Skip to main content

Introduction to Meta-Analysis and Structural Equation Modeling

  • Chapter
  • First Online:
Meta-Analytic Structural Equation Modelling

Part of the book series: SpringerBriefs in Research Synthesis and Meta-Analysis ((BRIEFSSYNTHES))

Abstract

Meta-analysis is a prominent statistical tool in many research disciplines. It is a statistical method to combine the effect sizes of separate independent studies, in order to draw overall conclusions based on the pooled results. Structural equation modeling is a multivariate technique to fit path models, factor models, and combinations of these to data. By combining meta-analysis and structural equation modeling, information from multiple studies can be used to test a single model that explains the relationships between a set of variables or to compare several models that are supported by different studies or theories. This chapter provides a short introduction to meta-analysis and structural equation modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Becker, B. J. (1992). Using results from replicated studies to estimate linear models. Journal of Educational Statistics, 17, 341–362.

    Article  Google Scholar 

  • Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107, 238–246.

    Article  Google Scholar 

  • Bollen, K. A. (1989). Structural equations with latent variables. New York, NY: Wiley.

    Book  MATH  Google Scholar 

  • Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. (2009). Introduction to meta-analysis. Hoboken, NJ: Wiley.

    Book  MATH  Google Scholar 

  • Browne, M. W., & Cudeck, R. (1992). Alternative ways of assessing model fit. Sociological Methods & Research, 21, 230–258.

    Article  Google Scholar 

  • Byrne, B. M. (1998). Structural equation modeling with LISREL, PRELIS, and SIMPLIS: Basic concepts, applications, and programming. Mahwah, NJ: Lawrence Erlbaum Associates Inc.

    MATH  Google Scholar 

  • Card, N. A. (2012). Applied meta-analysis for social science research. New York, NY: Guilford Press.

    Google Scholar 

  • Chalmers, I., Hedges, L. V., & Cooper, H. (2002). A brief history of research synthesis. Evaluation and the Health Professions, 25(1), 12–37.

    Article  Google Scholar 

  • Cheung, M. W.-L. (2008). A model for integrating fixed-, random-, and mixed-effects meta-analyses into structural equation modeling. Psychological Methods, 13(3), 182–202.

    Article  Google Scholar 

  • Cheung, M. W.-L. (2015). Meta-analysis: A structural equation modeling approach. Chichester, UK: Wiley.

    Book  Google Scholar 

  • Cooper, H., Hedges, L. V., & Valentine, J. C. (Eds.). (2009). The handbook of research synthesis and meta-analysis. New York, NY: Russell Sage.

    Google Scholar 

  • Cooper, H. M., & Hedges, L. V. (2009). Research synthesis as a scientific enterprise. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (pp. 3–16). New York, NY: Russell Sage.

    Google Scholar 

  • Cudeck, R. (1989). Analysis of correlation matrices using covariance structure models. Psychological Bulletin, 105(2), 317–327.

    Article  Google Scholar 

  • Geiser, C. (2012). Data analysis with Mplus. New York, NY: Guilford.

    Google Scholar 

  • Glass, G. V. (1976). Primary, secondary, and meta-analysis of research. The Educational Researcher, 10, 3–8.

    Article  Google Scholar 

  • Hedges, L. V., & Vevea, J. L. (1998). Fixed-and random-effects models in meta-analysis. Psychological Methods, 3, 486.

    Article  Google Scholar 

  • Jöreskog, K. G. (1973). Analysis of covariance structures. Multivariate analysis, 3, 263–285.

    Google Scholar 

  • Kline, R. B. (2011). Principles and practice of structural equation modeling. New York, NY: Guilford.

    MATH  Google Scholar 

  • Laird, N. M., & Mosteller, F. (1990). Some statistical methods for combining experimental results. International Journal of Technology Assessment in Health Care, 6, 5–30.

    Article  Google Scholar 

  • Lipsey, M. W., & Wilson, D. B. (2001). Practical meta-analysis. Thousand Oaks, CA: Sage Publications.

    Google Scholar 

  • Loehlin, J. C. (1998). Latent variable models: An introduction to factor, path, and structural analysis. Mahwah, NJ: Lawrence Erlbaum Associates Publishers.

    MATH  Google Scholar 

  • MacCallum, R. C., Wegener, D. T., Uchino, B. N., & Fabrigar, L. R. (1993). The problem of equivalent models in applications of covariance structure analysis. Psychological Bulletin, 114(1), 185–199.

    Article  Google Scholar 

  • Norton, S., Cosco, T., Doyle, F., Done, J., & Sacker, A. (2013). The Hospital Anxiety and Depression Scale: A meta confirmatory factor analysis. Journal of Psychosomatic Research, 74, 74–81.

    Article  Google Scholar 

  • O’Rourke, K. (2007). An historical perspective on meta-analysis: Dealing quantitatively with varying study results. Journal of the Royal Society of Medicine, 100(12), 579–582.

    Article  Google Scholar 

  • Rothstein, H. R., Sutton, A. J., & Borenstein, M. (Eds.). (2005). Publication bias in meta-analysis: Prevention, assessment and adjustments. Hoboken, NJ: Wiley.

    Google Scholar 

  • Rosenthal, R., & Rubin, D. B. (1978). Interpersonal expectancy effects: The first 345 studies. Behavioral and Brain Sciences, 1(03), 377–386.

    Article  Google Scholar 

  • Rosenthal, R., & Rubin, D. B. (1982). Comparing effect sizes of independent studies. Psychological Bulletin, 92(2), 500–504.

    Google Scholar 

  • Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the fit of structural equation models: Tests of significance and descriptive goodness-of-fit measures. Methods of psychological research online, 8(2), 23–74.

    Google Scholar 

  • Schmidt, F. L., & Hunter, J. E. (1977). Development of a general solution to the problem of validity generalization. Journal of Applied Psychology, 62(5), 529–540.

    Article  Google Scholar 

  • Sharpe, D. (1997). Of apples and oranges, file drawers and garbage: Why validity issues in meta-analysis will not go away. Clinical Psychology Review, 17(8), 881–901.

    Article  Google Scholar 

  • Smith, M. L., & Glass, G. V. (1977). Meta-analysis of psychotherapy outcome studies. American Psychologist, 32, 752–760.

    Article  Google Scholar 

  • Spearman, C. (1904). “General Intelligence,” Objectively Determined and Measured. The American Journal of Psychology, 15(2), 201–292.

    Article  Google Scholar 

  • Spearman, C. (1928). The sub-structure of the mind. British Journal of Psychology. General Section, 18(3), 249–261.

    Article  Google Scholar 

  • Steiger, J. H., & Lind, J. C. (1980). Statistically based tests for the number of common factors. Paper presented at the annual meeting of the Psychometric Society, Iowa City, IA (Vol. 758).

    Google Scholar 

  • Valentine, J. C. (2009). Judging the quality of primary research. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), The handbook of research synthesis and meta-analysis (pp. 129–146). New York, NY: Russell Sage.

    Google Scholar 

  • van Assen, M. A. L. M., van Aert, R. C. M., & Wicherts, J. M. (2014). Meta-analysis using effect size distributions of only statistically significant studies. Psychological methods. Advance online publication. http://dx.doi.org/10.1037/met0000025

  • Viswesvaran, C., & Ones, D. (1995). Theory testing: Combining psychometric meta-analysis and structural equations modeling. Personnel Psychology, 48, 865–885.

    Article  Google Scholar 

  • Wright, S. (1920). The relative importance of heredity and environment in determining the piebald pattern of guinea–pigs. Proceedings of the National Academy of Sciences, 6, 320–332.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne Jak .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Jak, S. (2015). Introduction to Meta-Analysis and Structural Equation Modeling. In: Meta-Analytic Structural Equation Modelling. SpringerBriefs in Research Synthesis and Meta-Analysis. Springer, Cham. https://doi.org/10.1007/978-3-319-27174-3_1

Download citation

Publish with us

Policies and ethics