Skip to main content

Pathology of Endometrial Carcinoma

  • Chapter
  • First Online:
Molecular Genetics of Endometrial Carcinoma

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 943))

Abstract

On a clinicopathological and molecular level, two distinctive types of endometrial carcinoma, type I and type II, can be distinguished. Endometrioid carcinoma, the typical type I carcinoma, seems to develop through an estrogen-driven “adenoma carcinoma” pathway from atypical endometrial hyperplasia/endometrioid intraepithelial neoplasia (AEH/EIN). It is associated with elevated serum estrogen and high body mass index and expresses estrogen and progesterone receptors. They are mostly low grade and show a favorable prognosis. A subset progresses into high-grade carcinoma which is accompanied by loss of receptor expression and accumulation of TP53 mutations and behaves poorly. Other frequently altered genes in type I carcinomas are K-Ras, PTEN, and ß-catenin. Another frequent feature of type I carcinomas is microsatellite instability mainly caused by methylation of the MLH1 promoter. In contrast, the typical type II carcinoma, serous carcinoma, is not estrogen related since it usually occurs in a small uterus with atrophic endometrium. It is often associated with a flat putative precursor lesion called serous endometrial intraepithelial carcinoma (SEIC). The molecular pathogenesis of serous carcinoma seems to be driven by TP53 mutations, which are present in SEIC. Other molecular changes in serous carcinoma detectable by immunohistochemistry involve cyclin E and p16. Since many of the aforementioned molecular changes can be demonstrated by immunohistochemistry, they are useful ancillary diagnostic tools and may further contribute to a future molecular classification of endometrial carcinoma as recently suggested based on The Cancer Genome Atlas (TCGA) data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jemal A, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58(2):71–96.

    PubMed  Google Scholar 

  2. Parazzini F, et al. The epidemiology of endometrial cancer. Gynecol Oncol. 1991;41(1):1–16.

    CAS  PubMed  Google Scholar 

  3. Allard JE, Maxwell GL. Race disparities between black and white women in the incidence, treatment, and prognosis of endometrial cancer. Cancer Control. 2009;16(1):53–6.

    PubMed  Google Scholar 

  4. Voskuil DW, et al. Physical activity and endometrial cancer risk, a systematic review of current evidence. Cancer Epidemiol Biomarkers Prev. 2007;16(4):639–48.

    PubMed  Google Scholar 

  5. Enriori CL, Reforzo-Membrives J. Peripheral aromatization as a risk factor for breast and endometrial cancer in postmenopausal women: a review. Gynecol Oncol. 1984;17(1):1–21.

    CAS  PubMed  Google Scholar 

  6. Potischman N, et al. Case-control study of endogenous steroid hormones and endometrial cancer. J Natl Cancer Inst. 1996;88(16):1127–35.

    CAS  PubMed  Google Scholar 

  7. Carcangiu ML, et al. editors. Tumors of the female reproductive organs. In Kleihues P, Sobin LH, editors. WHO classification of tumours. IARCPress: Lyon; 2014.

    Google Scholar 

  8. Bokhman JV. Two pathogenetic types of endometrial carcinoma. Gynecol Oncol. 1983;15(1):10–7.

    CAS  PubMed  Google Scholar 

  9. Lax SF. Molecular genetic pathways in various types of endometrial carcinoma: from a phenotypical to a molecular-based classification. Virchows Arch. 2004;444(3):213–23.

    CAS  PubMed  Google Scholar 

  10. Sherman ME. Theories of endometrial carcinogenesis: a multidisciplinary approach. Mod Pathol. 2000;13(3):295–308.

    CAS  PubMed  Google Scholar 

  11. Yeramian A, et al. Endometrial carcinoma: molecular alterations involved in tumor development and progression. Oncogene. 2013;32(4):403–13.

    CAS  PubMed  Google Scholar 

  12. Matias-Guiu X, Prat J. Molecular pathology of endometrial carcinoma. Histopathology. 2013;62(1):111–23.

    PubMed  Google Scholar 

  13. Djordjevic B, et al. Relationship between PTEN, DNA mismatch repair, and tumor histotype in endometrial carcinoma: retained positive expression of PTEN preferentially identifies sporadic non-endometrioid carcinomas. Mod Pathol. 2013;26(10):1401–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Lax SF, et al. The frequency of p53, K-ras mutations, and microsatellite instability differs in uterine endometrioid and serous carcinoma: evidence of distinct molecular genetic pathways. Cancer. 2000;88(4):814–24.

    CAS  PubMed  Google Scholar 

  15. Tashiro H, et al. Mutations in PTEN are frequent in endometrial carcinoma but rare in other common gynecological malignancies. Cancer Res. 1997;57(18):3935–40.

    CAS  PubMed  Google Scholar 

  16. Guan B, et al. Mutation and loss of expression of ARID1A in uterine low-grade endometrioid carcinoma. Am J Surg Pathol. 2011;35(5):625–32.

    PubMed  PubMed Central  Google Scholar 

  17. Kuhn E, et al. Identification of molecular pathway aberrations in uterine serous carcinoma by genome-wide analyses. J Natl Cancer Inst. 2012;104(19):1503–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Catasus L, et al. BAX somatic frameshift mutations in endometrioid adenocarcinomas of the endometrium: evidence for a tumor progression role in endometrial carcinomas with microsatellite instability. Lab Invest. 1998;78(11):1439–44.

    CAS  PubMed  Google Scholar 

  19. Oda K, et al. High frequency of coexistent mutations of PIK3CA and PTEN genes in endometrial carcinoma. Cancer Res. 2005;65(23):10669–73.

    CAS  PubMed  Google Scholar 

  20. Bashir S, et al. Molecular alterations of PIK3CA in uterine carcinosarcoma, clear cell, and serous tumors. Int J Gynecol Cancer. 2014;24(7):1262–7.

    PubMed  Google Scholar 

  21. Rudd ML, et al. A unique spectrum of somatic PIK3CA (p110alpha) mutations within primary endometrial carcinomas. Clin Cancer Res. 2011;17(6):1331–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Cancer Genome Atlas Research Network, et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497(7447):67–73.

    Google Scholar 

  23. Hussein YR, et al. Clinicopathological analysis of endometrial carcinomas harboring somatic POLE exonuclease domain mutations. Mod Pathol. 2015;28(4):505–14.

    CAS  PubMed  Google Scholar 

  24. Talhouk A, et al. A clinically applicable molecular-based classification for endometrial cancers. Br J Cancer. 2015;113(2):299–310.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Wiegand KC, et al. Loss of BAF250a (ARID1A) is frequent in high-grade endometrial carcinomas. J Pathol. 2011;224(3):328–33.

    CAS  PubMed  Google Scholar 

  26. An HJ, et al. Molecular characterization of uterine clear cell carcinoma. Mod Pathol. 2004;17(5):530–7.

    CAS  PubMed  Google Scholar 

  27. Hoang LN, et al. Targeted mutation analysis of endometrial clear cell carcinoma. Histopathology. 2015;66(5):664–74.

    PubMed  Google Scholar 

  28. Guan B, Wang TL, Shih Ie M. ARID1A, a factor that promotes formation of SWI/SNF-mediated chromatin remodeling, is a tumor suppressor in gynecologic cancers. Cancer Res. 2011;71(21):6718–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Sherman ME, et al. Uterine serous carcinoma. A morphologically diverse neoplasm with unifying clinicopathologic features. Am J Surg Pathol. 1992;16(6):600–10.

    CAS  PubMed  Google Scholar 

  30. Tashiro H, et al. p53 gene mutations are common in uterine serous carcinoma and occur early in their pathogenesis. Am J Pathol. 1997;150(1):177–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kuhn E, Bahadirli-Talbott A, Shih Ie M. Frequent CCNE1 amplification in endometrial intraepithelial carcinoma and uterine serous carcinoma. Mod Pathol. 2014;27(7):1014–9.

    CAS  PubMed  Google Scholar 

  32. Tan MH, et al. Lifetime cancer risks in individuals with germline PTEN mutations. Clin Cancer Res. 2012;18(2):400–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Bonadona V, et al. Cancer risks associated with germline mutations in MLH1, MSH2, and MSH6 genes in Lynch syndrome. JAMA. 2011;305(22):2304–10.

    CAS  PubMed  Google Scholar 

  34. Hampel H, et al. Screening for Lynch syndrome (hereditary nonpolyposis colorectal cancer) among endometrial cancer patients. Cancer Res. 2006;66(15):7810–7.

    CAS  PubMed  Google Scholar 

  35. Mills AM, et al. Lynch syndrome screening should be considered for all patients with newly diagnosed endometrial cancer. Am J Surg Pathol. 2014;38(11):1501–9.

    PubMed  PubMed Central  Google Scholar 

  36. Ferlay J, et al. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893–917.

    CAS  PubMed  Google Scholar 

  37. Abeler VM, Kjorstad KE. Endometrial adenocarcinoma in Norway. A study of a total population. Cancer. 1991;67(12):3093–103.

    CAS  PubMed  Google Scholar 

  38. Han G, et al. Histological features associated with occult lymph node metastasis in FIGO clinical stage I, grade I endometrioid carcinoma. Histopathology. 2014;64(3):389–98.

    PubMed  Google Scholar 

  39. Mai KT, et al. Endometrioid carcinoma of the endometrium with an invasive component of minimal deviation carcinoma. Hum Pathol. 2002;33(8):856–8.

    PubMed  Google Scholar 

  40. Ali A, Black D, Soslow RA. Difficulties in assessing the depth of myometrial invasion in endometrial carcinoma. Int J Gynecol Pathol. 2007;26(2):115–23.

    PubMed  Google Scholar 

  41. Zaino RJ, et al. The significance of squamous differentiation in endometrial carcinoma. Data from a Gynecologic Oncology Group study. Cancer. 1991;68(10):2293–302.

    CAS  PubMed  Google Scholar 

  42. Abeler VM, Kjorstad KE. Endometrial adenocarcinoma with squamous cell differentiation. Cancer. 1992;69(2):488–95.

    CAS  PubMed  Google Scholar 

  43. Zaino RJ, Kurman RJ. Squamous differentiation in carcinoma of the endometrium: a critical appraisal of adenoacanthoma and adenosquamous carcinoma. Semin Diagn Pathol. 1988;5(2):154–71.

    CAS  PubMed  Google Scholar 

  44. Kim KR, Scully RE. Peritoneal keratin granulomas with carcinomas of endometrium and ovary and atypical polypoid adenomyoma of endometrium. A clinicopathological analysis of 22 cases. Am J Surg Pathol. 1990;14(10):925–32.

    CAS  PubMed  Google Scholar 

  45. Zaino RJ, et al. Villoglandular adenocarcinoma of the endometrium: a clinicopathologic study of 61 cases: a gynecologic oncology group study. Am J Surg Pathol. 1998;22(11):1379–85.

    CAS  PubMed  Google Scholar 

  46. Christopherson WM, Alberhasky RC, Connelly PJ. Carcinoma of the endometrium: I. A clinicopathologic study of clear-cell carcinoma and secretory carcinoma. Cancer. 1982;49(8):1511–23.

    CAS  PubMed  Google Scholar 

  47. Tobon H, Watkins GJ. Secretory adenocarcinoma of the endometrium. Int J Gynecol Pathol. 1985;4(4):328–35.

    CAS  PubMed  Google Scholar 

  48. Hendrickson MR, Kempson RL. Ciliated carcinoma--a variant of endometrial adenocarcinoma: a report of 10 cases. Int J Gynecol Pathol. 1983;2(1):1–12.

    CAS  PubMed  Google Scholar 

  49. Longacre TA, et al. Proposed criteria for the diagnosis of well-differentiated endometrial carcinoma. A diagnostic test for myoinvasion. Am J Surg Pathol. 1995;19(4):371–406.

    CAS  PubMed  Google Scholar 

  50. Kurman RJ, Norris HJ. Evaluation of criteria for distinguishing atypical endometrial hyperplasia from well-differentiated carcinoma. Cancer. 1982;49(12):2547–59.

    CAS  PubMed  Google Scholar 

  51. Heatley MK. Atypical polypoid adenomyoma: a systematic review of the English literature. Histopathology. 2006;48(5):609–10.

    CAS  PubMed  Google Scholar 

  52. Soslow RA, et al. Atypical polypoid adenomyofibroma (APA) versus well-differentiated endometrial carcinoma with prominent stromal matrix: an immunohistochemical study. Int J Gynecol Pathol. 1996;15(3):209–16.

    CAS  PubMed  Google Scholar 

  53. Monte NM, et al. Joint loss of PAX2 and PTEN expression in endometrial precancers and cancer. Cancer Res. 2010;70(15):6225–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Moreno-Bueno G, et al. Abnormalities of E- and P-cadherin and catenin (beta-, gamma-catenin, and p120ctn) expression in endometrial cancer and endometrial atypical hyperplasia. J Pathol. 2003;199(4):471–8.

    CAS  PubMed  Google Scholar 

  55. Ansari-Lari MA, et al. Distinction of endocervical and endometrial adenocarcinomas: immunohistochemical p16 expression correlated with human papillomavirus (HPV) DNA detection. Am J Surg Pathol. 2004;28(2):160–7.

    PubMed  Google Scholar 

  56. Lax SF, et al. Clear cell carcinoma of the endometrium is characterized by a distinctive profile of p53, Ki-67, estrogen, and progesterone receptor expression. Hum Pathol. 1998;29(6):551–8.

    CAS  PubMed  Google Scholar 

  57. Lax SF, et al. Comparison of estrogen and progesterone receptor, Ki-67, and p53 immunoreactivity in uterine endometrioid carcinoma and endometrioid carcinoma with squamous, mucinous, secretory, and ciliated cell differentiation. Hum Pathol. 1998;29(9):924–31.

    CAS  PubMed  Google Scholar 

  58. Ross JC, et al. Primary mucinous adenocarcinoma of the endometrium. A clinicopathologic and histochemical study. Am J Surg Pathol. 1983;7(8):715–29.

    CAS  PubMed  Google Scholar 

  59. Staebler A, et al. Hormone receptor immunohistochemistry and human papillomavirus in situ hybridization are useful for distinguishing endocervical and endometrial adenocarcinomas. Am J Surg Pathol. 2002;26(8):998–1006.

    PubMed  Google Scholar 

  60. Chekmareva M, Ellenson LH, Pirog EC. Immunohistochemical differences between mucinous and microglandular adenocarcinomas of the endometrium and benign endocervical epithelium. Int J Gynecol Pathol. 2008;27(4):547–54.

    PubMed  Google Scholar 

  61. Hendrickson M, et al. Uterine papillary serous carcinoma: a highly malignant form of endometrial adenocarcinoma. Am J Surg Pathol. 1982;6(2):93–108.

    CAS  PubMed  Google Scholar 

  62. Ambros RA, et al. Endometrial intraepithelial carcinoma: a distinctive lesion specifically associated with tumors displaying serous differentiation. Hum Pathol. 1995;26(11):1260–7.

    CAS  PubMed  Google Scholar 

  63. Wheeler DT, et al. Minimal uterine serous carcinoma: diagnosis and clinicopathologic correlation. Am J Surg Pathol. 2000;24(6):797–806.

    CAS  PubMed  Google Scholar 

  64. Al-Hussaini M, et al. WT-1 assists in distinguishing ovarian from uterine serous carcinoma and in distinguishing between serous and endometrioid ovarian carcinoma. Histopathology. 2004;44(2):109–15.

    CAS  PubMed  Google Scholar 

  65. Goldstein NS, Uzieblo A. WT1 immunoreactivity in uterine papillary serous carcinomas is different from ovarian serous carcinomas. Am J Clin Pathol. 2002;117(4):541–5.

    PubMed  Google Scholar 

  66. Hirschowitz L, Ganesan R, McCluggage WG. WT1, p53 and hormone receptor expression in uterine serous carcinoma. Histopathology. 2009;55(4):478–82.

    PubMed  Google Scholar 

  67. Giuntoli 2nd RL, et al. Stage I noninvasive and minimally invasive uterine serous carcinoma: comprehensive staging associated with improved survival. Int J Gynecol Cancer. 2012;22(2):273–9.

    PubMed  Google Scholar 

  68. Seward S, et al. Outcomes of patients with uterine serous carcinoma using the revised FIGO staging system. Int J Gynecol Cancer. 2012;22(3):452–6.

    PubMed  Google Scholar 

  69. Kurman RJ, Scully RE. Clear cell carcinoma of the endometrium: an analysis of 21 cases. Cancer. 1976;37(2):872–82.

    CAS  PubMed  Google Scholar 

  70. Fadare O, et al. Frequent expression of napsin A in clear cell carcinoma of the endometrium: potential diagnostic utility. Am J Surg Pathol. 2014;38(2):189–96.

    PubMed  Google Scholar 

  71. Fadare O, et al. Utility of alpha-methylacyl-coenzyme-A racemase (p504s) immunohistochemistry in distinguishing endometrial clear cell carcinomas from serous and endometrioid carcinomas. Hum Pathol. 2013;44(12):2814–21.

    CAS  PubMed  Google Scholar 

  72. Hoang LN, et al. Immunohistochemical characterization of prototypical endometrial clear cell carcinoma--diagnostic utility of HNF-1beta and oestrogen receptor. Histopathology. 2014;64(4):585–96.

    PubMed  Google Scholar 

  73. Abeler VM, Kjorstad KE. Clear cell carcinoma of the endometrium: a histopathological and clinical study of 97 cases. Gynecol Oncol. 1991;40(3):207–17.

    CAS  PubMed  Google Scholar 

  74. Webb GA, Lagios MD. Clear cell carcinoma of the endometrium. Am J Obstet Gynecol. 1987;156(6):1486–91.

    CAS  PubMed  Google Scholar 

  75. Carcangiu ML, Chambers JT. Early pathologic stage clear cell carcinoma and uterine papillary serous carcinoma of the endometrium: comparison of clinicopathologic features and survival. Int J Gynecol Pathol. 1995;14(1):30–8.

    CAS  PubMed  Google Scholar 

  76. Alkushi A, et al. High-grade endometrial carcinoma: serous and grade 3 endometrioid carcinomas have different immunophenotypes and outcomes. Int J Gynecol Pathol. 2010;29(4):343–50.

    PubMed  Google Scholar 

  77. Quddus MR, et al. Minor serous and clear cell components adversely affect prognosis in “mixed-type” endometrial carcinomas: a clinicopathologic study of 36 stage-I cases. Reprod Sci. 2010;17(7):673–8.

    PubMed  Google Scholar 

  78. McConechy MK, et al. Use of mutation profiles to refine the classification of endometrial carcinomas. J Pathol. 2012;228(1):20–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Tafe LJ, et al. Endometrial and ovarian carcinomas with undifferentiated components: clinically aggressive and frequently underrecognized neoplasms. Mod Pathol. 2010;23(6):781–9.

    CAS  PubMed  Google Scholar 

  80. Silva EG, et al. Association of low-grade endometrioid carcinoma of the uterus and ovary with undifferentiated carcinoma: a new type of dedifferentiated carcinoma? Int J Gynecol Pathol. 2006;25(1):52–8.

    PubMed  Google Scholar 

  81. Altrabulsi B, et al. Undifferentiated carcinoma of the endometrium. Am J Surg Pathol. 2005;29(10):1316–21.

    PubMed  Google Scholar 

  82. Seidman JD, Chauhan S. Evaluation of the relationship between adenosarcoma and carcinosarcoma and a hypothesis of the histogenesis of uterine sarcomas. Int J Gynecol Pathol. 2003;22(1):75–82.

    PubMed  Google Scholar 

  83. Nordal RR, et al. An evaluation of prognostic factors in uterine carcinosarcoma. Gynecol Oncol. 1997;67(3):316–21.

    CAS  PubMed  Google Scholar 

  84. de Brito PA, Silverberg SG, Orenstein JM. Carcinosarcoma (malignant mixed mullerian (mesodermal) tumor) of the female genital tract: immunohistochemical and ultrastructural analysis of 28 cases. Hum Pathol. 1993;24(2):132–42.

    PubMed  Google Scholar 

  85. Silverberg SG, et al. Carcinosarcoma (malignant mixed mesodermal tumor) of the uterus. A Gynecologic Oncology Group pathologic study of 203 cases. Int J Gynecol Pathol. 1990;9(1):1–19.

    CAS  PubMed  Google Scholar 

  86. Gonzalez-Bosquet E, et al. Carcinoid tumor of the uterine corpus. A case report. J Reprod Med. 1998;43(9):844–6.

    CAS  PubMed  Google Scholar 

  87. Chetty R, Clark SP, Bhathal PS. Carcinoid tumour of the uterine corpus. Virchows Arch A Pathol Anat Histopathol. 1993;422(1):93–5.

    CAS  PubMed  Google Scholar 

  88. Starzynski S, Kubicka-Pertkiewicz M. Carcinoid of the uterine corpus. Patol Pol. 1978;29(2):237–40.

    CAS  PubMed  Google Scholar 

  89. Huntsman DG, et al. Small-cell carcinoma of the endometrium. A clinicopathological study of sixteen cases. Am J Surg Pathol. 1994;18(4):364–75.

    CAS  PubMed  Google Scholar 

  90. van Hoeven KH, et al. Small cell neuroendocrine carcinoma of the endometrium. Int J Gynecol Pathol. 1995;14(1):21–9.

    PubMed  Google Scholar 

  91. Deodhar KK, et al. Large cell neuroendocrine carcinoma of the endometrium: an extremely uncommon diagnosis, but worth the efforts. J Cancer Res Ther. 2011;7(2):211–3.

    PubMed  Google Scholar 

  92. Zaino RJ, et al. The prognostic value of nuclear versus architectural grading in endometrial adenocarcinoma: a Gynecologic Oncology Group study. Int J Gynecol Pathol. 1994;13(1):29–36.

    CAS  PubMed  Google Scholar 

  93. Zaino RJ, et al. The utility of the revised International Federation of Gynecology and Obstetrics histologic grading of endometrial adenocarcinoma using a defined nuclear grading system. A Gynecologic Oncology Group study. Cancer. 1995;75(1):81–6.

    CAS  PubMed  Google Scholar 

  94. Ayhan A, et al. The prognostic value of nuclear grading and the revised FIGO grading of endometrial adenocarcinoma. Int J Gynecol Pathol. 2003;22(1):71–4.

    CAS  PubMed  Google Scholar 

  95. Sagae S, et al. The reproducibility of a binary tumor grading system for uterine endometrial endometrioid carcinoma, compared with FIGO system and nuclear grading. Oncology. 2004;67(5-6):344–50.

    PubMed  Google Scholar 

  96. Lax SF, et al. A binary architectural grading system for uterine endometrial endometrioid carcinoma has superior reproducibility compared with FIGO grading and identifies subsets of advance-stage tumors with favorable and unfavorable prognosis. Am J Surg Pathol. 2000;24(9):1201–8.

    CAS  PubMed  Google Scholar 

  97. Guan H, et al. Prognosis and reproducibility of new and existing binary grading systems for endometrial carcinoma compared to FIGO grading in hysterectomy specimens. Int J Gynecol Cancer. 2011;21(4):654–60.

    PubMed  Google Scholar 

  98. Alkushi A, et al. Description of a novel system for grading of endometrial carcinoma and comparison with existing grading systems. Am J Surg Pathol. 2005;29(3):295–304.

    PubMed  Google Scholar 

  99. Zaino RJ. FIGO staging of endometrial adenocarcinoma: a critical review and proposal. Int J Gynecol Pathol. 2009;28(1):1–9.

    PubMed  Google Scholar 

  100. Abu-Rustum NR, et al. The revised 2009 FIGO staging system for endometrial cancer: should the 1988 FIGO stages IA and IB be altered? Int J Gynecol Cancer. 2011;21(3):511–6.

    PubMed  Google Scholar 

  101. Haltia UM, et al. FIGO 1988 versus 2009 staging for endometrial carcinoma: a comparative study on prediction of survival and stage distribution according to histologic subtype. J Gynecol Oncol. 2014;25(1):30–5.

    PubMed  PubMed Central  Google Scholar 

  102. Kim HS, et al. Lymphadenectomy increases the prognostic value of the revised 2009 FIGO staging system for endometrial cancer: a multi-center study. Eur J Surg Oncol. 2012;38(3):230–7.

    CAS  PubMed  Google Scholar 

  103. Werner HM, et al. Revision of FIGO surgical staging in 2009 for endometrial cancer validates to improve risk stratification. Gynecol Oncol. 2012;125(1):103–8.

    CAS  PubMed  Google Scholar 

  104. Korczynski J, et al. Comparison of FIGO 1989 and 2009 recommendations on staging of endometrial carcinoma: pathologic analysis and cervical status in 123 consecutive cases. Int J Gynecol Pathol. 2011;30(4):328–34.

    PubMed  Google Scholar 

  105. Bosse T, et al. Substantial lymph-vascular space invasion (LVSI) is a significant risk factor for recurrence in endometrial cancer - a pooled analysis of PORTEC 1 and 2 trials. Eur J Cancer. 2015;51(13):1742–50.

    PubMed  Google Scholar 

  106. Hachisuga T, et al. The grading of lymphovascular space invasion in endometrial carcinoma. Cancer. 1999;86(10):2090–7.

    CAS  PubMed  Google Scholar 

  107. Morrow CP, et al. Relationship between surgical-pathological risk factors and outcome in clinical stage I and II carcinoma of the endometrium: a Gynecologic Oncology Group study. Gynecol Oncol. 1991;40(1):55–65.

    CAS  PubMed  Google Scholar 

  108. Han KH, et al. Peritoneal cytology: a risk factor of recurrence for non-endometrioid endometrial cancer. Gynecol Oncol. 2014;134(2):293–6.

    PubMed  Google Scholar 

  109. Group AES, et al. Adjuvant external beam radiotherapy in the treatment of endometrial cancer (MRC ASTEC and NCIC CTG EN.5 randomised trials): pooled trial results, systematic review, and meta-analysis. Lancet. 2009;373(9658):137–46.

    Google Scholar 

  110. Creutzberg CL, et al. Outcome of high-risk stage IC, grade 3, compared with stage I endometrial carcinoma patients: the Postoperative Radiation Therapy in Endometrial Carcinoma Trial. J Clin Oncol. 2004;22(7):1234–41.

    PubMed  Google Scholar 

  111. Abdelazim IA, et al. Accuracy of endometrial sampling compared to conventional dilatation and curettage in women with abnormal uterine bleeding. Arch Gynecol Obstet. 2015;291(5):1121–6.

    PubMed  Google Scholar 

  112. Thanachaiviwat A, et al. Accuracy of preoperative curettage in determining tumor type and grade in endometrial cancer. J Med Assoc Thai. 2011;94(7):766–71.

    PubMed  Google Scholar 

  113. Wang XY, et al. Accuracy of tumor grade by preoperative curettage and associated clinicopathologic factors in clinical stage I endometriod adenocarcinoma. Chin Med J (Engl). 2009;122(16):1843–6.

    Google Scholar 

  114. Obermair A, et al. Endometrial cancer: accuracy of the finding of a well differentiated tumor at dilatation and curettage compared to the findings at subsequent hysterectomy. Int J Gynecol Cancer. 1999;9(5):383–6.

    PubMed  Google Scholar 

  115. Egle D, et al. Validation of intraoperative risk assessment on frozen section for surgical management of endometrial carcinoma. Gynecol Oncol. 2008;110(3):286–92.

    PubMed  Google Scholar 

  116. Atad J, et al. Intraoperative frozen section examination of myometrial invasion depth in patients with endometrial carcinoma. Int J Gynecol Cancer. 1994;4(5):352–5.

    PubMed  Google Scholar 

  117. ASTEC study group, et al. Efficacy of systematic pelvic lymphadenectomy in endometrial cancer (MRC ASTEC trial): a randomised study. Lancet. 2009;373(9658):125–36.

    Google Scholar 

  118. Siufi DF, et al. Lymphadenectomy in early stage endometrial cancer: a critical review of the current literature. Tumori. 2014;100(5):477–85.

    PubMed  Google Scholar 

  119. Mitamura T, et al. Lymphadenectomy can be omitted for low-risk endometrial cancer based on preoperative assessments. J Gynecol Oncol. 2014;25(4):301–5.

    PubMed  PubMed Central  Google Scholar 

  120. Todo Y, et al. Tailoring lymphadenectomy according to the risk of lymph node metastasis in endometrial cancer. J Obstet Gynaecol Res. 2014;40(2):317–21.

    PubMed  Google Scholar 

  121. Bogani G, et al. Role of pelvic and para-aortic lymphadenectomy in endometrial cancer: current evidence. J Obstet Gynaecol Res. 2014;40(2):301–11.

    PubMed  PubMed Central  Google Scholar 

  122. Touboul C, et al. Sentinel lymph node in endometrial cancer: a review. Curr Oncol Rep. 2013;15(6):559–65.

    PubMed  Google Scholar 

  123. Abu-Rustum NR. Sentinel lymph node mapping for endometrial cancer: a modern approach to surgical staging. J Natl Compr Canc Netw. 2014;12(2):288–97.

    PubMed  Google Scholar 

  124. Leitao Jr MM, et al. Impact of incorporating an algorithm that utilizes sentinel lymph node mapping during minimally invasive procedures on the detection of stage IIIC endometrial cancer. Gynecol Oncol. 2013;129(1):38–41.

    PubMed  Google Scholar 

  125. Pristauz G, et al. How accurate is frozen section histology of pelvic lymph nodes in patients with endometrial cancer? Gynecol Oncol. 2009;115(1):12–7.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sigurd F. Lax M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lax, S.F. (2017). Pathology of Endometrial Carcinoma. In: Hedrick Ellenson, L. (eds) Molecular Genetics of Endometrial Carcinoma. Advances in Experimental Medicine and Biology, vol 943. Springer, Cham. https://doi.org/10.1007/978-3-319-43139-0_3

Download citation

Publish with us

Policies and ethics