Skip to main content

Neural Coordination Dynamics of Human Sensorimotor Behavior: A Review

  • Chapter

Part of the book series: Understanding Complex Systems ((UCS))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andres FG, Mima T, Schulman AE, Dichgans J, Hallett M, Gerloff C (1999) Functional coupling of human cortical sensorimotor areas during bimanual skill acquisition. Brain 122: 855–870

    Google Scholar 

  • Astolfi L, Cincotti F, Babiloni C, Carducci F, Basilisco A, Rossini PM, Salinari S, Mattia D, Cerutti S, Ben Dayan D, Ding L, Ni Y, He B, Babiloni F (2005) Estimation of the cortical connectivity by high-resolution EEG and structural equation modeling: Simulations and application to finger tapping data. IEEE Transactions on Biomedical Engineering 52: 757–768

    Google Scholar 

  • Babiloni F, Cincotti F, Babiloni C, Carducci F, Mattia D, Astolfi L, Basilisco A, Rossini PM, Ding L, Ni Y, Cheng J, Christine K, Sweeney J, He B (2005) Estimation of the cortical functional connectivity with the multimodal integration of high-resolution EEG and fMRI data by directed transfer function. Neuroimage 24: 118–131

    Google Scholar 

  • Basar, E. (2004) Memory and brain dynamics. Boca Raton, CRC Press.

    Google Scholar 

  • Beggs, J.M., Klukas, J., Chen, W. Connectivity and dynamics in local cortical networks. This volume.

    Google Scholar 

  • Binder JR, Rao SM, Hammeke TA, Frost JA, Bandettini PA, Hyde JS (1994) Effects of stimulus rate on signal response during functional magnetic-resonance-imaging of auditory-cortex. Cognitive Brain Research 2: 31–38

    Google Scholar 

  • Bingham GP, Schmidt RC, Zaal FTJM (1999) Visual perception of the relative phasing of human limb movements. Perception & Psychophysics 61: 246–258

    Google Scholar 

  • Boecker H, Dagher A, Ceballos-Baumann AO, Passingham RE, Samuel M, Friston KJ, Poline JB, Dettmers C, Conrad B, Brooks DJ (1998) Role of the human rostral supplementary motor area and the basal ganglia in motor sequence control: Investigations with H-2 O-15 PET. Journal of Neurophysiology 79: 1070–1080

    Google Scholar 

  • Breakspear, M. & Jirsa, V.K. Neural dynamics and brain connectivity. This Volume.

    Google Scholar 

  • Bressler SL, Kelso JAS (2001) Cortical coordination dynamics and cognition. Trends in Cognitive Neuroscience 5: 26–36

    Google Scholar 

  • Bressler, S.L. & McIntosh, A.R. The role of neural context in large-scale neurcognitive network applications. This volume.

    Google Scholar 

  • Brovelli A, Ding MZ, Ledberg A, Chen YH, Nakamura R, Bressler SL (2004) Beta oscillations in a large-scale sensorimotor cortical network: Directional influences revealed by Granger causality. Proceedings of the National Academy of Sciences of the United States of America 101: 9849–9854

    Google Scholar 

  • Byblow WD, Chua R, Goodman D (1995) Asymmetries in coupling dynamics of perception and action. Journal of Motor Behavior 27: 123–137

    Google Scholar 

  • Carson RG, Byblow WD, Abernethy B, Summers JJ (1996) The contribution of inherent and incidental constraints to intentional switching between patterns of bimanual coordination. Human Movement Science 15: 565–589

    Google Scholar 

  • Carson RG, Riek S (2000) Musculo-skeletal constraints on corticospinal input to upper limb motoneurones during coordinated movements. Human Movement Science 19: 451–474

    Google Scholar 

  • Carver FW, Fuchs A, Jantzen KJ, Kelso JAS (2002) Spatiotemporal analysis of the neuromagnetic response to rhythmic auditory stimulation: rate dependence and transient to steady-state transition. Clinical Neurophysiology 113: 1921–1931

    Google Scholar 

  • Case P, Tuller B, Ding MZ, Kelso JaS (1995) Evaluation of a dynamical model of speech-perception. Perception & Psychophysics 57: 977–988

    Google Scholar 

  • Catalan MJ, Honda M, Weeks RA, Cohen LG, Hallett M (1998) The functional neuroanatomy of simple and complex sequential finger movements: a PET study. Brain 121: 253–264

    Google Scholar 

  • Chen YQ, Ding MZ, Kelso JAS (2003) Task-related power and coherence changes in neuromagnetic activity during visuomotor coordination. Experimental Brain Research 148: 105–116

    Google Scholar 

  • Cheyne D, Weinberg H (1989) Neuromagnetic fields accompanying unilateral finger movements–pre-movement and movement–evoked fields. Experimental Brain Research 78: 604–612

    Google Scholar 

  • Coveney P, Highfield R (1995) Frontiers of complexity: The search for order in a chaotic world. Random House, New York

    Google Scholar 

  • Crick FH, Koch C (2003) A framework for consciousness. Nature Neuroscience 6: 119–126

    Google Scholar 

  • Daffertshofer A, Peper CE, Beek PJ (2000) Spectral analysis of event-related encephalographic signals. Physics Letters A 266: 290–302

    Google Scholar 

  • Dassonville P, Lewis S, Zhu XH, Ugurbil K, Kim SG, Ashe J (1998) Effects of movement predictability on cortical motor activation. Neuroscience Research 32: 65–74

    Google Scholar 

  • Darvas, F. & Leahy, R.M. Functional imaging of brain activity and connectivity with MEG. This volume.

    Google Scholar 

  • Debaere F, Wenderoth N, Sunaert S, Van Hecke P, Swinnen SP (2003) Internal vs external generation of movements: differential neural pathways involved in bimanual coordination performed in the presence or absence of augmented visual feedback. Neuroimage 19: 764–776

    Google Scholar 

  • Debaere F, Wenderoth N, Sunaert S, Van Hecke P, Swinnen SP (2004) Cerebellar and premotor function in bimanual coordination: parametric neural responses to spatiotemporal complexity and cycling frequency. Neuroimage 21: 1416–1427.

    Google Scholar 

  • DeGuzman, G.C., Tognoli, E., Lagarde, J., Jantzen, K.J., & Kelso, J.A.S. (2005) Effects of the biological relevance of the stimulus in mediating spontaneous visual social coordinaton. Society for , Program No. 867.21

    Google Scholar 

  • Deiber MP, Caldara R, Ibanez V, Hauert CA (2001) Alpha band power changes in unimanual and bimanual sequential movements, and during motor transitions. Clinical Neurophysiology 112: 1419–1435

    Google Scholar 

  • Deiber MP, Ibanez V, Caldara R, Andrey C, Hauert CA (2005) Programming effectors and coordination in bimanual in-phase mirror finger movements. Cognitive Brain Research 23: 374–386

    Google Scholar 

  • Dhamala M, Pagnoni G, Wiesenfeld K, Berns GS (2002) Measurements of brain activity complexity for varying mental loads. Physical Review E 65: 1–7

    Google Scholar 

  • Drake C, Botte MC (1993) Tempo sensitivity in auditory sequences–evidence for a multiple-look model. Perception & Psychophysics 54: 277–286

    Google Scholar 

  • Edelman GM (2003) Naturalizing consciousness. Proceedings of the National Academy of Sciences of the United States of America 100: 5520–5524

    Google Scholar 

  • Edelman GM, Tononi G (2000) A Universe of Consciousness. Basic Books, New York

    Google Scholar 

  • Ehrsson HH, Kuhtz-Buschbeck JP, Forssberg H (2002) Brain regions controlling nonsynergistic versus synergistic movement of the digits: a functional magnetic resonance imaging study. Journal of Neuroscience 22: 5074–5080

    Google Scholar 

  • Engstrom DA, Kelso JAS, Holroyd T (1996) Reaction-anticipation transitions in human perception-action patterns. Human Movement Science 15: 809–832

    Google Scholar 

  • Erdler M, Windischberger C, Lanzenberger R, Edward V, Gartus A, Deecke L, Beisteiner (2001) Dissociation of supplementary motor area and primary motor cortex in human subjects when comparing index and little finger movements with functional magnetic resonance imaging. Neuroscience Letters 313: 5–8

    Google Scholar 

  • Fox PT, Raichle ME (1984) Stimulus rate dependence of regional cerebral blood-flow in human striate cortex, demonstrated by positron emission tomography. Journal of Neurophysiology 51: 1109–1120

    Google Scholar 

  • Fraisse P (1982) Rhythm and temp. In: Deutsch D (ed) The psychology of music. Academic Press, New York, pp 149–180

    Google Scholar 

  • Friston, K.J. (1997). Transients, metastability and neuronal dynamics. Neuroimage, 5, 164–171

    Google Scholar 

  • Fuchs A. Beamforming and its applications to brain connectivity. This volume.

    Google Scholar 

  • Fuchs A, Deecke L, Kelso JAS (2000a) Phase transitions in human brain revealed by large SQuID arrays: Response to Daffertshofer, Peper and Beek. Physics Letters A 266: 303–308

    Google Scholar 

  • Fuchs A, Jirsa VK, Kelso JAS (1999) Traversing scales of brain and behavioral organization II: Analysis and reconstruction. In: Uhl C (ed) Analysis of Neurophysiological Brain Functioning. Springer, Berlin

    Google Scholar 

  • Fuchs A, Kelso JAS, Haken H (1992) Phase transitions in human brain: Spatial mode dynamics. International Journal of Bifurcation and Chaos 2: 917–939

    MATH  Google Scholar 

  • Fuchs A, Mayville JM, Cheyne D, Weinberg H, Deecke L, Kelso JAS (2000b) Spatiotemporal analysis of neuromagnetic events underlying the emergence of coordinative instabilities. Neuroimage 12: 71–84

    Google Scholar 

  • Gerloff C, Andres FG (2002) Bimanual coordination and interhemispheric interaction. Acta Psychologica 110: 161–186

    Google Scholar 

  • Gerloff C, Richard J, Hadley J, Schulman AE, Honda M, Hallett M (1998) Functional coupling and regional activation of human cortical motor areas during simple, internally paced and externally paced finger movements. Brain 121: 1513–1531

    Google Scholar 

  • Gross J, Kujala J, Hamalainen M, Timmermann L, Schnitzler A, Salmelin R (2001) Dynamic imaging of coherent sources: Studying neural interactions in the human brain. Proceedings of the National Academy of Sciences of the United States of America 98: 694–699

    Google Scholar 

  • Gross J, Pollok B, Dirks A, Timmermann L, Butz A, Schnitzler A (2005) Task-dependent oscillations during unimanual and bimanual movements in the human primary motor cortex and SMA studied with magnetoencephalography. Neuroimage 26: 91–98

    Google Scholar 

  • Gross J, Timmermann J, Kujala J, Dirks M, Schmitz F, Salmelin R, Schnitzler A (2002) The neural basis of intermittent motor control in humans. Proceedings of the National Academy of Sciences of the United States of America 99: 2299–2302

    Google Scholar 

  • Gutschalk A, Mase R, Roth R, Ille N, Rupp A, Hahnel S, Picton TW, Scherg M (1999) Deconvolution of 40 Hz steady-state fields reveals two overlapping source activities of the human auditory cortex. Clinical Neurophysiology 110: 856–868

    Google Scholar 

  • Haaland KY, Harrington DL, Knight RT (2000) Neural representations of skilled movement. Brain 123: 2306–2313

    Google Scholar 

  • Haken H (1983) Advances in synergetics. Springer, Berlin

    Google Scholar 

  • Haken H (1996) Principles of brain function. Springer, Berlin

    Google Scholar 

  • Haken H, Kelso JAS, Bunz H (1985) A theoretical-model of phase-transitions in human hand movements. Biological Cybernetics 51: 347–356

    MATH  MathSciNet  Google Scholar 

  • Hari R, Katila T, Tuomisto T, Varpula T (1982) Interstimulus-interval dependence of the auditory vertex response and its magnetic counterpart. Electroencephalography and Clinical Neurophysiology 53: P71-P72

    Google Scholar 

  • Harrington DL, Rao SM, Haaland KY, Bobholz JA, Mayer AR, Binder JR, Cox RW (2000) Specialized neural systems underlying representations of sequential movements. Journal of Cognitive Neuroscience 12: 56–77

    Google Scholar 

  • Haslinger B, Erhard P, Weilke F, Ceballos-Baumann AO, Bartenstein P, von HG, Schwaiger M, Conrad B, Boecker H (2002) The role of lateral premotor-cerebellar-parietal circuits in motor sequence control: a parametric fMRI study. Cognitive Brain Research 13: 159–168

    Google Scholar 

  • Hock HS, Kelso JAS, Schner G (1993) Bistability and hysteresis in the organization of apparent motion patterns. Journal of Experimental Psychology-Human Perception and Performance 19: 63–80

    Google Scholar 

  • Horwitz, B. & Husain, F.T. Simulation frameworks for large-scale brain systems. This volume.

    Google Scholar 

  • Hummel F, Kirsammer R, Gerloff C (2003) Ipsilateral cortical activation during finger sequences of increasing complexity: representation of movement difficulty or memory load? Clinical Neurophysiology 114: 605–613

    Google Scholar 

  • Immisch I, Waldvogel D, van Gelderen P, Hallett M (2001) The role of the medial wall and its anatomical variations for bimanual antiphase and in-phase movements. Neuroimage 14: 674–684

    Google Scholar 

  • Jancke L, Specht K, Mirzazade S, Loose R, Himmelbach M, Lutz K, Shah NJ (1998) A parametric analysis of the ‘rate effect’ in the sensorimotor cortex: a functional magnetic resonance imaging analysis in human subjects. Neuroscience Letters 252: 37–40

    Google Scholar 

  • Jantzen KJ, Fuchs A, Mayville JM, Deecke L, Kelso JAS (2001) Neuromagnetic activity in alpha and beta bands reflect learning-induced increases in coordinative stability. Clinical Neurophysiology 112: 1685–1697

    Google Scholar 

  • Jantzen KJ, Steinberg FL, Kelso JAS (2002) Practice-dependent modulation of neural activity during human sensorimotor coordination: a functional Magnetic Resonance Imaging study. Neuroscience Letters 332: 205–209

    Google Scholar 

  • Jantzen KJ, Steinberg FL, Kelso JAS (2004) Brain networks underlying human timing behavior are influenced by prior context. Proceedings of the National Academy of Science 101: 6815–6820

    Google Scholar 

  • Jantzen KJ, Steinberg FL, Kelso JAS (2005) Functional MRI reveals the existence of modality and coordination-dependent timing networks. Neuroimage 25:1031–1042

    Google Scholar 

  • Jeka JJ, Kelso JAS (1995) Manipulating symmetry in the coordination dynamics of human movement. Journal of Experimental Psychology-Human Perception and Performance 21: 360–374

    Google Scholar 

  • Jenkins IH, Passingham RE, Brooks DJ (1997) The effect of movement frequency on cerebral activation: a positron emission tomography study. Journal of Neurological Sciences 151: 195–205

    Google Scholar 

  • Jirsa VK, Fink P, Foo P, Kelso JAS (2000) Parametric stabilization of biological coordination: a theoretical model. Journal of Biological Physics 26: 85–112

    Google Scholar 

  • Jirsa VK, Friedrich R, Haken H, Kelso JAS (1994) A theoretical model of phase transitions in the human brain. Biological Cybernetics 71: 27–35

    MATH  Google Scholar 

  • Jirsa VK, Fuchs A, Kelso JAS (1998) Connecting cortical and behavioral dynamics: Bimanual coordination. Neural Computation 10: 2019–2045

    Google Scholar 

  • Jirsa VK, Haken H (1997) A derivation of a macroscopic field theory of the brain from the quasi-microscopic neural dynamics. Physica D 99: 503–526

    MATH  Google Scholar 

  • Jirsa VK, Jantzen KJ, Fuchs A, Kelso JAS (2002) Spatiotemporal forward solution of the EEG and MEG using network modeling. IEEE Transactions on Medical Imaging 21: 493–504

    Google Scholar 

  • Jirsa VK, Kelso JAS (2004) (eds.) Coordination dynamics: Issues and trends. Springer

    Google Scholar 

  • Jirsa, VK and Kelso, JA (2005). The excitator as a minimal model for the coordination dynamics of discrete and rhythmic movement generation. Journal of Motor Behavior 37:35–51

    Google Scholar 

  • Jirsa VK, Kelso JAS, Fuchs A (1999) Traversing scales of brain and behavioral organization III: Theoretical modeling. In: Uhl C (ed) Analysis of Neurophysiological Brain Functioning. Springer, Berlin

    Google Scholar 

  • Kawashima R, Inoue K, Sugiura M, Okada K, Ogawa A, Fukuda H (1999) A positron emission tomography study of self-paced finger movements at different frequencies. Neuroscience 92: 107–112

    Google Scholar 

  • Kelso, J.A.S. (1981). Contrasting perspectives on order and regulation in movement. In A. Baddeley & J. Long (Eds.). Attention and performance, IX. Hillsdale, NJ: Erlbaum

    Google Scholar 

  • Kelso JAS (1984) Phase transitions and critical behavior in human bimanual coordination. American Journal of Physiology 246: 1000–1004

    Google Scholar 

  • Kelso JAS (1986) Pattern formation in multidegree of freedom speech and limb movement. Experimental Brain Research Supplement 15: 105–128

    Google Scholar 

  • Kelso JAS (1992) Coordination dynamics of human brain and behavior. Springer Proceedings in Physics 69: 223–234

    Google Scholar 

  • Kelso JAS (1994) Informational character of self-organized coordination dynamics. Attention and Performance 13: 393–413

    Google Scholar 

  • Kelso JAS (1995) Dynamic patterns: The self-organization of brain and behavior. MIT Press, Cambridge

    Google Scholar 

  • Kelso JAS (1997) Relative timing in brain and behavior: Some observations about the generalized motor program and self-organized coordination dynamics. Movement Science 16: 453–460

    Google Scholar 

  • Kelso, J.A.S. & Engstrom, D.A. (2006) The complementary nature. Cambridge, MA: The MIT Press

    Google Scholar 

  • Kelso, J.A.S. & Fuchs, A. (1995). Self-organizing dynamics of the human brain: Critical instabilities and Sil’nikov chaos. Chaos, 5, (1), 64–69

    Google Scholar 

  • Kelso, J.A.S., Schner, G., Scholz, J.P. & Haken, H. (1987). Phase-locked modes, phase transitions and component oscillators in coordinated biological motion, Physica Scripta, 35, 79–87

    Google Scholar 

  • Kelso JAS, Bressler SL, Buchanan JJ, de Guzman GG, Ding M, Fuchs A, Holroyd T (1991) Cooperative and critical phenomena in the human brain revealed by multiple SQUIDS. In: Duke D, Pritchard W (eds) Measuring chaos in the human brain. World Scientific, New Jersey, pp 97–112

    Google Scholar 

  • Kelso JAS, Bressler SL, Buchanan S, Deguzman GC, Ding M, Fuchs A, Holroyd (1992) A phase-transition in human brain and behavior. Physics Letters A 169: 134–144

    Google Scholar 

  • Kelso JAS, Delcolle JD, Schner G (1990) Action-perception as a pattern-formation process. Attention and Performance XIII (M. Jeannerod, ed), Hillsdale, NJ: 139–169

    Google Scholar 

  • Kelso JAS, Fink PW, DeLaplain CR, Carson RG (2001) Haptic information stabilizes and destabilizes coordination dynamics. Proceedings of the Royal Society of London Series B-Biological Sciences 268: 1207–1213

    Google Scholar 

  • Kelso JAS, Fuchs A, Lancaster R, Holroyd T, Cheyne D, Weinberg H (1998) Dynamic cortical activity in the human brain reveals motor equivalence. Nature 392: 814–818

    Google Scholar 

  • Kelso JAS, Jeka JJ (1992) Symmetry-breaking dynamics of human multilimb coordination. Journal of Experimental Psychology-Human Perception and Performance 18: 645–668

    Google Scholar 

  • Kelso JAS, Jirsa VK, Fuchs A (1999) Traversing scales of brain and behavioral organization I: Concepts and Experiments. In: Uhl C (ed) Analysis of Neurophysiological Brain Functioning. Springer, Berlin

    Google Scholar 

  • Kelso JAS, Scholz JP, Schner G (1988) Dynamics governs switching among patterns of coordination in biological movement. Physics Letters A 134: 8–12

    Google Scholar 

  • Lagarde J, Kelso JAS (2006) Binding of movement, sound and touch: multimodal coordination dynamics. Experimental Brain Research 173: 673–688

    Google Scholar 

  • Lewis PA, Wing AM, Pope PA, Praamstra P, Miall RC (2004) Brain activity correlates differentially with increasing temporal complexity of rhythms during initialisation, synchronisation, and continuation phases of paced finger tapping. Neuropsychologia 42: 1301–1312

    Google Scholar 

  • Lopes da Silva FH, Pfurtscheller G (1999) Basic concepts on EEG synchronization and desynchronization. In: Pfurtscheller G, Lopes da Silva FH (eds) Event-related Desynchronization, vol 6. Elsevier, Amsterdam

    Google Scholar 

  • Lu ZL, Williamson SJ, Kaufman L (1992) Human auditory primary and association cortex have differing lifetimes for activation traces. Brain Research 572: 236–241

    Google Scholar 

  • Manganotti P, Gerloff C, Toro C, Katsuta H, Sadato N, Zhuang P, Leocani , Hallett (1998) Task-related coherence and task-related spectral power changes during sequential finger movements. Electromyography and Motor Control-Electroencephalography and Clinical Neurophysiology 109: 50–62

    Google Scholar 

  • Martin, K. A.C. (2006). Where are the switches on this thing? Nature, 440, 1114.

    Google Scholar 

  • Mayville JM, Bressler SL, Fuchs A, Kelso JAS (1999) Spatiotemporal reorganization of electrical activity in the human brain associated with a timing transition in rhythmic auditory-motor coordination. Experimental Brain Research 127:371–381

    Google Scholar 

  • Mayville JM, Fuchs A, Ding MZ, Cheyne D, Deecke L, Kelso JAS (2001) Event-related changes in neuromagnetic activity associated with syncopation and synchronization timing tasks. Human Brain Mapping 14: 65–80

    Google Scholar 

  • Mayville JM, Fuchs A, Kelso JA (2005) Neuromagnetic motor fields accompanying self-paced rhythmic finger movement at different rates. Experimental Brain Research 166: 190–199

    Google Scholar 

  • Mayville JM, Jantzen KJ, Fuchs A, Steinberg FL, Kelso JAS (2002) Cortical and subcortical networks underlying syncopated and synchronized coordination revealed using fMRI. Human Brain Mapping 17: 214–229

    Google Scholar 

  • Meyer-Lindenberg A, Ziemann U, Hajak G, Cohen L, Berman KF (2002) Transitions between dynamical states of differing stability in the human brain. Proceedings of the National Academy of Sciences of the United States of America 99:10948–10953

    Google Scholar 

  • Monno A, Temprado JJ, Zanone PG, Laurent M (2002) The interplay of attention and bimanual coordination dynamics. Acta Psychologica 110: 187–211

    Google Scholar 

  • Nair DG, Purcott KL, Fuchs A, Steinberg F, Kelso JAS (2003) Cortical and cerebellar activity of the human brain during imagined and executed unimanual and bimanual action sequences: a functional MRI study. Cognitive Brain Research 15: 250–260

    Google Scholar 

  • Neuper C, Pfurtscheller G (2001) Evidence for distinct beta resonance frequencies in human EEG related to specific sensorimotor cortical areas. Clinical Neurophysiology 112: 2084–2097

    Google Scholar 

  • Nicolis G, Prigogine I (1989) Exploring complexity, an introduction. W.H. , New York

    Google Scholar 

  • Nunez PL (1995) Neocortical Dynamics and Human EEG Rhythms. Oxford University Press, New York

    Google Scholar 

  • Oullier, O., de Guzman, G.C., Jantzen, K.J., & Kelso, J.A.S. (2003). On context dependence of behavioral variability in inter-personal coordination. International Journal of Computer Science in Sport, 2, 126–128

    Google Scholar 

  • Oullier O, Jantzen KJ, Steinberg FL, Kelso JAS (2005) Neural substrates of real and imagined sensorimotor coordination. Cerebral Cortex 15: 975–985

    Google Scholar 

  • Pantev C, Roberts LE, Elbert T, Ross B, Wienbruch C (1996) Tonotopic organization of the sources of human auditory steady-state responses. Hearing Research 101: 62–74

    Google Scholar 

  • Pastor MA, Artieda J, Arbizu J, Marti-Climent JM, Penuelas I, Masdeu JC (2002) Activation of human cerebral and cerebellar cortex by auditory stimulation at 40 Hz. Journal of Neuroscience 22: 10501–10506

    Google Scholar 

  • Pfurtscheller G, Andrew C (1999) Event-related changes of band power and coherence: Methodology and interpretation. Journal of Clinical Neurophysiology 16: 512–519

    Google Scholar 

  • Pollok B, Gross J, Muller K, Aschersleben G, Schnitzler A (2005) The cerebral oscillatory network associated with auditorily paced finger movements. Neuroimage 24: 646–655

    Google Scholar 

  • Price C, Wise R, Ramsay S, Friston K, Howard D, Patterson K, Frackowiak R (1992) Regional response differences within the human auditory-cortex when listening to words. Neuroscience Letters 146: 179–182

    Google Scholar 

  • Rao SM, Bandettini PA, Binder JR, Bobholz JA, Hammeke TA, Stein EA, Hyde JS (1996) Relationship between finger movement rate and functional magnetic resonance signal change in human primary motor cortex. Journal of Cerebral Blood Flow and Metabolism 16: 1250–1254

    Google Scholar 

  • Rees G, Howseman A, Josephs O, Frith CD, Friston KJ, Frackowiak RSJ, Turner R (1997) Characterizing the relationship between BOLD contrast and regional cerebral blood flow measurements by varying the stimulus presentation rate. Neuroimage 6: 270–278

    Google Scholar 

  • Ridderikhoff A, Peper CLE, Carson RG, Beek PJ (2004) Effector dynamics of rhythmic wrist activity and its implications for (modeling) bimanual coordination. Human Movement Science 23: 285–313

    Google Scholar 

  • Riecker A, Wildgruber D, Mathiak K, Grodd W, Ackermann H (2003) Parametric analysis of rate-dependent hemodynamic response functions of cortical and subcortical brain structures during auditorily cued finger tapping: a fMRI study. Neuroimage18: 731–739

    Google Scholar 

  • Richardson MJ, Marsh KL, Schmidt RC (2005) Effects of visual and verbal on unintentional interpersonal coordination. Journal of Experimental Psychology-Human Perception and Performance 31:62–79.

    Google Scholar 

  • Rizzolatti G, Luppino G, Matelli M (1998) The organization of the cortical motor system: new concepts. Electroencephalography and Clinical Neurophysiology 106: 283–296

    Google Scholar 

  • Sabatini U, Chollet F, Rascol O, Celsis P, Rascol a, Lenzi GL, Marcvergnes JP (1993) Effect of side and rate of stimulation on cerebral blood-flow changes in motor areas during finger movements in humans. Journal of Cerebral Blood Flow and Metabolism 13: 639–645

    Google Scholar 

  • Sadato N, Ibanez V, Campbell G, Deiber MP, LeBihan D, Hallett M (1997) Frequency-dependent changes of regional cerebral blood flow during finger movements: Functional MRI compared to PET. Journal of Cerebral Blood Flow and Metabolism 17: 670–679

    Google Scholar 

  • Salmelin R, Hamalainen M, Kajola M, Hari R (1995) Functional segregation of movement-related rhythmic activity in the human brain. Neuroimage 2: 237–243

    Google Scholar 

  • Sams M, Hari R, Rif J, Knuutila J (1993) The human auditory sensory memory trace persists about 10 sec-neuromagnetic evidence. Journal of Cognitive Neuroscience 5: 363–370

    Google Scholar 

  • Schmidt RC, Bienvenu M, Fitzpatrick PA, Amazeen PG (1998) A comparison of intra- and interpersonal interlimb coordination: Coordination breakdowns and coupling strength. Journal of Experimental Psychology-Human Perception and Performance 24: 884–900

    Google Scholar 

  • Schmidt RC, O’Brien B, Sysko R. (1999): Self-organization of between-persons cooperative tasks and possible applications to sport. 30(4):558–579.

    Google Scholar 

  • Scholz JP, Kelso JAS (1990) Intentional switching between patterns of bimanual coordination is dependent on the intrinsic dynamics of the patterns. Journal of Motor Behavior 22: 98–124

    Google Scholar 

  • Schner G, Haken H, Kelso JAS (1986) A stochastic-theory of phase-transitions in human hand movement. Biological Cybernetics 53: 247–257

    Google Scholar 

  • Schner G, Kelso JAS (1988) Dynamic pattern generation in behavioral and neural systems. Science 239: 1513–1520

    Google Scholar 

  • Schner G, Zanone PG, Kelso JAS (1992) Learning as change of coordination dynamics-theory and experiment. Journal of Motor Behavior 24: 29–48

    Google Scholar 

  • Serrien DJ, Strens LHA, Oliviero A, Brown P (2002) Repetitive transcranial magnetic stimulation of the supplementary motor area (SMA) degrades bimanual movement control in humans. Neuroscience Letters 328: 89–92

    Google Scholar 

  • Singer W (1993) Synchronization of cortical activity and its putative role in information-processing and learning. Annual Review of Physiology 55: 349–374

    Google Scholar 

  • Singer W (1994) The organization of sensory-motor representations in the neocortex-a hypothesis based on temporal coding. Attention and Performance XV 15: 77–107

    Google Scholar 

  • Singer W (2001) Consciousness and the binding problem. Cajal and Consciousness 929: 123–146

    Google Scholar 

  • Singh KD, Barnes GR, Hillebrand A, Forde EME, Williams AL (2002) Task-related changes in cortical synchronization are spatially coincident with the hemodynamic response. Neuroimage 16: 103–114

    Google Scholar 

  • Sporns, O (2004) Complex neural dynamics. In V.K. Jirsa and J.A.S.Kelso (eds) Coordination Dynamics : Issues and Trends, Springer, Heidelberg

    Google Scholar 

  • Sporns, O & Tononi G. Structural determinants of functional brain dynamics. This volume.

    Google Scholar 

  • Stephan, KE & Friston, KJ. Models of effective connectivity in neural systems. This volume.

    Google Scholar 

  • Steyvers M, Etoh S, Sauner D, Levin O, Siebner HR, Swinnen SP, Rothwell JC (2003) High-frequency transcranial magnetic stimulation of the supplementary motor area reduces bimanual coupling during anti-phase but not in-phase movements. Experimental Brain Research 151: 309–317

    Google Scholar 

  • Swinnen SP (2002) Intermanual coordination: From behavioural principles to neural-network interactions. Nature Reviews Neuroscience 3: 350–361

    Google Scholar 

  • Swinnen SP, Jardin K, Meulenbroek R, Dounskaia N, HofkensVanDenBrandt M (1997) Egocentric and allocentric constraints in the expression of patterns of interlimb coordination. Journal of Cognitive Neuroscience 9: 348–377

    Google Scholar 

  • Taniguchi M, Kato A, Fujita N, Hirata M, Tanaka H, Kihara T, Ninomiya H, Hirabuki N, Nakamura H, Robinson SE, Cheyne D, Yoshimine T (2000) Movement-related desynchronization of the cerebral cortex studied with spatially filtered magnetoencephalography. Neuroimage 12: 298–306

    Google Scholar 

  • Tass PA, Fieseler T, Dammers J, Dolan K, Morosan P, Majtanik M, Boers F, Muren A, Zilles K, Fink GR (2003) Synchronization tomography: A method for three-dimensional localization of phase synchronized neuronal populations in the human brain using magnetoencephalography. Physical Review Letters 90: -

    Google Scholar 

  • Temprado JJ, Laurent M (2004) Attentional load associated with performing and stabilizing a between-persons coordination of rhythmic limb movements. Acta Psychologica 115: 1–16

    Google Scholar 

  • Temprado JJ, Monno A, Zanone PG, Kelso JAS (2002) Attentional demands reflect learning-induced alterations of bimanual coordination dynamics. European Journal of Neuroscience 16: 1390–1394

    Google Scholar 

  • Temprado JJ, Swinnen SP (2005) Dynamics of learning and transfer of muscular and spatial relative phase in bimanual coordination: evidence for abstract directional codes. Experimental Brain Research 160: 180–188

    Google Scholar 

  • Toma K, Mima T, Matsuoka T, Gerloff C, Ohnishi T, Koshy B, Andres F, Hallett (2002) Movement rate effect on activation and functional coupling of motor cortical areas. Journal of Neurophysiology 88: 3377–3385

    Google Scholar 

  • Tononi, G., Sporns, O., Edelman, G.M. (1998) Complexity and coherency: Integrating information in the brain. Trends in Cognitive Science, 2, 474–484.

    Google Scholar 

  • Tracy JI, Faro SS, Mohammed FB, Pinus AB, Madi SM, Laskas JW (2001) Cerebellar mediation of the complexity of bimanual compared to unimanual movements. Neurology 57: 1862–1869

    Google Scholar 

  • Tschacher W, Dauwalder JP (eds) (2003) Embodiment and coordination dynamics, studies of nonlinear phenomenon in life science. World Scientific, New Jersey

    Google Scholar 

  • Tuller B, Case P, Ding MZ, Kelso JaS (1994) The nonlinear dynamics of speech categorization. Journal of Experimental Psychology-Human Perception and Performance 20: 3–16

    Google Scholar 

  • Turvey MT (2004) Impredicativity, dynamics and the perception-action divide. In: Jirsa VK, Kelso JAS (eds) Coordination Dynamics: Issues and Trends. Springer, Berlin

    Google Scholar 

  • Ullen F, Bengtsson SL (2003) Independent processing of the temporal and ordinal structure of movement sequences. Journal of Neurophysiology 90: 3725–3735

    Google Scholar 

  • VanOostende S, VanHecke P, Sunaert S, Nuttin B, Marchal G (1997) FMRI studies of the supplementary motor area and the premotor cortex. Neuroimage 6: 181–190

    Google Scholar 

  • Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: Phase synchronization and large-scale integration. Nature Reviews Neuroscience 2: 229–239

    Google Scholar 

  • Wallenstein GV, Kelso JAS, Bressler SL (1995) Phase-transitions in spatiotemporal patterns of brain activity and behavior. Physica D, 84: 626–634

    MATH  Google Scholar 

  • Wexler BE, Fulbright RK, Lacadie CM, Skudlarski P, Kelz MB, Constable RT, Gore JC (1997) An fMRI study of the human cortical motor system response to increasing functional demands. Magnetic Resonance Imaging 15: 385–396

    Google Scholar 

  • Zaal FTJM, Bingham GP, Schmidt RC (2000). Visual perception of mean relative phase and phase variability. Journal of Experimental Psychology-Human Perception and Performance 26: 1209–1220.

    Google Scholar 

  • Zanone PG, Kelso JAS (1991) Experimental studies of behavioral attractors and their evolution with learning. In: Requin J, Stelmach GE (eds) Tutorials in motor neurosciences. Kluwer, Dordrecht, pp 121–133

    Google Scholar 

  • Zanone PG, Kelso JAS (1992) Evolution of behavioral attractors with learning-nonequilibrium phase-transitions. Journal of Experimental Psychology-Human Perception and Performance 18: 403–421

    Google Scholar 

  • Zanone PG, Kelso JAS (1997) Coordination dynamics of learning and transfer: Collective and component levels. Journal of Experimental Psychology-Human Perception and Performance 23: 1454–1480

    Google Scholar 

  • Zanone PG, Monno A, Temprado JJ, Laurent M (2001) Shared dynamics of attentional cost and pattern stability. Human Movement Science, 20: 765–789

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jantzen, K.J., Kelso, J.S. (2007). Neural Coordination Dynamics of Human Sensorimotor Behavior: A Review. In: Jirsa, V.K., McIntosh, A. (eds) Handbook of Brain Connectivity. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71512-2_15

Download citation

Publish with us

Policies and ethics