Skip to main content

The Substantia Nigra, the Basal Ganglia, Dopamine and Temporal Processing

  • Chapter
  • First Online:
Book cover Birth, Life and Death of Dopaminergic Neurons in the Substantia Nigra

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURALTRANS,volume 73))

Abstract

It has been proposed that the basal ganglia are important to the temporal processing of milliseconds- and seconds-range intervals, both within the motor and perceptual domains. This review summarizes and discuses evidence from animal, pharmacological, clinical, and imaging research that supports this proposal, with particular reference to the role of the substantia nigra (SN).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADHD:

Attention-deficit hyperactivity disorder

DBS:

Deep brain stimulation

DA:

Dopamine

PD:

Parkinson’s disease

SET:

Scalar expectancy theory

SBF:

Striatal beat frequency model

SN:

Substantia nigra

SNc:

Substantia nigra pars compacta

SMA:

Supplementary motor area

References

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381

    Article  CAS  PubMed  Google Scholar 

  • Andreasen NC, Pierson R (2008) The role of the cerebellum in schizophrenia. Biol Psychiatry 64:81–88

    Article  PubMed  Google Scholar 

  • Aparicio P, Diedrichsen J, Ivry RB (2005) Effects of focal basal ganglia lesions on timing and force control. Brain Cogn 58:62–74

    Article  PubMed  Google Scholar 

  • Apicella P, Scarnati E, Ljungberg T, Schultz W (1992) Neuronal activity in monkey striatum related to the expectation of predictable environmental events. J Neurophysiol 68:945–960

    CAS  PubMed  Google Scholar 

  • Artieda J, Pastor MA, Lacruz F, Obeso JA (1992) Temporal discrimination is abnormal in Parkinson’s disease. Brain 115(Pt 1): 199–210

    Article  PubMed  Google Scholar 

  • Brown RG, Marsden CD (1991) Dual task performance and processing resources in normal subjects and patients with Parkinson’s disease. Brain 114(Pt 1A):215–231

    PubMed  Google Scholar 

  • Brown P, Williams D, Aziz T, Mazzone P, Oliviero A, Insola A, Tonali P, Di Lazzaro V (2002) Pallidal activity recorded is patients with implanted electrodes predictively correlates with eventual performance in a timing task. Neurosci Lett 330:188–192

    Article  CAS  PubMed  Google Scholar 

  • Bueti D, Walsh V, Frith C, Rees G (2008) Different brain circuits underlie motor and perceptual representations of temporal intervals. J Cogn Neurosci 20:204–214

    Article  PubMed  Google Scholar 

  • Buhusi CV, Meck WH (2002) Differential effects of methamphetamine and haloperidol on the control of an internal clock. Behav Neurosci 116:291–297

    Article  CAS  PubMed  Google Scholar 

  • Buhusi CV, Meck WH (2007) Effect of clozapine on interval timing and working memory for time in the peak-interval procedure with gaps. Behav Processes 74:159–167

    Article  PubMed  Google Scholar 

  • Carroll CA, Boggs J, O’Donnell BF, Shekhar A, Hetrick WP (2008) Temporal processing dysfunction in schizophrenia. Brain Cogn 67:150–161

    Article  PubMed  Google Scholar 

  • Casini L, Ivry RB (1999) Effects of divided attention on temporal processing in patients with lesions of the cerebellum or frontal lobe. Neuropsychology 13:10–21

    Article  CAS  PubMed  Google Scholar 

  • Cheng RK, Ali YM, Meck WH (2007) Ketamine “unlocks” the reduced clock-speed effects of cocaine following extended training: evidence for dopamine–glutamate interactions in timing and time perception. Neurobiol Learn Mem 88:149–159

    Article  CAS  PubMed  Google Scholar 

  • Cheng RK, Hakak OL, Meck WH (2007) Habit formation and the loss of control of an internal clock: inverse relationship between the level of baseline training and the clock-speed enhancing effects of methamphetamine. Psychopharmacology (Berl) 193:351–362

    Article  CAS  Google Scholar 

  • Coull JT, Nazarian B, Vidal F (2008) Timing, storage, and comparison of stimulus duration engage discrete anatomical components of a perceptual timing network. J Cogn Neurosci 12:2185–2197

    Article  Google Scholar 

  • Davalos DB, Kisley MA, Ross RG (2003) Effects of interval duration on temporal processing in schizophrenia. Brain Cogn 52:295–301

    Article  PubMed  Google Scholar 

  • Davis KL, Kahn RS, Ko G, Davidson M (1991) Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry 148:1474–1486

    CAS  PubMed  Google Scholar 

  • Drew MR, Fairhurst S, Malapani C, Horvitz JC, Balsam PD (2003) Effects of dopamine antagonists on the timing of two intervals. Pharmacol Biochem Behav 75:9–15

    Article  CAS  PubMed  Google Scholar 

  • Elvevag B, McCormack T, GIlbert A, Brown GD, Weinberger DR, Goldberg TE (2003) Duration judgements in patients with schizophrenia. Psychol Med 33:1249–1261

    Article  CAS  PubMed  Google Scholar 

  • Ferrandez AM, Hugueville L, Lehericy S, Poline J-B, Marsault C, Pouthas V (2003) Basal ganglia and supplementary motor area subtend duration perception: an fMRI study. Neuroimage 19:1532–1544

    Article  CAS  PubMed  Google Scholar 

  • Gibbon J (1977) Scalar expectancy theory and Weber’s law in animal timing. Psychol Rev 84:279–325

    Article  Google Scholar 

  • Gibbon J, Church RM (1984) Animal Cognition. In: Roitblat HL, Bever TG, Terrace HS (eds) Sources of variance in an information processing theory of timing. Lawrence Erlbaum Associates, Hillsdale, NJ, pp 465–488

    Google Scholar 

  • Gibbon J, Church RM, Meck WH (1984) Scalar timing in memory. Ann NY Acad Sci 423:52–77

    Article  CAS  PubMed  Google Scholar 

  • Harrington DL, Haaland KY, Hermanowicz N (1998) Temporal processing in the basal ganglia. Neuropsychology 12:3–12

    Article  CAS  PubMed  Google Scholar 

  • Harrington DL, Boyd LA, Mayer AR, Sheltraw DM, Lee RR, Huang M, Rao SM (2004a) Neural representation of interval encoding and decision making. Brain Res Cogn Brain Res 21: 193–205

    Article  PubMed  Google Scholar 

  • Harrington DL, Lee RR, Boyd LA, Rapscak SZ, Knight RT (2004b) Does the representation of time depend on the cerebellum? Effect of cerebellar stroke. Brain 127:561–574

    Article  PubMed  Google Scholar 

  • Hinton SC, Rao SM (2004) One-thousand one... one-thousand two...": chronometric counting violates the scalar property in interval timing. Psychon Bull Rev 11:24–30

    Article  PubMed  Google Scholar 

  • Hinton SC, Harrington DL, Binder JR, Durgerian S, Rao SM (2004) Neural systems supporting timing and chronometric counting: an FMRI study. Cogn Brain Res 21:183–192

    Article  Google Scholar 

  • Hinton SC, Paulsen JS, Hoffmann RG, Reynolds NC, Zimbelman JL, Rao SM (2007) Motor timing variability increases in preclinical Huntington’s disease patients as estimated onset of motor symptoms approaches. J Int Neuropsychol Soc 13:539–543

    Article  PubMed  Google Scholar 

  • Hollerman JR, Schultz W (1998) Dopamine neurons report an error in the temporal prediction of reward during learning. Nat Neurosci 1:304–309

    Article  CAS  PubMed  Google Scholar 

  • Ivry RB (1996) The representation of temporal information in perception and motor control. Curr Opin Neurobiol 6:851–857

    Article  CAS  PubMed  Google Scholar 

  • Ivry RB, Keele SW (1989) Timing functions of the cerebellum. J Cogn Neurosci 1:136–152

    Article  Google Scholar 

  • Ivry RB, Keele SW, Diener HC (1988) Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Exp Brain Res 73:167–180

    Article  CAS  PubMed  Google Scholar 

  • Jahanshahi M, Jones CR, Dirnberger G, Frith CD (2006) The substantia nigra pars compacta and temporal processing. J Neurosci 26: 12266–12273

    Article  CAS  PubMed  Google Scholar 

  • Jancke L, Loose R, Lutz K, Specht K, Shah NJ (2000) Cortical activations during paced finger-tapping applying visual and auditory pacing stimuli. Cogn Brain Res 10:51–66

    Article  CAS  Google Scholar 

  • Jantzen KJ, Steinberg FL, Kelso JA (2004) Brain networks underlying human timing behavior are influenced by prior context. Proc Natl Acad Sci USA 101:6815–6820

    Article  CAS  PubMed  Google Scholar 

  • Jones CR, Malone TJ, Dirnberger G, Edwards M, Jahanshahi M (2008) Basal ganglia, dopamine and temporal processing: performance on three timing tasks on and off medication in Parkinson’s disease. Brain Cogn 68:30–41

    Article  PubMed  Google Scholar 

  • Jueptner M, Rijntjes M, Weiller C, Faiss JH, Timmann D, Mueller SP, Diener HC (1995) Localization of a cerebellar timing process using PET. Neurology 45:1540–1545

    CAS  PubMed  Google Scholar 

  • Keele SW, Pokorny RA, Corcos DM, Ivry R (1985) Do perception and motor production share common timing mechanisms: a correctional analysis. Acta Psychol Amst 60:173–191

    Article  CAS  PubMed  Google Scholar 

  • Kerns KA, McInerney RJ, Wilde NJ (2001) Time reproduction, working memory, and behavioral inhibition in children with ADHD. Child Neuropsychol 7:21–31

    CAS  PubMed  Google Scholar 

  • Killeen P, Fetterman JG (1988) A behavioral theory of timing. Psychol Rev 95:274–295

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi S, Schultz W (2008) Influence of reward delays on responses of dopamine neurons. J Neurosci 28:7837–7846

    Article  CAS  PubMed  Google Scholar 

  • Koch G, Brusa L, Caltagirone C, Oliveri M, Peppe A, Tiraboschi P, Stanzione P (2004) Subthalamic deep brain stimulation improves time perception in Parkinson’s disease. Neuroreport 15:1071–1073

    Article  PubMed  Google Scholar 

  • Koch G, Brusa L, Oliveri M, Stanzione P, Caltagirone C (2005) Memory for time intervals is impaired in left hemi-Parkinson patients. Neuropsychologia 43:1163–1167

    Article  PubMed  Google Scholar 

  • Koch G, Costa A, Brusa L, Peppe A, Gatto I, Torriero S, Gerfo EL, Salerno S, Oliveri M, Carlesimo GA, Caltagirone C (2008) Impaired reproduction of second but not millisecond time intervals in Parkinson’s disease. Neuropsychologia 46:1305–1313

    Article  PubMed  Google Scholar 

  • Lange KW, Tucha O, Steup A, Gsell W, Naumann M (1995) Subjective time estimation in Parkinson’s disease. J Neural Transm Suppl 46:433–438

    CAS  PubMed  Google Scholar 

  • Lewis PA, Miall RC (2002) Brain activity during non-automatic motor production of discrete multi-second intervals. Neuroreport 13:1731–1735

    Article  CAS  PubMed  Google Scholar 

  • Lewis P, Miall RC (2003a) Brain activation patterns during measurement of sub- and supra-second intervals. Neuropsychologia 41:1583–1592

    Article  CAS  PubMed  Google Scholar 

  • Lewis PA, Miall RC (2003b) Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Curr Opin Neurobiol 13:250–255

    Article  CAS  PubMed  Google Scholar 

  • Lewis P, Wing AM, Pope PA, Praamstra P, Miall RC (2004) Brain activity correlates differentially with increasing temporal complexity of rhythms during initialisation, synchronisation, and continuation phases of paced finger tapping. Neuropsychologia 42: 1301–1312

    Article  CAS  PubMed  Google Scholar 

  • Lewis SJ, Foltynie T, Blackwell AD, Robbins TW, Owen AM, Barker RA (2005) Heterogeneity of Parkinson’s disease in the early clinical stages using a data driven approach. J Neurol Neurosurg Psychiatry 76:343–348

    Article  CAS  PubMed  Google Scholar 

  • Livesey AC, Wall MB, Smith AT (2007) Time perception: manipulation of task difficulty dissociates clock functions from other cognitive demands. Neuropsychologia 45:321–331

    Article  PubMed  Google Scholar 

  • Macar F, Lejeune H, Bonnet M, Ferrara A, Pouthas V, Vidal F, Maquet P (2002) Activation of the supplementary motor area and of attentional networks during temporal processing. Exp Brain Res 142:475–485

    Article  CAS  PubMed  Google Scholar 

  • Macar F, Anton JL, Bonnet M, Vidal F (2004) Timing functions of the supplementary motor area: an event-related fMRI study. Brain Res Cogn Brain Res 21:206–215

    Article  PubMed  Google Scholar 

  • Macar F, Coull J, Vidal F (2006) The supplementary motor area in motor and perceptual time processing: fMRI studies. Cogn Process 7:89–94

    Article  PubMed  Google Scholar 

  • Macdonald CJ, Meck WH (2005) Differential effects of clozapine and haloperidol on interval timing in the supraseconds range. Psychopharmacology (Berl) 182:232–244

    Article  CAS  Google Scholar 

  • Malapani C, Rakitin B, Levy R, Meck WH, Deweer B, Dubois B, Gibbon J (1998) Coupled temporal memories in Parkinson’s disease: a dopamine-related dysfunction. J Cogn Neurosci 10:316–331

    Article  CAS  PubMed  Google Scholar 

  • Malapani C, Deweer B, Gibbon J (2002) Separating storage from retrieval dysfunction of temporal memory in Parkinson’s disease. J Cogn Neucrosci 14:311–322

    Article  Google Scholar 

  • Maquet P, Lejeune H, Pouthas V, Bonnet M, Casini L, Macar F, Timsit BM, Vidal F, Ferrara A, Degueldre C, Quaglia L, Delfiore G, Luxen A, Woods R, Mazziotta JC, Comar D (1996) Brain activation induced by estimation of duration: a PET study. Neuroimage 3:119–126

    Article  CAS  PubMed  Google Scholar 

  • Maricq AV, Church RM (1983) The differential effects of haloperidol and methamphetamine on time estimation in the rat. Psychapharmacology Berl 79:10–15

    Article  CAS  Google Scholar 

  • Matell MS, Meck WH (2000) Neuropsychological mechanisms of interval timing behavior. Bioessays 22:94–103

    Article  CAS  PubMed  Google Scholar 

  • Matell MS, Meck WH (2004) Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Brain Res Cogn Brain Res 21:139–170

    Article  PubMed  Google Scholar 

  • Matell MS, Meck WH, Nicolelis MA (2003) Interval timing and the encoding of signal duration by ensembles of cortical and striatal neurons. Behav Neurosci 117:760–773

    Article  PubMed  Google Scholar 

  • Matell MS, King GR, Meck WH (2004) Differential modulation of clock speed by the administration of intermittent versus continuous cocaine. Behav Neurosci 118:150–156

    Article  CAS  PubMed  Google Scholar 

  • Matell MS, Bateson M, Meck WH (2006) Single-trials analyses demonstrate that increases in clock speed contribute to the methamphetamine-induced horizontal shifts in peak-interval timing functions. Psychopharmacology (Berl) 188:201–212

    Article  CAS  Google Scholar 

  • Max JE, Fox PT, Lancaster JL, Kochunov P, mathews K, Manes FF, Robertson BA, Arndt S, Robin DA, Lansing AE (2002) Putamen lesions and the development of attention-deficit/hyperactivity symptomatology. J Am Acad Child Adolesc Psychiatry 41:563–571

    Article  PubMed  Google Scholar 

  • McInerney RJ, Kerns KA (2003) Time reproduction in children with ADHD: motivation matters. Neuropsychol Dev Cogn Sect C Child Neuropsychol 9:91–108

    Article  Google Scholar 

  • Meck WH (1986) Affinity for the dopamine D2 receptor predicts neuroleptic potency in decreasing the speed of an internal clock. Pharmacol Biochem Behav 25:1185–1189

    Article  CAS  PubMed  Google Scholar 

  • Meck WH (1996) Neuropharmacology of timing and time perception. Brain Res Cogn Brain Res 3:227–242

    Article  CAS  PubMed  Google Scholar 

  • Meck WH (2006) Neuroanatomical localization of an internal clock: a functional link between mesolimbic, nigrostriatal, and mesocortical dopaminergic systems. Brain Res 1109:93–107

    Article  CAS  PubMed  Google Scholar 

  • Meck WH, Church RM (1987) Cholinergic modulation of the content of temporal memory. Behav Neurosci 101:457–464

    Article  CAS  PubMed  Google Scholar 

  • Merchant H, Luciana M, Hooper C, Majestic S, Tuite P (2008) Interval timing and Parkinson’s disease: heterogeneity in temporal performance. Exp Brain Res 184:233–248

    Article  PubMed  Google Scholar 

  • Miall RC (1989) The storage of time intervals using oscillating neurons. Neural Comput 1:359–371

    Article  Google Scholar 

  • Miall RC (1992) Time, action and cognition. In: Macar F, Pouthas V, Friedman WJ (eds) Oscillators, predictions and time. Kluwer, Dordrecht, pp 215–227

    Google Scholar 

  • Miall C (1996) Time, internal clocks and movement. In: Pastor MA, Artieda J (eds) Models of neural timing. Elsevier, Amsterdam, pp 69–94

    Google Scholar 

  • Muller JL, Deuticke C, Putzhammer A, Roder CH, Hajak G, Winkler J (2003) Schizophrenia and Parkinson’s disease lead to equal motor-related changes in cortical and subcortical brain activation: an fMRI fingertapping study. Psychiatry Clin Neurosci 57:562–568

    PubMed  Google Scholar 

  • Mullins C, Bellgrove MA, Gill M, Robertson IH (2005) Variability in time reproduction: difference in ADHD combined and inattentive subtypes. J Am Acad Child Adolesc Psychiatry 44:169–176

    Article  PubMed  Google Scholar 

  • Nenadic I, Gaser C, Volz HP, Rammsayer T, Hager F, Sauer H (2003) Processing of temporal information and the basal ganglia: new evidence from fMRI. Exp Brain Res 148:238–246

    PubMed  Google Scholar 

  • O’Boyle DJ, Freeman JS, Cody FWJ (1996) The accuracy and precision of timing of self-paced, repetitive movements in subjects with Parkinson’s disease. Brain 119:51–70

    Article  PubMed  Google Scholar 

  • Pastor MA, Jahanshahi M, Artieda J, Obeso JA (1992a) Performance of repetitive wrist movements in Parkinson’s disease. Brain 115:875–891

    Article  PubMed  Google Scholar 

  • Pastor MA, Artieda J, Jahanshahi M, Obeso JA (1992b) Time estimation and reproduction is abnormal in Parkinson’s disease. Brain 115:211–225

    Article  PubMed  Google Scholar 

  • Paulsen JS, Zimbelman JL, Hinton SC, Langbehn DR, Leveroni CL, Benjamin ML, Reynolds NC, Rao SM (2004) fMRI biomarker of early neuronal dysfunction in presymptomatic Huntington’s Disease. AJNR Am J Neuroradiol 25:1715–1721

    PubMed  Google Scholar 

  • Penney TB, Meck WH, Roberts SA, Gibbon J, Erlenmeyer-Kimling L (2005) Interval-timing deficits in individuals at high risk for schizophrenia. Brain Cogn 58:109–118

    Article  PubMed  Google Scholar 

  • Perbal S, Deweer B, Pillon B, Vidailhet M, Dubois B, Pouthas V (2005) Effects of internal clock and memory disorders on duration reproductions and duration productions in patients with Parkinson’s disease. Brain Cogn 58:35–48

    Article  PubMed  Google Scholar 

  • Pouthas V, George N, Poline JB, Pfeuty M, Vandemoorteele PF, Hugueville L, Ferrandez AM, Lehericy S, Lebihan D, Renault B (2005) Neural network involved in time perception: an fMRI study comparing long and short interval estimation. Hum Brain Mapp 25:433–441

    Article  PubMed  Google Scholar 

  • Radonovich KJ, Mostofsky SH (2004) Duration judgments in children with ADHD suggest deficient utilization of temporal information rather than general impairment in timing. Child Neuropsychol 10:162–172

    Article  PubMed  Google Scholar 

  • Rakitin BC, Scarmeas N, Li T, Malapani C, Stern Y (2006) Single-dose levodopa administration and aging independently disrupt time production. J Cogn Neurosci 18:376–387

    Article  PubMed  Google Scholar 

  • Rammsayer T (1990) Temporal discrimination in schizophrenic and affective disorders: evidence for a dopamine-dependent internal clock. Int J Neurosci 53:111–120

    Article  CAS  PubMed  Google Scholar 

  • Rammsayer T (1993) On dopaminergic modulation of temporal information processing. Biol Psychol 36:209–222

    Article  CAS  PubMed  Google Scholar 

  • Rammsayer TH (1997) Are there dissociable roles of the mesostriatal and mesolimbocortical dopamine systems on temporal information processing in humans? Neuropsychobiology 35:36–45

    Article  CAS  PubMed  Google Scholar 

  • Rammsayer TH (1999) Neuropharmacological evidence for different timing mechanisms in humans. Q J Exp Psychol B 52:273–286

    Article  CAS  PubMed  Google Scholar 

  • Rammsayer TH, Hennig J, Haag A, Lange N (2001) Effects of noradrenergic activity on temporal information processing in humans. Q J Exp Psychol B 54:247–258

    Article  CAS  PubMed  Google Scholar 

  • Rao SM, Harrington DL, Haaland KY, Bobholz JA, Cox RW, Binder JR (1997) Distributed neural systems underlying the timing of movements. J Neurosci 17:5528–5535

    CAS  PubMed  Google Scholar 

  • Rao SM, Mayer AR, Harrington DL (2001) The evolution of brain activation during temporal processing. Nat Neurosci 4:317–323

    Article  CAS  PubMed  Google Scholar 

  • Riecker A, Wildgruber D, Mathiak K, Grodd W, Ackermann H (2003) Parametric analysis of rate-dependent hemodynamic response functions of cortical and subcortical brain structures during auditorily cued finger tapping: a fMRI study. Neuroimage 18:731–739

    Article  PubMed  Google Scholar 

  • Riesen JM, Schnider, A (2001) Time estimation in Parkinson’s disease: normal long duration estimation despite impaired short duration discrimination. J Neurol 248:27–35

    Article  Google Scholar 

  • Rubia K, Noorloos J, Smith A, Gunning B, Sergeant J (2003) Motor timing deficits in community and clinical boys with hyperactive behavior: the effect of methylphenidate on motor timing. J Abnorm Child Psychol 31:301–313

    Article  PubMed  Google Scholar 

  • Schultz W, Apicella P, Scarnati E, Ljungberg T (1992) Neuronal activity in monkey ventral striatum related to the expectation of reward. J Neurosci 12:4595–4610

    CAS  PubMed  Google Scholar 

  • Schrag A, Quinn NP, Ben-Shlomo Y (2006) Heterogeneity of parkinson’s disease. J Neurol Neurosurg Psychiatry 77:275–276

    Google Scholar 

  • Semrud-Clikeman M, Steingard RJ, Filipek P, Biederman J, Bekken K, Renshaw PF (2000) Using MRI to examine brain-behavior relationships in males with attention deficit disorder with hyperactivity. J Am Acad Child Adolesc Psychiatry 39:477–484

    Article  CAS  PubMed  Google Scholar 

  • Smith A, Taylor E, Rogers JW, Newman S, Rubia K (2002) Evidence for a pure time perception deficit in children with ADHD. J Child Psychol Psychiatry 43:529–542

    Article  PubMed  Google Scholar 

  • Smith JG, Harper DN, Gittings D, Abernethy D (2007) The effect of Parkinson’s disease on time estimation as a function of stimulus duration range and modality. Brain Cogn 64:130–143

    Article  PubMed  Google Scholar 

  • Spencer RM, Ivry RB (2005) Comparison of patients with Parkinson’s disease or cerebellar lesions in the production of periodic movements involving event-based or emergent timing. Brain Cogn 58:84–93

    Article  PubMed  Google Scholar 

  • Staddon JE, Higa JJ (1999) Time and memory: towards a pacemaker-free theory of interval timing. J Exp Anal Behav 71:215–251

    Article  CAS  PubMed  Google Scholar 

  • Teicher MH, Anderson CM, Polcari A, Glod CA, Maas LC, Renshaw PF (2000) Functional deficits in basal ganglia of children with attention-deficit/hyperactivity disorder shown with functional magnetic resonance imaging relaxometry. Nat Med 6:470–473

    Article  CAS  PubMed  Google Scholar 

  • Toplak ME, Dockstader C, Tannock R (2006) Temporal information processing in ADHD: findings to date and new methods. J Neurosci Methods 151:15–29

    Article  PubMed  Google Scholar 

  • Tregellas JR, Davalos DB, Rojas DC (2006) Effect of task difficulty on the functional anatomy of temporal processing. Neuroimage 32:307–315

    Article  PubMed  Google Scholar 

  • Tripp G, Wickens JR (2008) Research review: dopamine transfer deficit: a neurobiological theory of altered reinforcement mechanisms in ADHD. J Child Psychol Psychiatry 49:691–704

    Article  PubMed  Google Scholar 

  • Volz HP, Nenadic I, Gaser C, Rammsayer T, Hager F, Sauer H (2001) Time estimation in schizophrenia: an fMRI study at adjusted levels of difficulty. Neuroreport 12:313–316

    Article  CAS  PubMed  Google Scholar 

  • Wahl OF, Sieg D (1980) Time estimation among schizophrenics. Percept Mot Skills 50:535–541

    CAS  PubMed  Google Scholar 

  • Wearden JH (1999) “Beyond the fields we know...”: exploring and developing scalar timing theory. Behav Processes 45:3–21

    Article  Google Scholar 

  • Wing AM, Kristofferson AB (1973) Response delays and the timing of discrete motor responses. Percept Psychophys 14:5–12

    Article  Google Scholar 

  • Wing AM, Kristofferson AB (1973) The timing of interresponse intervals. Perception and Psychophysics 13:455–460

    Google Scholar 

  • Woodruff-Pak DS, Papka M, Ivry RB (1996) Cerebellar involvement in eyeblink classical conditioning in humans. Neuropsychology 10:443–458

    Article  Google Scholar 

  • Yang B, Chan RC, Zou X, Jing J, Mai J, Li J (2007) Time perception deficit in children with ADHD. Brain Res 1170:90–96

    Article  CAS  PubMed  Google Scholar 

  • Yeo CH, Hardiman MJ, Glickstein M (1985) Classical conditioning of the nictitating membrane response of the rabbit. II. Lesions of the cerebellar cortex. Exp Brain Res 60:99–113

    Article  CAS  PubMed  Google Scholar 

  • Yeo CH, Hardiman MJ, Glickstein M (1985) Classical conditioning of the nictitating membrane response of the rabbit. I. Lesions of the cerebellar nuclei. Exp Brain Res 60:87–98

    Article  CAS  PubMed  Google Scholar 

  • Yeo CH, Hardiman MJ, Glickstein M (1985) Classical conditioning of the nictitating membrane response of the rabbit III. Connections of cerebellar lobule HVI. Exp Brain Res 60:114–126

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjan Jahanshahi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag/Wien Printed in Germany

About this chapter

Cite this chapter

Jones, C.R.G., Jahanshahi, M. (2009). The Substantia Nigra, the Basal Ganglia, Dopamine and Temporal Processing. In: Giovanni, G., Di Matteo, V., Esposito, E. (eds) Birth, Life and Death of Dopaminergic Neurons in the Substantia Nigra. Journal of Neural Transmission. Supplementa, vol 73. Springer, Vienna. https://doi.org/10.1007/978-3-211-92660-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-92660-4_13

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-92659-8

  • Online ISBN: 978-3-211-92660-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics