Skip to main content

Peripheral and Central Mechanisms of Pain Generation

  • Chapter
Book cover Analgesia

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 177))

Abstract

Pain research has uncovered important neuronal mechanisms that underlie clinically relevant pain states such as inflammatory and neuropathic pain. Importantly, both the peripheral and the central nociceptive system contribute significantly to the generation of pain upon inflammation and nerve injury. Peripheral nociceptors are sensitized during inflammation, and peripheral nerve fibres develop ectopic discharges upon nerve injury or disease. As a consequence a complex neuronal response is evoked in the spinal cord where neurons become hyperexcitable, and a new balance is set between excitation and inhibition. The spinal processes are significantly influenced by brain stem circuits that inhibit or facilitate spinal nociceptive processing. Numerous mechanisms are involved in peripheral and central nociceptive processes including rapid functional changes of signalling and long-term regulatory changes such as up-regulation of mediator/receptor systems. Conscious pain is generated by thalamocortical networks that produce both sensory discriminative and affective components of the pain response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmadi S, Lippross S, Neuhuber WL, Zeilhofer HU(2002) PGE2 selectively blocks inhibitory glycinergic neurotransmission onto rat superficial dorsal horn neurons. Nat Neurosci 5:34–40

    Article  PubMed  CAS  Google Scholar 

  • Akopian AN, Souslova V, England S, Okuse K, Ogata N, Ure J, Smith A, Kerr BJ, McMahon SB, Boyce S, Hill R, Stanfa LC, Dickenson AH, Wood JN (1999) The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nat Neurosci 2:541–548

    Article  PubMed  CAS  Google Scholar 

  • Baba H, Kohno T, Moore KA, Woolf CJ (2001) Direct activation of rat spinal dorsal horn neurons by prostaglandin E2. J Neurosci 21:1750–1756

    PubMed  CAS  Google Scholar 

  • Bär KJ, Schurigt U, Scholze A, Segond von Banchet G, Stopfel N, Bräuer R, Halbhuber KJ, Schaible HG (2004) The expression and localisation of somatostatin receptors in dorsal root ganglion neurons of normal and monoarthritic rats. Neuroscience 127:197–206

    Article  PubMed  CAS  Google Scholar 

  • Bandell M, Story GM, Hwang SW, Viswanath V, Eid SR, Petrus MJ, Earley TJ, Patapoutian A (2004) Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron 41:849–857

    Article  PubMed  CAS  Google Scholar 

  • Banik RK, Kozaki Y, Sato J, Gera L, Mizumura K (2001) B2 receptor-mediated enhanced bradykinin sensitivity of rat cutaneous C-fiber nociceptors during persistent inflammation. J Neurophysiol 86:2727–2735

    PubMed  CAS  Google Scholar 

  • Belmonte C, Cervero E (1996)Neurobiology of nociceptors. Oxford University Press, Oxford

    Google Scholar 

  • Brack A, Stein C (2004) Potential links between leukocytes and antinociception. Pain 111:1–2

    Article  PubMed  Google Scholar 

  • Brock JA, McLachlan EM, Belmonte C (1998) Tetrodotoxin-resistant impulses in single nociceptor nerve terminals in guinea-pig cornea. J Physiol 512:211–217

    Article  PubMed  CAS  Google Scholar 

  • Campbell JN, Meyer RA (2005) Neuropathic pain: from the nociceptor to the patient. In: Merskey H, Loeser JD, Dubner R (eds) The paths of pain 1975–2005. IASP Press, Seattle, pp 229–242

    Google Scholar 

  • Carlton SM, Coggeshall RE (2002) Inflammation-induced up-regulation of neurokinin 1 receptors in rat glabrous skin. Neurosci Lett 326:29–36

    Article  PubMed  CAS  Google Scholar 

  • Carlton SM, Du J, Zhou S, Coggeshall RE (2001) Tonic control of peripheral cutaneous nociceptors by somatostatin receptors. J Neurosci 21:4042–4049

    PubMed  CAS  Google Scholar 

  • Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288:306–313

    Article  PubMed  CAS  Google Scholar 

  • Cervero F, Laird JMA (1991) One pain or many pains? A new look at pain mechanisms. News Physiol Sci 6:268–273

    Google Scholar 

  • Chapman CR, Gavrin J (1999) Suffering: the contributions of persistent pain. Lancet 353:2233–2237

    Article  PubMed  CAS  Google Scholar 

  • Craig AD (2003) Pain mechanisms: labeled lines versus convergence in central processing. Annu Rev Neurosci 26:1–30

    Article  PubMed  CAS  Google Scholar 

  • Cummins TR, Black JA, Dib-Hajj SD, Waxman SG (2000) Glial-derived neurotrophic factor upregulates expression of functional SNS and NaN sodium channels and their currents in axotomized dorsal root ganglion neurons. J Neurosci 20:8754–8761

    PubMed  CAS  Google Scholar 

  • Cunha FQ, Ferreira SH (2003) Peripheral hyperalgesic cytokines. Adv Exp Med Biol 521:22–39

    PubMed  CAS  Google Scholar 

  • Davis JB, Gray J, Gunthorpe MJ, Hatcher JP, Davey PT, Overend P, Harries MH, Latcham J, Clapham C, Atkinson K, Hughes SA, Rance K, Grau E, Harper AJ, Pugh PL, Rogers DC, Bingham S, Randall A, Sheardown SA (2000) Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405:183–187

    Article  PubMed  CAS  Google Scholar 

  • Dubner R (2005) Plasticity in central nociceptive pathways. In: Merskey H, Loeser JD, Dubner R (eds) The paths of pain 1975–2005. IASP Press, Seattle, pp 101–115

    Google Scholar 

  • Dubner R, Ruda MA (1992) Activity-dependent neuronal plasticity following tissue injury and inflammation. Trends Neurosci 15:96–103

    Article  PubMed  CAS  Google Scholar 

  • Everill B, Kocsis JD (1999) Reduction in potassium currents in identified cutaneous afferent dorsal root ganglion neurons after axotomy. J Neurophysiol 82:700–708

    PubMed  CAS  Google Scholar 

  • Fields HL, Basbaum AI (1999) Central nervous system mechanisms of pain modulation. In: Wall PD, Melzack R (eds) Textbook of pain. Churchill Livingstone, London, pp 309–329

    Google Scholar 

  • Fields HL, Heinricher MM, Mason P (1991) Neurotransmitters in nociceptive modulatory circuits. Annu Rev Neurosci 14:219–245

    Article  PubMed  CAS  Google Scholar 

  • Fundytus ME (2001) Glutamate receptors and nociception. CNS Drugs 15:29–58

    Article  PubMed  CAS  Google Scholar 

  • Gebhart GF (2004) Descending modulation of pain. Neurosci Biobehav Rev 27:729–737

    Article  PubMed  CAS  Google Scholar 

  • Gold MS (2005)Molecular basis of receptors. In:Merskey H, Loeser JD, Dubner R (eds) The paths of pain 1975–2005. IASP Press, Seattle, pp 49–67

    Google Scholar 

  • Gold MS, Traub JT (2004) Cutaneous and colonic rat DRG neurons differ with respect to both baseline and PGE2-induced changes in passive and active electrophysiological properties. J Neurophysiol 91:2524–2531

    Article  PubMed  CAS  Google Scholar 

  • Guan Y, Terayama R, Dubner R, Ren K (2002) Plasticity in excitatory amino acid receptor mediated descending pain modulation after inflammation. J Pharmacol Exp Ther 300:513–520

    Article  PubMed  CAS  Google Scholar 

  • Han HC, Lee DH, Chung JM (2000) Characteristics of ectopic discharges in a rat neuropathic pain model. Pain 84:253–261

    Article  PubMed  CAS  Google Scholar 

  • Heinricher MM, McGaraughty S, Farr DA (1999) The role of excitatory amino acid transmission within the rostral ventromedial medulla in the antinociceptive actions of systemically administered morphine. Pain 81:57–65

    Article  PubMed  CAS  Google Scholar 

  • Heppelmann B, Pawlak M (1999) Peripheral application of cyclo-somatostatin, a somatostatin antagonist, increases the mechanosensitivity of the knee joint afferents. Neurosci Lett 259:62–64

    Article  PubMed  CAS  Google Scholar 

  • Hong S, Wiley JW (2005) Early painful diabetic neuropathy is associated with differential changes in the expression and function of vanilloid receptor 1. J Biol Chem 280:618–627

    PubMed  CAS  Google Scholar 

  • Hunt SP, Pini A, Evan G (1987) Induction of c-fos-like protein in spinal cord neurons following sensory stimulation. Nature 328:632–634

    Article  PubMed  CAS  Google Scholar 

  • Jänig W, Levine JD, Michaelis M (1996) Interactions of sympathetic and primary afferent neurons following nerve injury and tissue trauma. In: Kumazawa T, Kruger L, Mizumura K (eds) The polymodal receptor: a gateway to pathological pain. Progress in brain research, vol 113. Elsevier Science, Amsterdam, pp 161–184

    Google Scholar 

  • Ji RR, Samad TA, Jin SX, Schmoll R, Woolf CJ (2002) p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron 36:57–68

    Article  PubMed  CAS  Google Scholar 

  • Kendall NA (1999) Psychological approaches to the prevention of chronic pain: the low back paradigm. Baillieres Best Pract Res Clin Rheumatol 13:545–554

    Article  PubMed  CAS  Google Scholar 

  • Khasabov SG, Rogers SD, Ghilardi JR, Pertes CM, Mantyh PW, Simone DA (2002) Spinal neurons that possess the substance P receptor are required for the development of central sensitization. J Neurosci 22:9086–9098

    PubMed  CAS  Google Scholar 

  • Kingery WS, Guo TZ, Davies ME, Limbird L, Maze M (2000) The alpha(2A) adrenoceptor and the sympathetic postganglionic neuron contribute to the development of neuropathic heat hyperalgesia in mice. Pain 85:345–358

    Article  PubMed  CAS  Google Scholar 

  • Klede M, Handwerker HO, Schmelz M (2003) Central origin of secondary mechanical hyperalgesia. J Neurophysiol 90:353–359

    Article  PubMed  Google Scholar 

  • Laird JMA, Bennett GJ (1993) An electrophysiological study of dorsal horn neurons in the spinal cord of rats with an experimental peripheral neuropathy. J Neurophysiol 69:2072–2085

    PubMed  CAS  Google Scholar 

  • Le Bars D, Dickenson AH, Besson JM (1979a) Diffuse noxious inhibitory controls (DNIC). I. Effects on dorsal horn convergent neurons in the rat. Pain 6:283–304

    Article  PubMed  Google Scholar 

  • Le Bars D, Dickenson AH, Besson JM (1979b) Diffuse noxious inhibitory controls (DNIC). II. Lack of effect on non-convergent neurones, supraspinal involvement and theoretical implications. Pain 6:305–327

    Article  PubMed  Google Scholar 

  • Lee DH, Liu X, Kim HT, Chung K, Chung JM (1999) Receptor subtype mediating the adrenergic sensitivity of pain behavior and ectopic discharges in neuropathic Lewis rats. J Neurophysiol 81:2226–2233

    PubMed  CAS  Google Scholar 

  • Liang YF, Haake B, Reeh PW (2001) Sustained sensitization and recruitment of cutaneous nociceptors by bradykinin and a novel theory of its excitatory action. J Physiol 532:229–239

    Article  PubMed  CAS  Google Scholar 

  • Liu CN, Michaelis M, Amir R, Devor M (2000) Spinal nerve injury enhances subthreshold membrane potential oscillations in DRG neurons: relation to neuropathic pain. J Neurophysiol 84:205–215

    PubMed  CAS  Google Scholar 

  • Lynn B (1996) Neurogenic inflammation caused by cutaneous polymodal receptors. Prog Brain Res 113:361–368

    Article  PubMed  CAS  Google Scholar 

  • Marchand F, Perretti M, McMahon SB (2005) Role of the immune system in chronic pain. Nat Rev Neurosci 6:521–532

    Article  PubMed  CAS  Google Scholar 

  • McCleskey EW, Gold MS (1999) Ion channels of nociception. Annu Rev Physiol 61:835–856

    Article  PubMed  CAS  Google Scholar 

  • Mendell LM, Wall PD (1965) Responses of single dorsal cord cells to peripheral cutaneous unmyelinated fibers. Nature 206:97–99

    Article  PubMed  CAS  Google Scholar 

  • Menetréy D, Gannon JD, Levine JD, Basbaum AI (1989) Expression of c-fos protein in interneurons and projection neurons of the rat spinal cord in response to noxious somatic, articular, and visceral stimulation. J Comp Neurol 285:177–195

    Article  PubMed  Google Scholar 

  • Mense S (1993) Nociception from skeletal muscle in relation to clinical muscle pain. Pain 54:241–289

    Article  PubMed  CAS  Google Scholar 

  • Michaelis M, Vogel C, Blenk KH, Arnarson A, Jänig W (1998) Inflammatory mediators sensitize acutely axotomized nerve fibers to mechanical stimulation in the rat. J Neurosci 18:7581–7587

    PubMed  CAS  Google Scholar 

  • Millan MJ (1999) The induction of pain: an integrative review. Prog Neurobiol 57:1–164

    Article  PubMed  CAS  Google Scholar 

  • Moon DE, Lee DH, Han HC, Xie J, Coggeshall RE, Chung JM (1999) Adrenergic sensitivity of the sensory receptors modulating mechanical allodynia in a rat neuropathic painmodel. Pain 80:589–595

    Article  PubMed  CAS  Google Scholar 

  • Obreja O, Rathee PK, Lips KS, Distler C, Kress M (2002) IL-1β potentiates heat-activated currents in rat sensory neurons: involvement of IL-1 RI, tyrosine kinase, and protein kinase C. FASEB J 16:1497–1503

    Article  PubMed  CAS  Google Scholar 

  • Orstavik K, Weidner C, Schmidt R, Schmelz M, Hilliges M, Jørum E, Handwerker H, Torebjörk HE (2003) Pathological C-fibres in patients with a chronic painful condition. Brain 126:567–578

    Article  PubMed  Google Scholar 

  • Ossipov MH, Porreca F (2005) Descending modulation of pain. In: Merskey H, Loeser JD, Dubner R (eds) The paths of pain 1975–2005. IASP Press, Seattle, pp 117–130

    Google Scholar 

  • Palacek J, Dougherty PM, Kim SH, Paleckova V, Lekan V, Chung JM, Carlton SM, Willis WD (1992a) Responses of spinothalamic tract neurons to mechanical and thermal stimuli in an experimental model of peripheral neuropathy in primates. J Neurophysiol 68:1951–1966

    Google Scholar 

  • Palacek J, Paleckova V, Dougherty PM, Carlton SM, Willis WS (1992b) Responses of spinothalamic tract cells tomechanical and thermal stimulation of skin in rats with experimental peripheral neuropathy. J Neurophysiol 67:1562–1573

    Google Scholar 

  • Papapoutian A, Peier AM, Story GM, Viswanath V (2003) Thermo TRP channels and beyond: mechanisms of temperature sensation. Nat Rev Neurosci 4:529–539

    Article  CAS  Google Scholar 

  • Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, Patapoutian A (2002) A TRP channel that senses cold stimuli and menthol. Cell 108:705–715

    Article  PubMed  CAS  Google Scholar 

  • Polgár E, Gray S, Riddell JS, Todd AJ (2004) Lack of evidence for significant neuronal loss in laminae I–III of the spinal dorsal horn of the rat in the chronic constriction injury model. Pain 111:144–150

    Article  PubMed  Google Scholar 

  • Porreca F, Ossipov MH, Gebhart GF (2002) Chronic pain and medullary descending facilitation. Trends Neurosci 25:319–325

    Article  PubMed  CAS  Google Scholar 

  • Price DD, Mao J, Coghill RC, d’Avella D, Cicciarello R, Fiori MG, Mayer DJ, Hayes RL (1991) Regional changes in spinal cord glucose metabolism in a ratmodel of painful neuropathy. Brain Res 564:314–318

    Article  PubMed  CAS  Google Scholar 

  • Price DD, Greenspan JD, Dubner R (2003) Neurons involved in the exteroceptive function of pain. Pain 106:215–219

    Article  PubMed  Google Scholar 

  • Randic M, Jiang MC, Cerne R (1993) Long-term potentiation and long-term depression of primary afferent neurotransmission in the rat spinal cord. J Neurosci 13:5228–5241

    PubMed  CAS  Google Scholar 

  • Rashid MH, Inoue M, Bakoshi S, Ueda H (2003) Increased expression of vanilloid receptor 1 on myelinated primary afferent neurons contributes to the antihyperalgesic effect of capsaicin creamin diabetic neuropathic pain inmice. J Pharmacol Exp Ther 306:709–717

    Article  PubMed  CAS  Google Scholar 

  • Ringkamp M, Peng B, Wu G, Hartke TV, Campbell JN, Meyer RA (2001) Capsaicin responses in heat-sensitive and heat-insensitive A-fiber nociceptors. J Neurosci 21:4460–4468

    PubMed  CAS  Google Scholar 

  • Russo CM, Brose WG (1998) Chronic pain. Annu Rev Med 49:123–133

    Article  PubMed  CAS  Google Scholar 

  • Rygh LJ, Svendson F, Hole K, Tjolsen A (1999) Natural noxious stimulation can induce long-term increase of spinal nociceptive responses. Pain 82:305–310

    Article  PubMed  CAS  Google Scholar 

  • Sandkühler J, Liu X (1998) Induction of long-termpotentiation at spinal synapses by noxious stimulation or nerve injury. Eur J Neurosci 10:2476–2480

    Article  PubMed  Google Scholar 

  • Schadrack J, Neto FL, Ableitner A, Castro-Lopes JM, Willoch F, Bartenstein B, Zieglgänsberger W, Tölle TR (1999) Metabolic activity changes in the rat spinal cord during adjuvant monoarthritis. Neuroscience 94:595–605

    Article  PubMed  CAS  Google Scholar 

  • Schaible HG (2005) Basic mechanisms of deep somatic tissue. In: McMahon SB, Koltzenburg M (eds) Textbook of pain. Elsevier, London, pp 621–633

    Google Scholar 

  • Schaible HG, Grubb BD (1993) Afferent and spinal mechanisms of joint pain. Pain 55:5–54

    Article  PubMed  CAS  Google Scholar 

  • Schaible HG, Richter F (2004) Pathophysiology of pain. Langenbecks Arch Surg 389:237–243

    Article  PubMed  Google Scholar 

  • Schaible HG, Schmidt RF (1988) Time course of mechanosensitivity changes in articular afferents during a developing experimental arthritis. J Neurophysiol 60:2180–2195

    PubMed  CAS  Google Scholar 

  • Schaible HG, Del Rosso A, Matucci-Cerinic M (2005) Neurogenic aspects of inflammation. Rheum Dis Clin North Am 31:77–101

    Article  PubMed  Google Scholar 

  • Segond von Banchet G, Petrow PK, Bräuer R, Schaible HG (2000) Monoarticular antigen induced arthritis leads to pronounced bilateral upregulation of the expression of neurokinin 1 and bradykinin 2 receptors in dorsal root ganglion neurons of rats. Arthritis Res 2:424–427

    Article  CAS  Google Scholar 

  • Sivilotti LG, Thompson SWN, Woolf CJ (1993) The rate of rise of the cumulative depolarization evoked by repetitive stimulation of small-calibre afferents is a predictor of action potential windup in rat spinal neurons in vitro. J Neurophysiol 69:1621–1631

    PubMed  CAS  Google Scholar 

  • Sommer C, Schröder JM (1995) HLA-DR expression in peripheral neuropathies: the role of Schwann cells, resident and hematogenous macrophages, and endoneurial fibroblasts. Acta Neuropathol (Berl) 89:63–71

    Article  PubMed  CAS  Google Scholar 

  • Sugiura Y, Terui N, Hosoya Y (1989) Difference in the distribution of central terminals between visceral and somatic unmyelinated (C) primary afferent fibres. J Neurophysiol 62:834–840

    PubMed  CAS  Google Scholar 

  • Sutherland SP, Benson CJ, Adelman JP, McCleskey EW (2001) Acid-sensing ion channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons. Proc Natl Acad Sci USA 98:711–716

    Article  PubMed  CAS  Google Scholar 

  • Suzuki R, Morcuende S, Webber M, Hunt SP, Dickenson AH (2002) Superficial NK1-expressing neurons control spinal excitability through activation of descending pathways. Nat Neurosci 5:1319–1326

    Article  PubMed  CAS  Google Scholar 

  • Treede RD, Kenshalo DR, Gracely RH, Jones AKP (1999) The cortical representation of pain. Pain 79:105–111

    Article  PubMed  CAS  Google Scholar 

  • Urban L, Thompson SWN, Dray A (1994) Modulation of spinal excitability: cooperation between neurokinin and excitatory amino acid transmitters. Trends Neurosci 17:432–438

    Article  PubMed  CAS  Google Scholar 

  • Urban MO, Gebhart GF (1999) Supraspinal contributions to hyperalgesia. Proc Natl Acad Sci USA 96:7687–7692

    Article  PubMed  CAS  Google Scholar 

  • Vanegas H, Schaible HG (2000) Effects of antagonists to high-threshold calcium channels upon spinal mechanisms of pain, hyperalgesia and allodynia. Pain 85:9–18

    Article  PubMed  CAS  Google Scholar 

  • Vanegas H, Schaible HG (2001) Prostaglandins and cyclooxygenases in the spinal cord. Prog Neurobiol 64:327–363

    Article  PubMed  CAS  Google Scholar 

  • Vanegas H, Schaible HG (2004) Descending control of persistent pain: inhibitory or facilitatory? Brain Res Rev 46:295–309

    Article  PubMed  Google Scholar 

  • Vogt BA (2005) Pain and emotion. Interactions in subregions of the cingulate gyrus. Nat Rev Neurosci 6:533–544

    Article  PubMed  CAS  Google Scholar 

  • Watkins LR, Maier SF (2005) Glia and pain: past, present, and future. In: Merskey H, Loeser JD, Dubner R (eds) The paths of pain 1975–2005. IASP Press, Seattle, pp 165–175

    Google Scholar 

  • Weidner C, Schmelz M, Schmidt R, Hansson B, Handwerker HO, Torebjörk HE (1999) Functional attributes discriminating mechano-insensitive and mechano-responsive C nociceptors in human skin. J Neurosci 19:10184–10190

    PubMed  CAS  Google Scholar 

  • Williams S, Ean GL, Hunt SP (1990) Changing pattern of c-fos induction following thermal cutaneous stimulation in the rat. Neuroscience 36:73–81

    Article  PubMed  CAS  Google Scholar 

  • Willis WD (2005) Physiology and anatomy of the spinal cord pain system. In: Merskey H, Loeser JD, Dubner R (eds) The paths of pain 1975–2005. IASP Press, Seattle, pp 85–100

    Google Scholar 

  • Willis WD, Coggeshall RE (2004) Sensory mechanisms of the spinal cord, 3rd edn. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  • Wilson-Gerwing TD, Dmyterko MV, Zochodne DW, Johnston JM, Verge VM (2005) Neurotrophin-3 suppresses thermal hyperalgesia associated with neuropathic pain and attenuates transient receptor potential vanilloid receptor-1 expression in adult sensory neurons. J Neurosci 25:758–767

    Article  PubMed  CAS  Google Scholar 

  • Woolf CJ, Salter MW (2000) Neuronal plasticity: increasing the gain in pain. Science 288:1765–1768

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Ringkamp M, Hartke TV, Murinson BB, Campbell JN, Griffin JW, Meyer RA (2001) Early onset of spontaneous activity in uninjured C-fiber nociceptors after injury to neighbouring nerve fibers. J Neurosci 21 RC140:1–5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schaible, H.G. (2006). Peripheral and Central Mechanisms of Pain Generation. In: Stein, C. (eds) Analgesia. Handbook of Experimental Pharmacology, vol 177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33823-9_1

Download citation

Publish with us

Policies and ethics