Skip to main content

A Primer to Latent Profile and Latent Class Analysis

  • Chapter
  • First Online:
Methods for Researching Professional Learning and Development

Part of the book series: Professional and Practice-based Learning ((PPBL,volume 33))

Abstract

This chapter gives an applied introduction to latent profile and latent class analysis (LPA/LCA). LPA/LCA are model-based methods for clustering individuals in unobserved groups. Their primary goals are probing whether and, if so, how many latent classes can be identified in the data and estimating their proportional size and response profiles. Moreover, latent class membership can serve as a predictor or outcome for external variables. Substantively, LPA/LCA adopt a person-centred approach that is useful for analysing individual differences in learning prerequisites, processes, or outcomes. This chapter provides a conceptual overview of LPA/LCA, a nuts-and-bolts discussion of the steps and decisions involved in their application, and illustrative examples using available data and the R statistical environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    That is, residual correlations among the indicators are zero given class membership. Local independence is a default assumption in many latent variable models, such as factor analysis or IRT models, but can be relaxed.

  2. 2.

    Using composite scores of categorical items as indicators will turn an LCA into an LPA.

  3. 3.

    Discussing details of estimation is beyond the scope of this chapter; for a tractable introduction, see Masyn (2013).

  4. 4.

    The maximum number of probed classes frequently hinges on practical issues, such the occurrence of convergence problems or other issues as more classes are extracted (e.g., occurrence of small class sizes; see step 3). If possible, researchers should consider what maximum number of classes may be of theoretical interest.

  5. 5.

    In this and the following example, the maximum number of latent classes to be extracted was chosen for practical reasons (i.e., estimation time when readers reproduce the analyses).

References

  • Agresti, A. (2019). An introduction to categorical data analysis. Wiley.

    Google Scholar 

  • Asparouhov, T., & Muthén, B. (2014). Auxiliary variables in mixture modeling: Three-step approaches using Mplus. Structural Equation Modeling: A Multidisciplinary Journal, 21(3), 329–341. https://doi.org/10.1080/10705511.2014.915181

    Article  Google Scholar 

  • Asparouhov, T., & Muthén, B. (2015). Residual associations in latent class and latent transition analysis. Structural Equation Modeling: A Multidisciplinary Journal, 22(2), 169–177. https://doi.org/10.1080/10705511.2014.935844

    Article  Google Scholar 

  • Asparouhov, T., & Muthén B. (2021). Auxiliary variables in mixture modeling: Using the BCH method in Mplus to estimate a distal outcome model and an arbitrary second model (Mplus Web Notes 21, Version 11). https://www.statmodel.com/MixtureModeling.shtml

  • Bakk, Z., & Kuha, J. (2021). Relating latent class membership to external variables: An overview. British Journal of Mathematical and Statistical Psychology, 74(2), 340–362. https://doi.org/10.1111/bmsp.12227

    Article  Google Scholar 

  • Bauer, D. J. (2007). Observations on the use of growth mixture models in psychological research. Multivariate Behavioral Research, 42(4), 757–786. https://doi.org/10.1080/00273170701710338

    Article  Google Scholar 

  • Bauer, J., & Mulder, H. R. (2013). Engagement in learning after errors at work: Enabling conditions and types of engagement. Journal of Education and Work, 26(1), 99–119. https://doi.org/10.1080/13639080.2011.573776

    Article  Google Scholar 

  • Bauer, J., & Prenzel, M. (2021). For what educational goals do preservice teachers feel responsible? On teachers’ ethos as professional values. In F. Oser, K. Heinrichs, J. Bauer, & T. Lovat (Eds.), The international handbook of teacher ethos: Strengthening teachers, supporting learners (pp. 173–195). Springer. https://doi.org/10.1007/978-3-030-73644-6_12

    Chapter  Google Scholar 

  • Bauer, J., Gartmeier, M., Wiesbeck, A. B., Moeller, G. E., Karsten, G., Fischer, M. R., & Prenzel, M. (2018). Differential learning gains in professional conversation training: A latent profile analysis of competence acquisition in teacher-parent and physician-patient communication. Learning and Individual Differences, 61(1), 1–10. https://doi.org/10.1016/j.lindif.2017.11.002

    Article  Google Scholar 

  • Bergman, L. R., & Magnusson, D. (1997). A person-oriented approach in research on developmental psychopathology. Development and Psychopathology, 9(2), 291–319. https://doi.org/10.1017/S095457949700206X

    Article  Google Scholar 

  • Collins, L. M., & Lanza, S. T. (2010). Latent class and latent transition analysis. Wiley.

    Google Scholar 

  • Finch, W. H., & Bronk, K. C. (2011). Conducting confirmatory latent class analysis using Mplus. Structural Equation Modeling: A Multidisciplinary Journal, 18(1), 132–151. https://doi.org/10.1080/10705511.2011.532732

    Article  Google Scholar 

  • Geiser, C. (2013). Data analysis with Mplus. Guilford.

    Google Scholar 

  • Gillet, N., Morin, A. J. S., Mokounkolo, R., Réveillère, C., & Fouquereau, E. (2020). A person-centered perspective on the factors associated with the work recovery process. Anxiety, Stress, & Coping, 1–26. https://doi.org/10.1080/10615806.2020.1866174

  • Gruber, H., & Harteis, C. (2018). Individual and social influences on professional learning. Springer.

    Book  Google Scholar 

  • Hagenaars, J. A., & McCutcheon, A. L. (Eds.). (2002). Applied latent class analysis. Cambridge University Press.

    Google Scholar 

  • Hancock, G. R., & Samuelsen, K. M. (Eds.). (2008). Advances in latent variable mixture models. IAP.

    Google Scholar 

  • Hancock, G. R., Harring, J. R., & Macready, G. B. (Eds.). (2019). Advances in latent class analysis. IAP.

    Google Scholar 

  • Haughton, D., Legrand, P., & Woolford, S. (2009). Review of three latent class cluster analysis packages: Latent Gold, poLCA, and MCLUST. The American Statistician, 63(1), 81–91. https://doi.org/10.1198/tast.2009.0016

    Article  Google Scholar 

  • Hickendorff, M., Edelsbrunner, P. A., McMullen, J., Schneider, M., & Trezise, K. (2018). Informative tools for characterizing individual differences in learning: Latent class, latent profile, and latent transition analysis. Learning and Individual Differences, 66, 4–15. https://doi.org/10.1016/j.lindif.2017.11.001

    Article  Google Scholar 

  • Hong, W., Bernacki, M. L., & Perera, H. N. (2020). A latent profile analysis of undergraduates’ achievement motivations and metacognitive behaviors, and their relations to achievement in science. Journal of Educational Psychology, 112(7), 1409–1430. https://doi.org/10.1037/edu0000445

    Article  Google Scholar 

  • Jung, T., & Wickrama, K. A. S. (2008). An introduction to latent class growth analysis and growth mixture modeling. Social and Personality Psychology Compass, 2(1), 302–317. https://doi.org/10.1111/j.1751-9004.2007.00054.x

    Article  Google Scholar 

  • Kunst, E. M., van Woerkom, M., & Poell, R. F. (2018). Teachers’ goal orientation profiles and participation in professional development activities. Vocations and Learning, 11(1), 91–111. https://doi.org/10.1007/s12186-017-9182-y

    Article  Google Scholar 

  • Linzer, D. A., & Lewis, J. B. (2011). poLCA: An R package for polytomous variable latent class analysis. Journal of Statistical Software, 42(10), 1–29. https://doi.org/10.18637/jss.v042.i10

    Article  Google Scholar 

  • Little, T. D., Slegers, D. W., & Card, N. A. (2006). A non-arbitrary method of identifying and scaling latent variables in SEM and MACS models. Structural Equation Modeling: A Multidisciplinary Journal, 13(1), 59–72. https://doi.org/10.1207/s15328007sem1301_3

    Article  Google Scholar 

  • Loken, E., & Molenaar, P. (2008). Categories or continua? The correspondence between mixture models and factor models. In G. R. Hancock & K. M. Samuelsen (Eds.), Advances in latent variable mixture models (pp. 277–297). IAP.

    Google Scholar 

  • Mair, P. (2018). Modern psychometrics with R. Springer. https://doi.org/10.1007/978-3-319-93177-7

    Book  Google Scholar 

  • Marsh, H. W., Lüdtke, O., Trautwein, U., & Morin, A. J. S. (2009). Classical latent profile analysis of academic self-concept dimensions: Synergy of person- and variable-centered approaches to theoretical models of self-concept. Structural Equation Modeling, 16(2), 191–225. http://dx.doi.org/10.1080/10705510902751010

  • Masyn, K. (2013). Latent class analysis and finite mixture modeling. In T. D. Little (Ed.), The Oxford handbook of quantitative methods in psychology (Vol. 2, pp. 551–611). Oxford University Press.

    Google Scholar 

  • McLachlan, G. J., & Peel, D. (2000). Finite mixture models. Wiley.

    Book  Google Scholar 

  • Muthén, B. (2008). Latent variable hybrids: Overview of old and new models. In G. R. Hancock & K. M. Samuelsen (Eds.), Advances in latent variable mixture models (pp. 1–24). IAP.

    Google Scholar 

  • Muthén, L. K., & Muthén, B. O. (1998–2017). Mplus user’s guide (8th ed.). Muthén & Muthén.

    Google Scholar 

  • Nylund, K. L., Asparouhov, T., & Muthén, B. O. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling, 14(4), 535–569. https://doi.org/10.1080/10705510701575396

    Article  Google Scholar 

  • Nylund-Gibson, K., Grimm, R. P., & Masyn, K. E. (2019). Prediction from latent classes: A demonstration of different approaches to include distal outcomes in mixture models. Structural Equation Modeling: A Multidisciplinary Journal, 26(6), 967–985. https://doi.org/10.1080/10705511.2019.1590146

    Article  Google Scholar 

  • Oberski, D. (2016). Mixture models: Latent profile and latent class analysis. In J. Robertson & M. Kaptein (Eds.), Modern statistical methods for HCI (pp. 275–287). Springer. https://doi.org/10.1007/978-3-319-26633-6_12

    Chapter  Google Scholar 

  • Pastor, D. A., Barron, K. E., Miller, B. J., & Davis, S. L. (2007). A latent profile analysis of college students’ achievement goal orientation. Contemporary Educational Psychology, 32(1), 8–47. https://doi.org/10.1016/j.cedpsych.2006.10.003

    Article  Google Scholar 

  • Peugh, J., & Fan, X. (2013). Modeling unobserved heterogeneity using latent profile analysis: A Monte Carlo simulation. Structural Equation Modeling: A Multidisciplinary Journal, 20(4), 616–639. https://doi.org/10.1080/10705511.2013.824780

    Article  Google Scholar 

  • R Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org

    Google Scholar 

  • Reiser, S., Schacht, L., Thomm, E., Schick, K., Berberat, P. O., Gartmeier, M., & Bauer, J. (in prep.). On the validity of assessing medical students’ communication competence in physician-patient encounters by a video-based situational judgment test.

    Google Scholar 

  • Richter, D., Engelbert, M., Weirich, S., & Pant, H. A. (2013). Differentielle Teilnahme an Lehrerfortbildungen und deren Zusammenhang mit professionsbezogenen Merkmalen von Lehrkräften [Differential use of professional development programs and its relationship to professional characteristics of teachers]. Zeitschrift für Pädagogische Psychologie, 27(3), 193–207. https://doi.org/10.1024/1010-0652/a000104

    Article  Google Scholar 

  • Rosenberg, J., et al. (2018). tidyLPA: An R package to easily carry out latent profile analysis (LPA) using open-source or commercial software. Journal of Open Source Software, 3(30), 978. https://doi.org/10.21105/joss.00978

    Article  Google Scholar 

  • Rost, J. (2003). Latent class analysis. In R. Fernandez-Ballesteros (Ed.), Encyclopedia of psychological assessment (Vol. 1, pp. 539–543). Sage.

    Google Scholar 

  • Rost, J. (2006). Latent-class-analyse. In F. Petermann & M. Eid (Eds.), Handbuch der psychologischen Diagnostik (pp. 275–287). Hogrefe.

    Google Scholar 

  • Rost, J., & Langeheine, R. (Eds.). (1997). Applications of latent trait and latent class models in the social sciences. Waxmann.

    Google Scholar 

  • Scrucca, L., & Raftery, A. E. (2015). Improved initialisation of model-based clustering using Gaussian hierarchical partitions. Advances in Data Analysis and Classification, 9(4), 447–460. https://doi.org/10.1007/s11634-015-0220-z

    Article  Google Scholar 

  • Scrucca, L., Fop, M., Murphy, T. B., & Raftery, A. E. (2016, August). mclust 5: Clustering, classification and density estimation using Gaussian finite mixture models. The R Journal, 8(1), 289–317. https://doi.org/10.32614/RJ-2016-021

    Article  Google Scholar 

  • Sterba, S. K. (2013). Understanding linkages among mixture models. Multivariate Behavioral Research, 48(6), 775–815. https://doi.org/10.1080/00273171.2013.827564

    Article  Google Scholar 

  • Tofighi, D., & Enders, C. K. (2008). Identifying the correct number of classes in growth mixture models. In G. R. Hancock & K. M. Samuelsen (Eds.), Advances in latent variable mixture models (pp. 317–341). IAP.

    Google Scholar 

  • Tynjälä, P. (2013). Toward a 3-P model of workplace learning: A literature review. Vocations and Learning, 6(1), 11–36. https://doi.org/10.1007/s12186-012-9091-z

    Article  Google Scholar 

  • Uebersax, J. (2012). LCA software. http://john-uebersax.com/stat/soft.htm

  • Vermunt, J. K., & Magidson, J. (2002). Latent class cluster analysis. In J. A. Hagenaars & A. L. McCutcheon (Eds.), Applied latent class analysis (pp. 89–106). Cambridge University Press.

    Chapter  Google Scholar 

  • Vermunt, J. K., & Magidson, J. (2016). Technical guide for Latent GOLD 5.1: Basic, advanced, and syntax. Statistical Innovations Inc.

    Google Scholar 

  • Wang, J., & Wang, X. (2020). Structural equation modeling: Applications using Mplus (2nd ed.). Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

1 Electronic Supplementary Materials

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bauer, J. (2022). A Primer to Latent Profile and Latent Class Analysis. In: Goller, M., Kyndt, E., Paloniemi, S., DamÅŸa, C. (eds) Methods for Researching Professional Learning and Development. Professional and Practice-based Learning, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-031-08518-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08518-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08517-8

  • Online ISBN: 978-3-031-08518-5

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics