system of rodents: a whole-mount HRP study. J Comp Neurol 227:285–295

    CAS  PubMed  Google Scholar 

  • Thiede U (1966) Zur Evolution von Hirneigenschaften mitteleuropäischer und südamerikanischer Musteliden. Z Zool Syst Evol Forsch 4:318–377

    Google Scholar 

  • Thiele A, Vogelsang M, Hoffmann K-P (1991) Pattern of retinotectal projection in the megachiropteran bat Rousettus aegyptiacus. J Comp Neurol 314:671–683

    CAS  PubMed  Google Scholar 

  • Thomas A, Westrum LE, De Vito JL, Biedenbach MA (1984) Unmyelinated axons in the pyramidal tract of the cat. Brain Res 301:162–165

    CAS  PubMed  Google Scholar 

  • Thompson AM, Thompson GC (1993) Relationship of descending inferior colliculus projections to olivocochlear neurons. J Comp Neurol 335:402–412

    CAS  PubMed  Google Scholar 

  • Thompson GC, Thompson AM (1986) Olivocochlear neurons in the squirrel monkey brainstem. J Comp Neurol 254:246–258

    CAS  PubMed  Google Scholar 

  • Thompson GC, Igarashi M, Stach BA (1985) Identification of stapedius muscle motoneurons in squirrel monkey and bush baby. J Comp Neurol 231:270–279

    CAS  PubMed  Google Scholar 

  • Thörner G, Lange H, Hopf A (1975) Morphometrischstatistische Strukturanalysen des Striatum, Pallidum und Nucleus subthalamicus beim Menschen. II Pallidum. J Hirnforsch 16:404–413

    Google Scholar 

  • Thornton EW, Murray M, Connorseckenrode T, Haun F (1994) Dissociation of behavioral changes in rats resulting from lesions of the habenula versus fasciculus retroflexus and their possible anatomical substrates. Behav Neurosci 108:1150–1162

    CAS  PubMed  Google Scholar 

  • Thunnissen I (1990) Vestibulocerebellar and vestibulo-oculomotor relations in the rabbit. Thesis, Erasmus University Rotterdam

    Google Scholar 

  • Thunnissen IE, Epema AH, Gerrits NM (1989) Secondary vestibulocerebellar mossy fiber projection to the caudal vermis in the rabbit. J Comp Neurol 290:262–277

    CAS  PubMed  Google Scholar 

  • Tigges J (1964) Morphogenese, Haute, Blutversorgung, Ventrikelsystem und Ruckenmark. In: Hofer H, Tigges J (eds) Makromorphologie des Zentralnervensystems, part I. Helmcke J-G, Starck D, Wermuth H (eds) Handbuch der Zoologie, vol 8(34). DeGruyter, Berlin, pp 1–42

    Google Scholar 

  • Tigges J, Tigges M (1969) The accessory optic system in Erinaceus (insectivora) and Galago (primates). J Comp Neurol 137:59–70

    CAS  PubMed  Google Scholar 

  • Tigges M, Tigges J (1970) The retinofugal fibers and their terminal nuclei in Galago crassicaudatus (Primates). J Comp Neurol 138:87–102

    CAS  PubMed  Google Scholar 

  • Tigges J, Bos J, Tigges M (1977) An autoradiographic investigation of the subcortical visual system in chimpanzee. J Comp Neurol 172:367–380

    CAS  PubMed  Google Scholar 

  • Tigges J, Tigges M, Cross NA, McBride RL, Letbetter WD, Anschel S (1982) Subcortical structures projecting to visual cortical areas in squirrel monkey. J Comp Neurol 209:29–40

    CAS  PubMed  Google Scholar 

  • Tigges J, Walker LC, Tigges M (1983) Subcortical projections to the occipital and parietal lobes of the chimpanzee brain. J Comp Neurol 220:106–115

    CAS  PubMed  Google Scholar 

  • Tiller Y (1987) Immunocytochemical localization of serotonin-containing neurons in the myelencephalon, brainstem and diencephalon of the sheep. Neuroscience 23:501–527

    Google Scholar 

  • Tilney F (1927) The brain stem of tarsius. A critical comparison with other primates. J Comp Neurol 43:371–432

    Google Scholar 

  • Tokunaga A, Otani K (1976) Dendritic patterns of neurons in the rat superior colliculus. Exp Neurol 52:189–205

    CAS  PubMed  Google Scholar 

  • Tokunaga A, Otani K (1978) Neuronal organization of the corpus parabigeminum in the rat. Exp Neurol 58:361–375

    CAS  PubMed  Google Scholar 

  • Tokunaga A, Akert K, Garey LJ, Otani K (1981) Primary and secondary subcortical projections of the monkey visual system. An autoradiographic study. Brain Res 214:137–143

    CAS  PubMed  Google Scholar 

  • Tokunaga A, Ono K, Kondo S, Tanaka H, Kurose K, Nagai H (1992) Retinal projections in the house musk shrew, Suncus murinus, as determined by anterograde transport of WGA-HRP. Brain Behav Evol 40:321–329

    CAS  PubMed  Google Scholar 

  • Tokuno H, Takada M, Kondo Y, Mizuno N (1993) Laminar organization of the substantia nigra pars reticulata in the macaque monkey, with special reference to the caudatonigro-tectal link. Exp Brain Res 92:545–548

    CAS  PubMed  Google Scholar 

  • Tolbert DL (1982) The cerebello nucleocortical pathway. Exp Brain Res 6:296–317

    Google Scholar 

  • Tömböl T (1984) Layer VI cells. In: Jones EG, Peters A (eds) Cellular components of the cerebral cortex. Plenum, New York, pp 479–519 (Cerebral cortex, vol 1)

    Google Scholar 

  • Tork I (1990) Anatomy of the serotonergic system. Ann NY Acad Sci 600:9–35

    CAS  PubMed  Google Scholar 

  • Tork I, Hornung JP (1990) Raphe nuclei and the serotonergic system. In: Paxinos G (ed) The human nervous system. Academic, San Diego, pp 1001–1022

    Google Scholar 

  • Tortelly A, Reinoso-Suarez F, Llamas A (1980) Projections from non-visual cortical areas to the superior colliculus demonstrated by retrograde transport of HRP in the cat. Brain Res 188:543–549

    CAS  PubMed  Google Scholar 

  • Torvik A (1957) The spinal projection from the nucleus of the solitary tract. An experimental study in the cat. J Anat 91:314–322

    CAS  PubMed  Google Scholar 

  • Towe AL (1975) Notes on the hypothesis of columnar organization in somatosensory cerebral cortex. Brain Behav Evol 11:16–47

    CAS  PubMed  Google Scholar 

  • Tower S, Bodian D, Howe H (1941) Isolation of intrinsic and motor mechanism of the monkeys cord. J Neurophysiol 4:388–398

    Google Scholar 

  • Toyoshima K, Kawana E, Sakai H (1980) On the neuronal origin of the afferents to the ciliary ganglion in cat. Brain Res 185:67–76

    CAS  PubMed  Google Scholar 

  • Tramonte R, Bauer JA (1986) The location of the preganglionic neurons that innervate the submandibular gland of the cat. A horseradish peroxidase study. Brain Res 375:381–384

    CAS  PubMed  Google Scholar 

  • Travers JB, Montgomery N, Sheridan J (1995) Transneuronal labeling in hamster brainstem following lingual injections with herpes simples virus-1. Neuroscience 68:1277–1293

    CAS  PubMed  Google Scholar 

  • Trejo LJ, Cicerone CM (1984) Cells in the pretectal olivary nucleus are in the pathway for the direct light reflex of the pupil in the rat. Brain Res 300:49–62

    CAS  PubMed  Google Scholar 

  • Tsai C (1925) The optic tracts and centers of the opossum, Didelphis virginiana. J Comp Neurol 39:173–216

    Google Scholar 

  • Tseng GF, Haberly LB (1989) Deep neurons in piriform cortex. I. Morphology and synaptically evoked responses including a unique high-amplitude paired shock facilitation. J Neurophysiol 62:369–385

    CAS  PubMed  Google Scholar 

  • Tucker CL, Kennedy PR (1990) Re-defining rat red nucleus: Cytoarchitectural analysis of red nucleus neurones singly and doubly labeled from spinal cord and inferior olivary nucleus. Neurosci Abstr 16:729

    Google Scholar 

  • Tucker CL, Lee SA, Kennedy PR (1989) Re-defining rat red nucleus: Cytoarchitecture and connectivity. Neurosci Abstr 15:405

    Google Scholar 

  • Turner BH, Zimmer J (1984) The architecture and some of the interconnections of the rat’s amygdala and lateral periallocortex. J Comp Neurol 227:540–557

    CAS  PubMed  Google Scholar 

  • Turner BH, Gupta KC, Mishkin M (1978) The locus and cytoarchitecture of the projection areas of the olfactory bulb in Macaca mulatta. J Comp Neurol 177:381–396

    CAS  PubMed  Google Scholar 

  • Turner BH, Mishkin M, Knapp M (1980) Organization of the amygdalopetal projections from modality-specific cortical association areas in the monkey. J Comp Neurol 191:515–543

    CAS  PubMed  Google Scholar 

  • Uchida K, Mizuno N, Sugimoto T, Itoh K, Kudo M (1983) Direct projections from the cerebellar nuclei to the superior colliculus in the rabbit: an HRP study. J Comp Neurol 216:319–326

    CAS  PubMed  Google Scholar 

  • Uchida Y (1950a) A contribution to the comparative anatomy of the amygdaloid nuclei in mammals, especially in rodents, part I: rat and mouse. Folia Psychiatr Neurol Jpn 4:25–42

    CAS  PubMed  Google Scholar 

  • Uchida Y (1950b) A contribution to the comparative anatomy of the amygdaloid nuclei in mammals, especially in rodents, part II: Guinea pig, rabbit and squirrel. Folia Psychiatr Neurol Jpn 4:91–109

    CAS  PubMed  Google Scholar 

  • Uddenberg N (1966) Studies on modality segregation and second order neurones in the dorsal funiculus. Experientia 22:441–442

    CAS  PubMed  Google Scholar 

  • Uemura M, Matsuda K, Kume M, Takeuchi Y, Matsushima R, Mizuno N (1979) Topographical arrangement of hypoglossal motoneurons: an HRP study in the cat. Neurosci Lett 13:99–104

    CAS  PubMed  Google Scholar 

  • Uemura-Sumi M, Mizuno N, Nomura S, Iwahori N, Takeuchi Y, Matsushima R (1981) Topographical representation of the hypoglossal nerve branches and tongue muscles in the hypoglossal nucleus of macaque monkeys. Neurosci Lett 22:31–35

    CAS  PubMed  Google Scholar 

  • Uemura-Sumi M, Takahashi O, Matsushima R, Takata M, Yasui Y, Mizuno N (1982) Localization of masticatory motoneurons in the trigeminal motor nucleus of the guinea pig. Neurosci Lett 29:219–224

    CAS  PubMed  Google Scholar 

  • Ueyama T, Houtani T, Ikeda M, Sato K, Sugimoto T, Mizuno N (1994) Distribution of primary afferent fibers projecting from hind-limb cutaneous nerves to the medulla oblongata in the cat and rat. J Comp Neurol 341:145–158

    CAS  PubMed  Google Scholar 

  • Ugolini G, Kuypers HGJM (1986) Collaterals of corticospinal and pyramidal fibres to the pontine grey demonstrated by a new application of the fluorescent fibre labelling technique. Brain Res 365:211–227

    CAS  PubMed  Google Scholar 

  • Ulinski PS (1974) Cyto architecture of cerebral cortex in snakes. J Comp Neurol 158:243–266

    CAS  PubMed  Google Scholar 

  • Ulinski PS (1976) Intracortical connections in the snakes Natrix sipedon and Thamnophis sirtalis. J Morphol 150:463–484

    CAS  PubMed  Google Scholar 

  • Ulinski PS (1977) Intrinsic organization of snake medial cortex: an electron microscopic and Golgi study. J Morphol 152:247–280

    CAS  PubMed  Google Scholar 

  • Ulinski PS (1979) Intrinsic organization of snake dorsomedial cortex: an electron microscopic and Golgi study. J Morphol 161:185–210

    CAS  PubMed  Google Scholar 

  • Ulinski PS (1990) The cerebral cortex of reptiles. In: Jones EG, Peters A (eds) Comparative structure and evolution of cerebral cortex, part I. Plenum, New York, pp 139–215 (Cerebral cortex, vol 8A)

    Google Scholar 

  • Ulinski PS, Peterson EH (1981) Patterns of olfactory projections in the desert iguana, Dipsosaurus dorsalis. J Morphol 168:189–228

    Google Scholar 

  • Ulinski PS, Rainey WT (1980) Intrinsic organization of snake lateral cortex. J Morphol 165:85–116

    Google Scholar 

  • Ungerstedt U (1971) Stereotaxic mapping of the monoamine pathways in the brain. Acta Physiol Scand [Suppl] 367:1–49

    CAS  Google Scholar 

  • Updyke BV (1977) Topographic organization of the projections from cortical areas 17, 18 and 19 onto the thalamus, pretectum and superior colliculus in the cat. J Comp Neurol 173:81–122

    CAS  PubMed  Google Scholar 

  • Usunoff KG, Romansky KV, Malinov GB, Ivanon DP, Blagov ZA, Galabov GP(1982) Electron microscopic evidence for the existence of a cortical tract in the rat. J Hirnforsch 23:23–29

    CAS  PubMed  Google Scholar 

  • Valverde F (1961) Reticular formation of the pons and medulla oblongata. A Golgi study. J Comp Neurol 116:71–99

    CAS  PubMed  Google Scholar 

  • Valverde F (1965) Studies on the piriform lobe. Harvard University Press, Cambridge, Massachusetts

    Google Scholar 

  • Valverde F (1967) Apical dendritic spines of the visual cortex and light deprivation in the mouse. Exp Brain Res 3:337–352

    CAS  PubMed  Google Scholar 

  • Valverde F (1976) Aspects of cortical organization related to the geometry of neurons with intra-cortical axons. J Neurocytol 5:509–529

    CAS  PubMed  Google Scholar 

  • Valverde F (1983) A comparative approach to neocortical organization based on the study of the brain of the hedgehog (Erinaceus europaeus). In: Grisolia S, Guerri C, Samson F, Norton S, Reinoso-Suárez F (eds) Ramon Y Cajal’s contribution to the neurosciences. Elsevier, Amsterdam, pp 149–170

    Google Scholar 

  • Valverde F (1985) The organizing principles of the primary visual cortex in the monkey. In: Peters A, Jones EG (eds) Visual cortex. Plenum, New York, pp 207–257 (Cerebral cortex, vol 3)

    Google Scholar 

  • Valverde F (1986) Intrinsic neocortical organization: some comparative aspects. Neuroscience 18:1–23

    CAS  PubMed  Google Scholar 

  • Valverde F, Facal-Valverde MV (1986) Neocortical layers I and II of the hedgehog (Erinaceus europaeus). I. Intrinsic organization. Anat Embryol (Berl) 173:413–430

    CAS  Google Scholar 

  • Valverde F, De Carlos JA, Lopez-Mascaraque L, DoZate-Oliver F (1986) Neocortical layers I and II of the hedgehog (Erinaceus europaeus). II. Thalamo-cortical connections. Anat Embryol (Berl) 175:167–179

    CAS  Google Scholar 

  • Van Beusekom GT (1929) Fibre analysis of the anterior and lateral funiculi of the cord in the cat. Thesis

    Google Scholar 

  • Van Crevel H (1958) The rate of secondary degeneration in the central nervous system. Thesis,University of Leiden

    Google Scholar 

  • Van Crevel H, Verhaart WJC (1963) The rate of secondary degeneration in the central nervous system. II. The optic nerve of the cat. J Anat (Lond) 97:451–464

    Google Scholar 

  • Van der Horst VGJM (1996) The basic neural circuitry for sexual behavior; pathways and plasticity. Thesis, University of Groningen

    Google Scholar 

  • Van der Horst VGJM, Holstege G (1990) Caudal medullary pathways to lumbosacral motoneuronal cell groups in the cat: evidence for direct projections possibly representing the final common pathway for lordosis. J Comp Neurol 359:457–475

    Google Scholar 

  • Van der Kooy D, Koda LY, McGinty JF, Gerfen CR, Bloom FE (1984) The organization of projections from the cortex, amygdala, and hypothalamus to the nucleus of the solitary tract in rat. J Comp Neurol 224:1–24

    PubMed  Google Scholar 

  • Van der Loos H (1965) The “improperly” oriented pyramidal cell in the cerebral cortex and its possible bearing on problems of neuronal growth and cell orientation. Bull John Hopkins Hosp 117:228–250

    Google Scholar 

  • Van der Loos H (1976) Barreloids in mouse somatosensory thalamus. Neuroscience 2:1–6

    Google Scholar 

  • Van der Loos H (1979) The development of topological equivalencies in the brain. In: Meisami A, Brazier MAB (eds) Neuronal growth and differentiation. Raven, New York, pp 331–336

    Google Scholar 

  • Van der Loos H, Woolsey TA (1973) Somatosensory cortex: structural alterations following early injury to sense organs. Science 179:395–398

    PubMed  Google Scholar 

  • Van der Want JJL, Voogd J (1987) Ultrastructural identification and localization of climbing fiber terminals in the fastigial nucleus of the cat. J Comp Neurol 258:81–90

    PubMed  Google Scholar 

  • Van der Want JJL, Wiklund L, Guegan M, Ruigrok T, Voogd J (1989) Anterograde tracing of the rat olivocerebellar system with phaseolus vulgaris leucoagglutinin (PHA-L). Demonstration of climbing fiber collaterals innervation of the cerebellar nuclei. J Comp Neurol 288:1–18

    PubMed  Google Scholar 

  • Van der Want JJL, Nunes Cardozo JJ, Van der Togt C (1992) GABAergic neurons and circuits in the pretectal nuclei and the accessory optic system of mammals. Prog Brain Res 90:283–304

    PubMed  Google Scholar 

  • Van Dijken H, Holstege JC (1997) The distribution of dopamine immunoreactive fibers and presumptive terminals in the rat brain stem. A comparison with the distribution of dopamine-B-hydroxylase. J Comp Neurol (in press)

    Google Scholar 

  • Van Eden CG, Mrzljak L, Voorn P, Uylings HBM (1989) Prenatal development of GABA-ergic neurons in the neocortex of the rat. J Comp Neurol 289:213–227

    PubMed  Google Scholar 

  • Van Gorcum NV, Assen Busch HFM (1964) Anatomical aspects of the anterior and lateral funiculi at the spinobulbar junction. In: Eccles JC, Schade JP (eds) Progress in brain research, vol 11. Elsevier, Amsterdam, pp 223–237

    Google Scholar 

  • Van Ham JJ, Yeo C (1992) Somatosensory trigeminal projections to the inferior olive, cerebellum and other precerebellar nuclei in rabbits. Eur J Neurosci 4:302–317

    PubMed  Google Scholar 

  • Van Hoesen GW (1981) The differential distribution, diversity and sprouting of cortical projections to the amygdala in the rhesus monkey. In: Ben-Ari Y (ed) The amygdaloid complex. Elsevier/North-Holland, Amsterdam, pp 77–90

    Google Scholar 

  • Van Hoesen GW (1982) The parahippocampal gyrus. Trends Neurosci 5:345–350

    Google Scholar 

  • Van Hoesen GW, Pandya DN (1975) Some connections of the entorhinal area (area 28) and perirhinal area (area 35) cortices of the rhesus monkey. I. Temporal lobe afferents. Brain Res 95:1–24

    PubMed  Google Scholar 

  • Van Hoesen GW, Pandya DN, Butters M (1975) Some connections of the entorhinal area (area 28) and perirhinal area (area 35) cortices of the rhesus monkey. II. Frontal afferents. Brain Res 95:25–38

    PubMed  Google Scholar 

  • Van Noort J (1969) The structure and connections of the inferior colliculus: an investigation of the lower auditory systems. Van Gorcum, Assen

    Google Scholar 

  • Van Noort J (1996) The anatomical basis for frequency analysis in the cochlear nuclear complex. Psychiatr Neurol Neurochir 72:109–114

    Google Scholar 

  • Vater M, Feng AS (1990) Functional organization of ascending and descending connections of the cochlear nucleus of horseshoe bats. J Comp Neurol 292:373–395

    CAS  PubMed  Google Scholar 

  • Veening J, Buma P, Ter Horst GJ, Roeling TAP, Luiten PGM and Nieuwenhuys R (1991) Hypothalamic projections to the PAG in the rat: topographical, immuno-electronmicroscopical and functional aspects. In: Depaulis A, Bandler R (eds) The midbrain periaqueductal gray matter. Plenum, New York, pp 387–415

    Google Scholar 

  • Veening JG (1978a) Cortical afferents of the amygdaloid complex in the rat: an HRP study. Neurosci Lett 8:191–195

    CAS  PubMed  Google Scholar 

  • Veening JG (1978b) Subcortical afferents of the amygdaloid complex in the rat: An HRP study. Neurosci Lett 8:197–202

    CAS  PubMed  Google Scholar 

  • Veening JG, Swanson LW, Cowan WM, Nieuwenhuys R, Geeraedts LMG (1982) The medial forebrain bundle of the rat: II. An autoradiographic study of the topography of the major descending and ascending components. J Comp Neurol 206:82–108

    CAS  PubMed  Google Scholar 

  • Veening JG, Swanson LW, Sawchenko PE (1984) The organization of projections from the central nucleus of the amygdala to brainstem sites involved in central autonomic regulation: a combined retrograde transport-immunohistochemical study. Brain Res 303:337–357

    CAS  PubMed  Google Scholar 

  • Veening JG, Te Lie S, Posthumus P, Geeraedts LMG, Nieuwenhuys R (1987) A topographical analysis of the origin of some efferent projections from the lateral hypothalamic area in the rat. Neuroscience 22:537–551

    CAS  PubMed  Google Scholar 

  • Vera PL, Ellenberger HH, Halselton JR, Haselton CL, Schneiderman N (1987) The intermediolateral nucleus: an open or closed nucleus? Brain Res 386:84–92

    Google Scholar 

  • Verburgh CA, Kuypers HGJM (1989) Branching neurons in the cervical spinal cord: a retrograde fluorescent doublelabeling study in the rat. Exp Brain Res 68:565–578

    Google Scholar 

  • Verburgh CA, Voogd J, Kuypers HGJM, Stevens HP (1990a) Propriospinal neurons with ascending collaterals to the dorsal medulla, the thalamus and the tectum: a retrograde fluorescent double-labeling study of the cervical cord of the rat. Exp Brain Res 80:577–590

    CAS  PubMed  Google Scholar 

  • Verburgh CA, Kuypers HGJM, Voogd J, Stevens HP (1990b) Spinocerebellar neurons and propriospinal neurons in the cervical spinal cord: a fluorescent double-labeling study in the rat and the cat. Exp Brain Res 75:73–82

    Google Scholar 

  • Vercelli F, Assal F, Innocenti GM (1992) Emergence of callosally projecting neurons with stellate morphology in the visual cortex of the kitten. Exp Brain Res 90:346–358

    CAS  PubMed  Google Scholar 

  • Verhaart WJC (1948) The pes pedunculi and pyramid. J Comp Neurol 88:139–155

    CAS  PubMed  Google Scholar 

  • Verhaart WJC (1957) The pes pedunculi and pyramid in hylobates. J Comp Neurol 89:71–78

    Google Scholar 

  • Verhaart WJC (1962) Anatomy of the brain stem of the elephant. J Hirnforsch 5:455–522

    CAS  PubMed  Google Scholar 

  • Verhaart WJC (1963) Pyramidal tract in the cord of the elephant. J Comp Neurol 121:45–49

    CAS  PubMed  Google Scholar 

  • Verhaart WJC (1966) The pyramidal tract of Tupaia, compared to that in other primates. J Comp Neurol 126:43–50

    CAS  PubMed  Google Scholar 

  • Verhaart WJC (1967) The non-crossing of the pyramidal tract in Procavia capensis (Storr) and other instances of absence of the pyramidal crossing. J Comp Neurol 131:387–392

    Google Scholar 

  • Verhaart WJC (1970a) The pyramidal tract in the primates. The primate brain. Adv Primatol 1:83–108

    Google Scholar 

  • Verhaart WJC (1970b) Comparative anatomical aspects of the mammalian brain stem and the cord. I. Van Gorcum, Assen

    Google Scholar 

  • Verhaart WJC, Noorduyn NJA (1961) The cerebral peduncle and the pyramid. Acta Anat 45:315–343

    CAS  PubMed  Google Scholar 

  • Verhaart WJC, Sopers-Jurgens MR Aspects of the comparative anatomy of the mammalian brain stem. Acta Morphol Neerl Scand 1:246–255

    Google Scholar 

  • Vertes RP (1984a) A lectin horseradish peroxidase study of the origin of ascending fibers in the medial forebrain bundle of the rat. The lower brainstem. Neuroscience 11:651–668

    CAS  PubMed  Google Scholar 

  • Vertes RP (1984b) A lectin horseradish peroxidase study of the orginin of ascending fibers in the medial forebrain bundle of the rat. The upper brainstem. Neuroscience 11:669–690

    CAS  PubMed  Google Scholar 

  • Vetter DE, Mugnaini E (1992) Distribution and dendritic features of three groups of rat olivocochlear neurons. A study with two retrograde cholera toxin tracers. Anat Embryol (Berl) 1992:11–16

    Google Scholar 

  • Vetter DE, Adams JC, Mugnaini E (1991) Chemically distinct rat olivocochlear neurons. Synapse 7:21–43

    CAS  PubMed  Google Scholar 

  • Vetter DE, Saldana E, Mugnaini E (1993) Input from the inferior colliculus to medial olivocochlear neurons in the rat: a double label study with PHA-L and cholera toxin. Hearing Res 70:173–186

    CAS  Google Scholar 

  • Victor M, Agamanolis J (1990) Amnesia due to lesions confined to the hippocampus: a clinical-pathological study. J Cognit Neurosci 2:246–257

    CAS  Google Scholar 

  • Vincent SR, Hattori T, McGeer EG (1978) The nigrotectal projection: a biochemical and ultrastructural characterization. Brain Res 151:159–164

    CAS  PubMed  Google Scholar 

  • Vincent SR, Johansson O, Hökfelt T, Skirboll L, Eide RP, Terenius L, Kimmel J, Goldstein M (1983) NADPH-diaphorase: a selective histochemical marker for striatal neurons containing both somatostatin-and avian pancreatic polypeptide (APP)-like immunoreactivities. J Comp Neurol 217:252–263

    CAS  PubMed  Google Scholar 

  • Vogt BA (1985) Cingulate cortex. In: Peters A, Jones EG (eds) Association and auditory cortices. Plenum, New York, pp 89–149 (Cerebral cortex, vol 4)

    Google Scholar 

  • Vogt BA (1991) The role of layer I in cortical function. In: Peters A, Jones EG (eds) Normal and altered states of function. Plenum, New York, pp 49–80 (Cerebral cortex, vol 9)

    Google Scholar 

  • Vogt BA, Rosene DL, Peters A (1981) Synaptic termination of thalamic and callosal afferents in cingulate cortex of the rat. J Comp Neurol 201:265–283

    CAS  PubMed  Google Scholar 

  • Volchan E, Rocha-Miranda, Lent R, Gawryszewski LG (1978) The retinotopic organization of the superior colliculus in the opossum (Didelphis marsupialis aurita). In: Rocha-Miranda CE, Lent R (eds) Opossum neurobiology (Neurobiologia do Gamba). Academia Brasileira de Ciencias, Rio de Janeiro, pp 107–113

    Google Scholar 

  • Volsch M (1906) Zur vergleichenden Anatomie des Mandelkerns und seine Nachbargebilde, part I. Arch Mikrosk Anat 68:573–683

    Google Scholar 

  • Volsch M (1910) Zur vergleichenden Anatomie des Mandelkerns und seine Nachbargebilde, part II. Arch Mikrosk Anat 76:373–523

    Google Scholar 

  • Von Bonin G (1941) Side lights on cerebral evolution: brain size of lower vertebrates and degree of cortical folding. J Gen Psychol 25:273–282

    Google Scholar 

  • von Gudden B (1870a) Über einen bisher nicht beschriebenen Nervenfasernstrang im Gehirne der Säugerthiere und des Menschen. Arch Psychiatr Nerv Krankh 2:364–366

    Google Scholar 

  • von Gudden B (1870b) Experimentaluntersuchungen über das peripherische und centrale Nervensystem. Arch Psychiatr Nerv Krankh 2:693–723

    Google Scholar 

  • Voogd J (1964) The cerebellum of the cat. Structure and fiber connections. Thesis, Van Gorcum, Assen

    Google Scholar 

  • Voogd J (1969) The importance of fiber connections in the comparative anatomy of the mammalian cerebellum. In: Llinas R (ed) Neurobiology of cerebellar evolution and development. AMA-ERF Institute for Biomédical Research, Chicago, pp 493–541

    Google Scholar 

  • Voogd J (1995) The cerebellum of the rat. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic, San Diego, pp 309–350

    Google Scholar 

  • Voogd J, Bigaré F (1980) Topographical distribution of olivary and cortico-nuclear fibers in the cerebellum. A review. In: Courville J, De Montigny C, Lamarre Y (eds) The inferior olivary nucleus. Raven, New York, pp 207–234

    Google Scholar 

  • Voogd J, Ruigrok TJH (1997) Transverse and longitudinal patterns in the mammalian cerebellum. Prog Brain Res 114 (in press)

    Google Scholar 

  • Voogd J, Hess DT, Marani E (1987) The parasagittal zonation of the cerebellar cortex in cat and monkey. Topography, distribution of acetylcholinesterase and development. In: King JS (ed) New concepts in cerebellar neurobiology. Liss, New York

    Google Scholar 

  • Voogd J, Feirabend HKP, Schoen JHR (1990) Cerebellum and precerebellar nuclei. In: Paxinos G (ed) The human nervous system. Academic, San Diego, pp 321–386

    Google Scholar 

  • Voogd J, Epema AH, Rubertone JA (1991) Cerebellovestibular connections of the anterior vermis: a retrograde tracer study in different mammals including primates. Arch Ital Biol 129:3–19

    CAS  PubMed  Google Scholar 

  • Voogd J, Gerrits NM, Ruigrok TJH (1996a) Organization of the vestibulocerebellum. Ann NY Acad Sci 781:553–579

    CAS  PubMed  Google Scholar 

  • Voogd J, Jaarsma D, Marani E (1996b) The cerebellum, chemoarchitecture and anatomy. In: Swanson LW, Björklund A, Hökfelt T (eds). Integrated systems of the CNS, part III. Cerebellum, Basal Ganglia, olfactory system. Elsevier, Amsterdam, pp 1–369 (Handbook of chemical neuroanatomy, vol 12)

    Google Scholar 

  • Voorn P, Jorritsma-Bijham B, Dijk Ch van, Buijs RM (1987) The dopaminergic innervation of the ventral striatum in the rat: a light-and electron-microscopical study using antibodies against dopamine. J Comp Neurol 251:84–99

    Google Scholar 

  • Wähle P (1993) Differential regulation of substance P and somatostatin in Martinotti cells of the developing cat visual cortex. J Comp Neurol 329:519–538

    PubMed  Google Scholar 

  • Wahren W (1957) Das Zwischenhirn des Kaninchens. J Hirnforsch 3:143–242

    CAS  PubMed  Google Scholar 

  • Waite PME, Tracey DJ (1995) Trigeminal sensory system. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic, San Diego, pp 705–724

    Google Scholar 

  • Walberg F (1952) The lateral reticular nucleus of the medulla oblongata in mammals. A comparative-anatomical study. J Comp Neurol 96:283–344

    CAS  PubMed  Google Scholar 

  • Walberg F (1957) Corticofugal fibres to the nuclei of the dorsal columns. An experimental study in the cat. Brain 80:273–287

    CAS  PubMed  Google Scholar 

  • Walberg F (1982) The origin of olivary afferents from the central grey and its surroundings in the cat. Anat Embryol (Berl) 164:139–151

    CAS  Google Scholar 

  • Walberg F, Pompeiano O, Brodai A, Jansen J (1962) The fastigiovestibular projection in the cat. An experimental study with silver impregnation methods. J Comp Neurol 118:49–75

    CAS  PubMed  Google Scholar 

  • Walberg F, Nordby T, Hoffmann KP, Holländer H (1981) Olivary afferents from the pretectal nuclei in the cat. Anat Embryol (Berl) 161:291–304

    CAS  Google Scholar 

  • Waldeyer H (1888) Das Gorilla-Rückenmark. Abh Preuss Akad Wiss Berl 3:1–147

    Google Scholar 

  • Waldron HA (1969) The morphology of the lateral cervical nucleus in the hedgehog. Brain Res 16:301–306

    CAS  PubMed  Google Scholar 

  • Waldron HA, Gwyn DG (1969) Descending nerve tracts in the spinal cord of the rat. I. Fibers from the midbrain. J Comp Neurol 137:143–154

    CAS  PubMed  Google Scholar 

  • Walker RH, Arbuthnott GW, Baughman RW, Graybiel AM (1993) Dendritic domains of medium spiny neurons in the primate striatum: relationships to striosomal borders. J Comp Neurol 337:614–628

    CAS  PubMed  Google Scholar 

  • Wall PD, Taub A (1962) Four aspects of trigeminal nucleus and a paradox. J Neurophysiol 25:110–126

    CAS  PubMed  Google Scholar 

  • Wallace MN (1986a) Lattice of high oxidative metabolism in the intermediate grey layer of the rat and hamster superior colliculus. Neurosci Lett 70:320–325

    CAS  PubMed  Google Scholar 

  • Wallace MN (1986b) Spatial relationship of NADPH-diaphorase and acetylcholinesterase lattices in the rat and mouse superior colliculus. Neuroscience 19:381–391

    CAS  PubMed  Google Scholar 

  • Wallace MN (1988) Lattices of high histochemical activity occur in the human, monkey, and cat superior colliculus. Neuroscience 25:569–583

    CAS  PubMed  Google Scholar 

  • Wallace MN, Fredens K (1989) Relationship of afferent inputs to the lattice of high NADPH-diaphorase activity in the mouse superior colliculus. Exp Brain Res 78:435–445

    CAS  PubMed  Google Scholar 

  • Wallenberg A (1896) Die sekundäre Bahn des sensiblen Trigeminus. Anat Anz 12:95–110

    Google Scholar 

  • Wallenberg A (1900) Sekundäre sensible Bahnen im Gehirnstamme des Kaninchens, ihre gegenseitige Lage und ihre Bedeutung fur den Aufbau des Thalamus. Anat Anz 18:81–105

    Google Scholar 

  • Wallenberg A (1905) Sekundäre Bahnen aus dem frontalen sensibeln Trigeminuskerne des Kaninchens. Anat Anz 26:145–155

    Google Scholar 

  • Wang S-F, Spencer RF (1992) Spatial organization and neurotransmitter utilization of premotor neurones related to vertical saccadic eye movements in the cat. Soc Neurosci Abstr Anaheim 18:19.7

    Google Scholar 

  • Wang SF, Spencer RF (1996) Spatial organization of premotor neurons related to vertical upward and downward saccadic eye movements in the rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF) in the cat. J Comp Neurol 366:163–180

    CAS  PubMed  Google Scholar 

  • Warr WB (1975) Olivocochlear and vestibular efferent neurons of the feline brainstem: their location, morphology, and number determined by retrograde axonal transport and acetylcholinesterase histochemistry. J Comp Neurol 161:159–182

    CAS  PubMed  Google Scholar 

  • Warr WB, Guinan JJJ (1979) Efferent innervation of the organ of corti: two separate systems. Brain Res 173:152–155

    CAS  PubMed  Google Scholar 

  • Warwick R (1953) Representation of the extraocular muscles in the oculomotor nuclei of the monkey. J Comp Neurol 98:599–611

    Google Scholar 

  • Wassef M, Sotelo C (1984) Asynchrony in the expression of cyclic GMP dependent protein kinase by clusters of Purkinje cells during the perinatal development of rat cerebellum. Neuroscience 13:1219–1243

    Google Scholar 

  • Wassef M, Berod A, Sotelo C (1981) Dopaminergic dendrites in the pars reticulata of the rat substantia nigra and their striatal input: combined immunocyto chemical localization of tyrosine hydroxylase and anterograde degeneration. Neuroscience 6:2125–2139

    CAS  PubMed  Google Scholar 

  • Wässle H, Illing R-B (1980) The retinal projection to the superior colliculus in the cat: a quantitative study with HRP. J Comp Neurol 190:333–356

    PubMed  Google Scholar 

  • Watanabe K, Kawana E (1979) Efferent projections of the parabigeminal nucleus in rats: a horseradish peroxidase (HRP) study. Brain Res 168:1–11

    CAS  PubMed  Google Scholar 

  • Watanabe K, Kawana E (1982) The cells of origin of the incertofugal projections to the tectum, thalamus, tegmentum and spinal cord in the rat: a study using the autoradiographic and horseradish peroxidase methods. Neuroscience 7:2389–2406

    CAS  PubMed  Google Scholar 

  • Waterhouse BD, Border B, Wahl L, Mihailoff GA (1993) Topographic organization of rat locus coeruleus and dorsal raphe nuclei: distribution of cells projecting to visual system structures. J Comp Neurol 336:345–361

    CAS  PubMed  Google Scholar 

  • Waters RS, Tamai Y, Asanuma H (1985) Caudal cuneate nucleus projection to the direct thalamic relay to the motor cortex: an electrophysiological study. Brain Res 360:361–365

    CAS  PubMed  Google Scholar 

  • Watson CR, Herron P (1977) The inferior olivary complex of marsupials. J Comp Neurol 176:527–537

    CAS  PubMed  Google Scholar 

  • Watts AG, Swanson LW, Sanchez-Watts G (1987) Efferent projections of the suprachiasmatic nucleus: I. Studies using anterograde transport of Phaseolus vulgaris leucoagglutinin in the rat. J Comp Neurol 258:204–229

    CAS  PubMed  Google Scholar 

  • Weber JT (1985) Pretectal complex and accessory optic system of primates. Brain Behav Evol 26:117–140

    CAS  PubMed  Google Scholar 

  • Weber JT, Giolli RA (1986) The medial terminal nucleus of the monkey: evidence for a ‘complete’ accessory optic system. Brain Res 365:164–168

    CAS  PubMed  Google Scholar 

  • Weber JT, Harting JK (1980) The efferent projections of the pretectal complex: an autoradiographic and horseradish peroxidase analysis. Brain Res 194:1–28

    CAS  PubMed  Google Scholar 

  • Weber JT, Partlow GD, Harting JK (1978) The projection of the superior colliculus upon the inferior olivary complex of the cat: an auto-radiographic and horseradish peroxidase study. Brain Res 144:369–377

    CAS  PubMed  Google Scholar 

  • Weber JT, Young R, Hutchins B (1981) Morphologic and autoradiographic evidence for a laminated pretectal olivary nucleus in the squirrel monkey. Brain Res 224:153–159

    CAS  PubMed  Google Scholar 

  • Weber M (1892) Beiträge zur Entwicklung und Anatomie des Genus Manis. Ergebnisse einer Reise nach Niederl. Ostindien, Leiden

    Google Scholar 

  • Webster WR (1995) Auditory system. In: Paxinos G (ed) The rat nervous system, 2nd edn. Academic, San Diego, pp 797–831

    Google Scholar 

  • Webster WR, Garey LJ (1990) 27. Auditory system. In: Paxinos G (ed) The human nervous system. Academic, San Diego, pp 889–944

    Google Scholar 

  • Weidenreich F (1899) Zur anatomie der centralen Kleinhirnkerne der Sauger. Z Morphol Anthropol 1:260–312

    Google Scholar 

  • Weiskrantz L (1956) Behavioral changes associated with ablation of the amygdaloid complex in monkeys. J Comp Physiol Psychol 49:381–391

    CAS  PubMed  Google Scholar 

  • Welker W (1987a) Comparative study of cerebellar somatosensory representations the importance of micromapping and natural stimulation. In: Glickstein M, Yeo C, Stein J (eds) Cerebellum and neuronal plasticity. Plenum, New York

    Google Scholar 

  • Welker W (1987b) Spatial organization of somatosensory projections to granule cell cerebellar cortex: functional and connectional implications of fractured somatotopy (Summary of Wisconsin Studies). In: King J (ed) New concepts in cerebellar neurobiology. Liss, New York, pp 239–280

    Google Scholar 

  • Welker W, Lende RA (1980) Thalamocortical relationships in echidna (Tachyglossus aculeatus). In: Ebbeson SOE (ed) Comparative neurology of the telencephalon. Plenum, New York, pp 449–481

    Google Scholar 

  • Welker W, Seidenstein S (1959) Somatic sensory representation in the cerebral cortex of the raccoon (procyon lotor). J Comp Neurol 111:469–501

    CAS  PubMed  Google Scholar 

  • Welker WI (1990) Explaining the morphology of cerebral convolutions: a review of determinants of gyri and sulci. In: Jones EG, Peters A (eds) Cerebral cortex, vol 8. Plenum, New York (in press)

    Google Scholar 

  • Welker WI, Johnson J (1965) JI. Correlation between nuclear morphology and somatotopic organization in ventro-basal complex of the raccoon’s thalamus. J Anat 99:761–790

    CAS  PubMed  Google Scholar 

  • Welker WI, Seidenstein S (1959) Somatic sensory representation in the cerebral cortex of the raccoon (Procyon lotor). J Comp Neurol 111:469–501

    CAS  PubMed  Google Scholar 

  • Wells GR, Hardman MJ, Yeo CH (1989) Visual projections to the pontine nuclei in the rabbit: orthograde and retrograde tracing studies with WGA-HRP. J Comp Neurol 279:629–652

    CAS  PubMed  Google Scholar 

  • Welsh JP, Lang EJ, Sugihara I, Llinas R (1995) Dynamic organization of motor control within the olivocerebellar system. Nature 374:453–457

    CAS  PubMed  Google Scholar 

  • Wenstrup JJ, Larue DT, Winer JA (1994) Projections of physiologically defined subdivisions of the inferior colliculus in the mustached bat: targets in the medial geniculate body and extrathalamic nuclei. J Comp Neurol 346:207–236

    CAS  PubMed  Google Scholar 

  • Werner L, Winkelmann E, Koglin A, Neser J, Rodewohl H (1989) A Golgi deimpregnation study of neurons in the rhesus monkey visual cortex (areas 17 and 18). Anat Embryol 180:583–597

    CAS  PubMed  Google Scholar 

  • Westman J (1968) The lateral cervical nucleus in the cat. I. A Golgi study. Brain Res 10:352–368

    CAS  PubMed  Google Scholar 

  • White EL (1978) Identified neurons in mouse Sm I cortex, which are postsynaptic to thalamocortical axon terminals: a combined Golgi-electron microscopic and degeneration study. J Comp Neurol 181:627–662

    CAS  PubMed  Google Scholar 

  • White EL (1986) Termination of thalamic afferents in the cerebral cortex. In: Jones EG, Peters A (eds) Sensory-motor areas and aspects of cortical connectivity. Plenum, New York, pp 271–289 (Cerebral cortex, vol 5)

    Google Scholar 

  • White EL (1989) Cortical circuits. Synaptic organization of the cerebral cortex. Structure, function and theory. Birkhäuser, Boston

    Google Scholar 

  • White EL, Hersch SM (1981) Thalamocortical synapses of pyramidal cells which projects from SmI to Msl cortex in the mouse. J Comp Neurol 198:167–181

    CAS  PubMed  Google Scholar 

  • White EL, Hersch SM (1982) A quantitative study of thalamocortical and other synapses involving the apical dendrites of corticothalamic projection cells in mouse SmI cortex. J Neurocytol 11:137–157

    CAS  PubMed  Google Scholar 

  • White EL, Keller A (1987) Intrinsic circuitry involving the local axonal collaterals of corticothalamic projection cells in mouse SmI cortex. J Comp Neurol 262:13–26

    CAS  PubMed  Google Scholar 

  • White JS, Warr WB (1983) The dual origins of the olivocochlear bundle in the albino rat. J Comp Neurol 219:203–214

    CAS  PubMed  Google Scholar 

  • White EL, Hersch SM, Beiford GR (1982) Quantitative studies of thalamocortical synapses with labeled pyramidal cells in mouse SmI cortex. Soc Neurosci Abstr 8:853

    Google Scholar 

  • Whitehead MC (1988) Neuronal architecture of the nucleus of the solitary tract in the hamster. J Comp Neurol 276:547–572

    CAS  PubMed  Google Scholar 

  • Whitehead MC (1990) Subdivisions and neuron types of the nucleus of the solitary tract that project to the parabrachial nucleus in the hamster. J Comp Neurol 301:554–574

    CAS  PubMed  Google Scholar 

  • Whitehead MC, Frank ME (1983) Anatomy of the gustatory system in the hamster: central projections of the chorda tympani and the lingual nerve. J Comp Neurol 220:378–395

    CAS  PubMed  Google Scholar 

  • Whitlock DG, Nauta WJH (1956) Subcortical projections from the temporal neocortex in Macaca mulatta. J Comp Neurol 106:183–212

    PubMed  Google Scholar 

  • Whitworth RH, Haines DE (1983) The inferior olive of a prosimian primate Galago senegalensis. I. Conformation and spino-olivary projections. J Comp Neurol 219:215–227

    PubMed  Google Scholar 

  • Whitworth RHJ, Haines DE (1986a) On the question of nomenclature of homologous subdivisions of the inferior olivary complex. Arch Ital Biol 124:271–317

    PubMed  Google Scholar 

  • Whitworth RHJ, Haines DE (1986b) The inferior olive of Saimiri sciureus: olivocerebellar projections to the anterior lobe. Brain Res 372:55–71

    PubMed  Google Scholar 

  • Wiberg M, Blomqvist A (1984a) The projection to the mesencephalon from the dorsal column nuclei. An anatomical study in the cat. Brain Res 311:225–244

    CAS  PubMed  Google Scholar 

  • Wiberg M, Blomqvist A (1984b) The spinomesencephalic tract in the cat: its cells of origin and termination pattern as demonstrated by the intra-axonal transport method. Brain Res 291:1–18

    CAS  PubMed  Google Scholar 

  • Wiberg M, Westman J, Blomqvist A (1987a) The projection to the mesencephalon from the sensory trigeminal nuclei. An anatomical study in the cat. Brain Res 399:51–68

    Google Scholar 

  • Wiberg M, Westman J, Blomqvist A (1987b) Somatosensory projection to the mesencephalon: an anatomical study in the monkey. J Comp Neurol 264:92–117

    CAS  PubMed  Google Scholar 

  • Wiener SI (1986) Laminar distribution and patchiness of cytochrome oxidase in mouse superior colliculus. J Comp Neurol 244:137–148

    CAS  PubMed  Google Scholar 

  • Wiesendanger R, Wiesendanger M, Ruegg DG (1979) An anatomical investigation of the corticopontine projection in the primate (Macaca fascicularis and Saimiri sciureus). II. The projection from frontal and parietal association areas. Neuroscience 4:747–765

    CAS  PubMed  Google Scholar 

  • Wiklund L, Leger L, Persson M (1981) Monoamine cell distribution in the cat brain stem. A fluorescence histochemical study with quantification of indolaminergic and locus coeruleus cell groups. J Comp Neurol 203:613–647

    CAS  PubMed  Google Scholar 

  • Wiksten B (1979a) The central cervical nucleus in the cat. I. A Golgi study. Exp Brain Res 36:143–154

    CAS  PubMed  Google Scholar 

  • Wiksten B (1979b) The central cervical nucleus in the cat. II. The cerebellar connections studied with retrograde transport of horseradish peroxidase. Exp Brain Res 36:155–173

    CAS  PubMed  Google Scholar 

  • Wiksten B (1979c) The central cervical nucleus in the cat. III. The cerebellar connections studied with anterograde transport of 3H-leucine. Exp Brain Res 36:175–189

    CAS  PubMed  Google Scholar 

  • Wiksten B (1985) Retrograde HRP study of neurons in the cervical enlargement projecting to the cerebellum in the cat. Exp Brain Res 58:95–101

    CAS  PubMed  Google Scholar 

  • Wiksten B, Grant G (1986) Cerebellar projections from the cervical enlargement. An experimental study with silver impregnation and autoradiographic techniques in the cat. Exp Brain Res 61:513–531

    CAS  PubMed  Google Scholar 

  • Willard FH, Martin GF (1983) The auditory brainstem nuclei and some of their projections to the inferior colliculus in the North American opossum. Neuroscience 10:1203–1232

    CAS  PubMed  Google Scholar 

  • Willard FH, Martin GF (1986) The development and migration of large multipolar neurons into the cochlear nucleus of the North American opossum. J Comp Neurol 248:119–132

    CAS  PubMed  Google Scholar 

  • Willems E (1910) Les noyaux masticateur et mesencephaligue du trijumeau chez le lapin. Le Nevraxe 12:7–221

    Google Scholar 

  • Willett CJ, Gwyn DG, Rutherford JG, Leslie RA (1986) Cortical projections to the nucleus of the tractus solitarius: an HRP study in the cat. Brain Res Bull 16:497–505

    CAS  PubMed  Google Scholar 

  • Williams MN, Faull RLM (1988) The nigrotectal projection and tectospinal neurons in the cat. A light and electron microscopic study demonstrating a monosynaptic nigral input to identified tectospinal neurons. Neuroscience 25:533–562

    CAS  PubMed  Google Scholar 

  • Willis WD, Coggeshall RE (1991) Sensory mechanisms of the spinal cord, 2nd edn. Plenum, New York

    Google Scholar 

  • Willis WD, Leonard RB, Kenshalo DRJ (1978) Spinothalamic tract neurons in the substantia gelatinosa. Science 202:986–988

    CAS  PubMed  Google Scholar 

  • Willis WD, Kenshalo DRJ, Leonard RB (1979) The cells of origin of the primate spinothalamic tract. J Comp Neurol 188:543–573

    CAS  PubMed  Google Scholar 

  • Willis WD, Westlund KN, Carlton SM (1995) Pain. In: Paxinos G (eds) The rat nervous system, 2nd edn. Academic, San Diego, pp 725–750

    Google Scholar 

  • Wilson ME, Toyne MJ (1970) Retino-tectal and cortico-tectal projections in Macaca mulatta. Brain Res 24:395–406

    CAS  PubMed  Google Scholar 

  • Wilson PD, Rowe MH, Stone J (1976) Properties of relay cells in the cat’s lateral geniculate nucleus: a comparison of W-cells with X-and Y-cells. J Neurophysiol 39:1193–1209

    CAS  PubMed  Google Scholar 

  • Winer JA (1982) The stellate neurons in layer IV of primary auditory cortex (AI) of the cat: a study of columnar organization. Soc Neurosci Abstr 8:1020

    Google Scholar 

  • Winfield DA, Gatter KC, Powell TPS (1980) An electron microscopic study of the types and proportions of neurons in the cortex of the motor and visual areas of the cat and rat. Brain 103:245–258

    CAS  PubMed  Google Scholar 

  • Winfield DA, Brooke RNL, Sloper JJ, Powell TPS (1981) A combined Golgi-electron microscopic study of the synapses made by the proximal axon and recurrent collaterals of a pyramidal cell in the somatic sensory cortex of the monkey. Neuroscience 6:1217–1230

    CAS  PubMed  Google Scholar 

  • Winfield JA, Hendrickon A, Kimm J (1978) Anatomical evidence that the medial terminal nucleus of the accessory optic tract in mammals provides a visual mossy fiber input to the flocculus. Brain Res 151:175–182

    CAS  PubMed  Google Scholar 

  • Wirsig CR (1987) Effects of lesions of the terminal nerve on mating behavior in the male hamster. Ann NY Acad Sci 519:241–251

    CAS  PubMed  Google Scholar 

  • Wirsig CR, Leonard CM (1986) The terminal nerve projects centrally in the hamster. Neuroscience 19:709–717

    CAS  PubMed  Google Scholar 

  • Wirsig CR, Leonard CM (1987) Terminal nerve damage impairs the mating behavior of the male hamster. Brain Res 417:293–303

    CAS  PubMed  Google Scholar 

  • Wirth FP, O’Leary JL, Smith JM, Jenny AB (1974) Monosynaptic corticospinal-motoneuron path in the raccoon (1977). Brain Res 77:344–348

    CAS  PubMed  Google Scholar 

  • Wise SP (1981) The primate premotor cortex: past, present, and preparatory. Annu Rev Neurosci 8:1

    Google Scholar 

  • Wise SP, Jones EG (1987) Somatotopic and columnar organization in the corticotectal projection of the rat somatic sensory cortex. Brain Behav 133:223–235

    Google Scholar 

  • Witkin JW (1987) Nervus terminalis, olfactory nerve, and optic nerve representation of luteinizing hormonereleasing hormone in primates. Ann NY Acad Sci 519:174–183

    CAS  PubMed  Google Scholar 

  • Witter MP, Groenewegen HJ (1986) The connections of the parahippocampal cortex in the cat. IV. Subcortical efferents. J Comp Neurol 252:51–77

    CAS  PubMed  Google Scholar 

  • Wollaston WH (1824) On semi-decussation of the optic nerves. Phil Trans Roy Soc (London) part 1, pp. 22-231

    Google Scholar 

  • Wood RI, Brabec RK, Swann JM, Newman SW (1992) Androgen and estrogen concentrating neurons in chemosensory pathways of the male Syrian hamster brain. Brain Res 596:89–98

    CAS  PubMed  Google Scholar 

  • Woodhams PL, Roberts GW, Polak JM, Crow TJ (1983) Distribution of neuropeptides in the limbic system of the rat: the bed nucleus of the stria terminalis, septum and preoptic area. Neuroscience 8:677–703

    CAS  PubMed  Google Scholar 

  • Woodson W, Angaut P (1984) The ipsilateral descending limb of the brachium conjunctivum: an autoradiographic and HRP study in rats. Neurosci Lett [Suppl] 18:S58

    Google Scholar 

  • Woolf NJ, Butcher LL (1982) Cholinergic projections to the basolateral amygdala: a combined Evans Blue and acetylcholinesterase analysis. Brain Res Bull 8:751–763

    CAS  PubMed  Google Scholar 

  • Woolf NJ, Butcher LL (1985) Cholinergic systems in the rat brain. II. Projections to the interpeduncular nucleus. Brain Res Bull 14:63–83

    CAS  PubMed  Google Scholar 

  • Woolf NJ, Butcher LL (1986) Cholinergic systems in the rat brain. III. Projections from the pontomesencephalic tegmentum to the thalamus, tectum, basal ganglia, and basal forebrain. Brain Res Bull 16:603–637

    CAS  PubMed  Google Scholar 

  • Woolf NJ, Butcher LL (1989) Cholinergic systems in the rat brain. IV. Descending projections of the pontomesencephalic tegmentum. Brain Res Bull 23:519–540

    CAS  PubMed  Google Scholar 

  • Woolf NJ, Hernit MC, Butcher LL (1986) Cholinergic and noncholinergic projections from the rat basal forebrain revealed by combined choline acetyltransferase and Phaseolus vulgaris leucoagglutinin immunohistochemistry. Neurosci Lett 66:281–286

    CAS  PubMed  Google Scholar 

  • Woollard HH, Beattie J (1927) The comparative anatomy of the lateral geniculate body. J Anat 61:414–423

    CAS  PubMed  Google Scholar 

  • Woolsey TA (1987) Barrels, vibrissae, and topographic representations. In: Adelman G (ed) Encyclopedia of neuroscience, vol 1. Birkhäuser, Boston, pp 111–11

    Google Scholar 

  • Woolsey TA, Van der Loos H (1970) The structural organization of layer IV in the somatosensory region (SI) of mouse cerebral cortex. Brain Res 17:205–242

    CAS  PubMed  Google Scholar 

  • Wouterlood FG (1981) The structure of the mediodorsal cerebral cortex in the lizard Agama agama: a Golgi study. J Comp Neurol 196:443–458

    CAS  PubMed  Google Scholar 

  • Wouterlood FG, Mugnaini E (1984) Cartwheel neurons of the dorsal cochlear nucleus: a Golgi-electron microscopic study in rat. J Comp Neurol 227:136–157

    CAS  PubMed  Google Scholar 

  • Wright CI, Beijer AVJ, Groenewegen HJ (1996) Basal amygdaloid complex afferents to the rat nucleus accumbens are compartmentally organized. J Neurosci 16:1877–1893

    CAS  PubMed  Google Scholar 

  • Wylie DR, Zeeuw DC, DiGiorgi PL, Simpson JI (1994) Projections of individual Purkinje cells of identified zones in the ventral nodulus to the vestibular and cerebellar nuclei in the rabbit. J Comp Neurol 349:448–463

    CAS  PubMed  Google Scholar 

  • Wyss JM, Sripanidkulchai K (1984) The topography of the mesencephalic and pontine projections from the cingulate cortex of the rat. Brain Res 293:1–15

    CAS  PubMed  Google Scholar 

  • Wyss JM, Swanson LW, Cowan WM (1979) A study of sub-cortical afferents to the hippocampal formation in the rat. Neuroscience 4:463–476

    CAS  PubMed  Google Scholar 

  • Yamamoto M, Shimoyama I, Highstein SM (1978) Vestibular nucleus neurons relaying excitation from the anterior canal to the oculomotor nucleus. Brain Res 148:31–42

    CAS  PubMed  Google Scholar 

  • Yamamoto T, Samejima A, Oka H (1987a) Morphology of layer V pyramidal neurons in the cat somatosensory cortex: an intracellular HRP study. Brain Res 437:369–374

    CAS  PubMed  Google Scholar 

  • Yamamoto T, Samejima A, Oka H (1987b) Morphological features of layer V pyramidal neurons in the cat parietal cortex: an intracellular HRP study. J Comp Neurol 265:380–390

    CAS  PubMed  Google Scholar 

  • Yamasaki DS, Krauthamer G, Rhoades RW (1984) Organization of the intercollicular pathway in rat. Brain Res 300:368–371

    CAS  PubMed  Google Scholar 

  • Yamasaki DSG, Krauthamer GM, Rhoades RW (1986) Superior collicular projection to intralaminar thalamus in rat. Brain Res 378:223–233

    CAS  PubMed  Google Scholar 

  • Yang CR, Mogenson GJ (1985) An electrophysiological study of the neural projections from the hippocampus to the ventral pallidum and the subpallidal areas by way of the nucleus accumbens. Neuroscience 15:1015–1024

    CAS  PubMed  Google Scholar 

  • Yasui Y, Itoh K, Mizuno M et al (1983) The posteromedial ventral nucleus of the thalamus (VPM) of the cat: direct ascending projections to the cytoarchitectonic subdivision. J Comp Neurol 220:219–228

    CAS  PubMed  Google Scholar 

  • Yasui Y, Itoh K, Kaneko T, Shigemoto R, Mizuno N (1991) Topographical projections from the cerebral cortex to the nucleus of the solitary tract in the cat. Exp Brain Res 85:75–84

    CAS  PubMed  Google Scholar 

  • Yasui Y, Kayahara T, Shiroyama T, Nakano K (1993) Neurons in the intertrigeminal region of the rat send projection fibers to the superior colliculus. Neurosci Lett 159:39–42

    CAS  PubMed  Google Scholar 

  • Yezierski RP (1988) Spinomesencephalic tract: projections from the lumbosacral spinal cord of the rat, cat, and monkey. J Comp Neurol 267:131–146

    CAS  PubMed  Google Scholar 

  • Yoshida A, Dostrovsky JO, Sessle BJ, Chiang CY (1991) Trigeminal projections to the nucleus submedius of the thalamus in the rat. J Comp Neurol 307:609–625

    CAS  PubMed  Google Scholar 

  • Yoshida Y, Miyazaki T, Hirano M, Shin T, Totoki T, Kanaseki T (1981) Localization of efferent neurons innervating the pharyngeal constrictor muscles and the cervical esophagus muscle in the cat by means of the horseradish peroxidase method. Neurosci Lett 22:91–95

    CAS  PubMed  Google Scholar 

  • Young MJ, Lund RD (1994) The anatomical substrates subserving the pupillary light reflex in rats: origin of the consensual pupillary response. Neuroscience 62(2):481–496

    CAS  PubMed  Google Scholar 

  • Young MW (1936) The nuclear pattern and fiber connections of the non-cortical centers of the telencephalon of the rabbit (Lepus cuniculus). J Comp Neurol 65:295–401

    Google Scholar 

  • Yu F, Gordon FJ (1996) Anatomical evidence for a bi-neuronal pathway connecting the nucleus tractus solitarius to caudal ventrolateral medulla to rostral ventrolateral medulla in the rat. Neurosci Lett 205:21–24

    CAS  PubMed  Google Scholar 

  • Zaborsky LC, Heimer L (1984) Ultrastructural evidence of amygdalofugal axons terminating on cholinergic cells of the rostral forebrain. Neurosci Lett 52:219–225

    Google Scholar 

  • Zaborszky L, Alheid GF, Beinfeld MC, Eiden LE, Heimer L, Palkovits M (1985) Cholecystokinin innervation of the ventral striatum: a morphological and radio-immunological study. Neuroscience 14:427–453

    CAS  PubMed  Google Scholar 

  • Zaborszky L, Cullinan WE, Braun A (1991) Afférents to basal forebrain cholinergic projection neurons: an update. In: Napier TC, Kalivas PW, Henin I (eds) The basai forebrain. Plenum, New York, pp 44–100

    Google Scholar 

  • Zagon A, Totterdell S, Jones RSG (1994) Direct projections from the ventrolateral medulla oblongata to the limbic forebrain: anterograde and retrograde tract-tracing studies in the rat. J Comp Neurol 340:445–468

    CAS  PubMed  Google Scholar 

  • Zahm DS, Brog JS (1992) On the significance of subterritories in the “accumbens” part of the rat ventral striatum. Neuroscience 50:751–767

    CAS  PubMed  Google Scholar 

  • Zeehandelaar I (1920) Ontogenese en phylogenese der achterstrengkernen in verband met de sensibiliteit. Thesis, Bohn, Haarlem

    Google Scholar 

  • Zeng D, Stuesse SL (1993) Topographic organization of efferent projections of medial frontal cortex. Brain Res Bull 32:195–200

    CAS  PubMed  Google Scholar 

  • Zhang DX, Carlton SM, Sorkin LS, Willis WD (1990) Collaterals of primate spinothalamic tract neuroms to the periaqueductal gray. J Comp Neurol 296:277–290

    CAS  PubMed  Google Scholar 

  • Zhang HY, Hoffmann KP (1993) Retinal projections to the pretectum, accessory optic system and superior colliculus in pigmented and albino ferrets. Eur J Neurosci 5:486–500

    CAS  PubMed  Google Scholar 

  • Zheng LM, Pfaff DW, Schwanzel-Fukuda M (1990) Synaptology of luteinizing hormone-releasing hormone (LHRH)-immunoreactive cells in the nervus terminalis of the gray short-tailed opossum (Monodelphis domestica). J Comp Neurol 295:327–337

    CAS  PubMed  Google Scholar 

  • Ziehen T (1897) Das Centralnervensystem der Monotremen und Marsupialier, part I. Makrosk Anat Jena Denkschr 6:168–187

    Google Scholar 

  • Zola-Morgan S, Squire L (1985) Amnesia in monkeys after lesions of the mediodorsal nucleus of the thalamus. Ann Neurol 17:558–564

    CAS  PubMed  Google Scholar 

  • Zola-Morgan S, Squire LR (1986) Memory impairment in monkeys following lesions of the hippocampus. Behav Neurosci 100:165–170

    Google Scholar 

  • Zook JM, Casseday JH (1982a) Cytoarchitecture of auditory system in lower brainstem of the mustache bat, Pteronotus parnellii. J Comp Neurol 207:1–13

    CAS  PubMed  Google Scholar 

  • Zook JM, Casseday JH (1982b) Origin of ascending projections to inferior colliculus in the mustache bat, Pteronotus parnellii. J Comp Neurol 207:14–28

    CAS  PubMed  Google Scholar 

  • Zook JM, Casseday JH (1985) Projections from the cochlear nuclei in the mustache bat, Pteronotus parnellii. J Comp Neurol 237:307–324

    CAS  PubMed  Google Scholar 

  • Zook JM, Casseday JH (1987) Convergence of ascending pathways at the inferior colliculus of the mustache bat, Pteronotus parnelli. J Comp Neurol 261:347–361

    CAS  PubMed  Google Scholar 

  • Zuk A, Gwyn DG, Rutherford JG (1982) Cytoarchitecture, neuronal morphology, and some efferent connections of the interstitial nucleus of Cajal (INC) in the cat. J Comp Neurol 212:278–292

    CAS  PubMed  Google Scholar 

Download references

Authors

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Voogd, J., Nieuwenhuys, R., van Dongen, P.A.M., ten Donkelaar, H.J. (1998). Mammals. In: The Central Nervous System of Vertebrates. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18262-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18262-4_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62127-7

  • Online ISBN: 978-3-642-18262-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics