Skip to main content

Nuclear Medicine Imaging Techniques of the Kidney

  • Chapter
  • First Online:
Clinical Nuclear Medicine

Abstract

Radionuclide renal scintigraphy provides important functional data to assist in the diagnosis and management of patients with a variety of known or suspected diseases involving the kidney, ureters, and bladder. Several different radiopharmaceuticals are available for radionuclide renography, multiple quantitative indexes can be generated, and protocols often vary depending on institutional preference and the clinical presentation. The nuclear medicine physician needs to obtain a clear understanding of the clinical question so that the renal study can be optimized to answer the clinician’s question as clearly as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eshima D, Taylor A Jr. Technetium-99m (99mTc) mercaptoacetyltriglycine: update on the new 99m Tc renal tubular function agent. Semin Nucl Med. 1992;22:61–73.

    CAS  PubMed  Google Scholar 

  2. Marcus CS, Kuperus JH. Pediatric renal I-123 orthoiodohippurate dosimetry. J Nucl Med. 1985;26:1211–4.

    CAS  PubMed  Google Scholar 

  3. Stabin M, Taylor A, Eshima D, Wooten W. Radiation dosimetry for technetium-99m-MAG3, technetium-99m-DTPA, and iodine-131-OIH based on human biodistribution studies. J Nucl Med. 1992;33:33–40.

    CAS  PubMed  Google Scholar 

  4. Bubeck B, Brandau W, Weber E, et al. Pharmacokinetics of technetium-99m-MAG3 in humans. J Nucl Med. 1990;31:1285–93.

    CAS  PubMed  Google Scholar 

  5. Schaap GH, Alferink THR, deJong RBJ, et al. Tc-99m MAG3: dynamic studies in patients with renal diseases. Eur J Nucl Med. 1988;14:28–31.

    CAS  PubMed  Google Scholar 

  6. Al-Nahhas AA, Jafri RA, Britton KE, et al. Clinical experience with 99m Tc-MAG3, mercaptoacetyltri-glycine, and a comparison with 99mTc-DTPA. Eur J Nucl Med. 1988;14:453–62.

    CAS  PubMed  Google Scholar 

  7. Gordon I, Colarinha P, Fettich J, Fischer S, Frøkiær J, Hahn K, Kabasakal L, Mitjavila M, Olivier P, Piepsz A, Porn U, Sixt R, van Velzen J. Guidelines for standard and diuretic renogram in children. Eur J Nucl Med. 2001;28:BP31–6.

    PubMed  Google Scholar 

  8. Taylor AT, Blaufox MD, Brandon DC, et al. SNMMI procedure standard/EANM practice guideline for diuretic renal scintigraphy in adults with suspected upper urinary tract obstruction 1.0. Semin Nucl Med. 2018;48(4):377–90.

    PubMed  PubMed Central  Google Scholar 

  9. Gordon I, Colarinha P, Fettich J, Fischer S, Frøkiær J, Hahn K, Kabasakal L, Mitjavila M, Olivier P, Piepsz A, Porn U, Sixt R, van Velzen J. Guidelines for standard and diuretic renogram in children. EANM Web J. http://www.eanm.org/. Auspices of the Paediatric Committee of the European Association of Nuclear Medicine; 2000.

  10. O’Reilly P, Aurell M, Britton K, et al. Consensus on diuresis renography for investigating the dilated upper urinary tract. J Nucl Med. 1996;37:1872–6.

    PubMed  Google Scholar 

  11. Taylor A, Eshima D, Christian P, Milton W. Evaluation of Tc-99m mercaptoacetyltriglycine in patients with impaired renal function. Radiology. 1987;162:365–70.

    PubMed  Google Scholar 

  12. Taylor A Jr, Ziffer JA, Eshima D. Comparison of Tc-99m MAG3 and Tc-99m DTPA in renal transplant patients with impaired renal function. Clin Nucl Med. 1990;15:371–8.

    PubMed  Google Scholar 

  13. Taylor A, Thakore K, Folks R, Halkar R, Manatunga A. Background subtraction in Tc-99m-MAG3 renography. J Nucl Med. 1994;35:2054–5.

    PubMed  Google Scholar 

  14. Taylor A, Clark S, Ball T. Comparison of Tc-99m MAG3 and Tc-99m DTPA scintigraphy in neonates. Clin Nucl Med. 1994;19:575–80.

    PubMed  Google Scholar 

  15. Russell CD, Taylor AT, Dubovsky EV. Measurement of renal function with technetium-99m-MAG3 in children and adults. J Nucl Med. 1996;37:588–93.

    CAS  PubMed  Google Scholar 

  16. Russell CD, Thorstad B, Yester MV, et al. Comparison of technetium-99m MAG3 with iodine-131 hippuran by a simultaneous dual channel technique. J Nucl Med. 1988;29:1189–93.

    CAS  PubMed  Google Scholar 

  17. Kanazawa T, Shimizu M, Seto H, et al. Reproducibility of 99Tcm-MAG3 clearance in normal volunteers with the two-sample method: comparison with OIH. Nucl Med Commun. 1998;19:899–903.

    CAS  PubMed  Google Scholar 

  18. Kotzerke J, Glatz S, Grillenberger K, et al. Reproducibility of a single-sample method for 99Tcm-MAG3 clearance under clinical conditions. Nucl Med Commun. 1997;18:352–7.

    CAS  PubMed  Google Scholar 

  19. Piepsz A, Tondeur M, Kinthaert J, et al. Reproducibility of technetium-99m-mercaptoacetylglycine clearance. Eur J Nucl Med. 1988;23:195–8.

    Google Scholar 

  20. Russell CD, Dubovsky EV. Reproducibility of single-sample clearance of 99mTc-mercaptoacetyltriglycine and 131I-orthohippurate. J Nucl Med. 1999;40:1122–4.

    CAS  PubMed  Google Scholar 

  21. Blaufox MD, Aurell M, Bubeck B, et al. Report of the radionuclides in nephrourology committee on renal clearance. J Nucl Med. 1996;37:1883–90.

    CAS  PubMed  Google Scholar 

  22. Klingensmith WC, Briggss DE, Smith WI. Technetium-99m-MAG3 renal studies: normal range and reproducibility of physiologic parameters as a function of age and sex. J Nucl Med. 1994;35:1612–7.

    PubMed  Google Scholar 

  23. Taylor A, Myrick S, Grant S, Issa M, Halkar R, Alazraki NP. A prospective study to compare the reproducibility of camera based MAG3 and creatinine clearance measurements. J Nucl Med. 1999;40:52P.

    Google Scholar 

  24. Halkar R, Taylor A, Manatunga A, Issa MM, Myrick SE, Grant S, Shenvi NV. Monitoring renal function: a prospective study comparing camera-based Tc-99m mercaptoacetyltriglycine clearance and creatinine clearance. Urology. 2007;69:426–30.

    PubMed  PubMed Central  Google Scholar 

  25. Taylor A, Eshima D, Christian PE, et al. A technetium-99m MAG3 kit formulation: preliminary results in normal volunteers and patients with renal failure. J Nucl Med. 1988;29:616–22.

    PubMed  Google Scholar 

  26. Sanchez J, Friedman S, Kempf J, Abdel-Dayem H. Gallbladder activity appearing 6 minutes after the intravenous injection of Tc99m MAG3 simulating a picture of obstructive uropathy of the right kidney. Clin Nucl Med. 1993;18:30–4.

    CAS  PubMed  Google Scholar 

  27. Shattuck LA, Eshima D, Taylor AT, Anderson T, Graham DL, Latino FA, Payne SE. Evaluation of the hepatobiliary excretion of Tc-99m MAG3 and reconstitution factors affecting the radiochemical purity. J Nucl Med. 1994;35:349–55.

    CAS  PubMed  Google Scholar 

  28. Kabasakal L, Atay S, Vural AV, et al. Evaluation of Tc-99m-L,L-ethylenedicysteine in renal disorders and determination of extraction ratio. J Nucl Med. 1995;36:1398–403.

    CAS  PubMed  Google Scholar 

  29. Taylor A, Hansen L, Eshima D, et al. Comparison of technetium-99m-L,L-EC isomers in rats and humans. J Nucl Med. 1997;38:821–82.

    CAS  PubMed  Google Scholar 

  30. Van Nerom CG, Bormans GM, De Roo MF, Verbruggen AM. First experience in healthy volunteers with Tc-99m-L,L-ethylenedicysteine: a new renal imaging agent. Eur J Nucl Med. 1993;20:738–46.

    PubMed  Google Scholar 

  31. Taylor AT, Lipowska M, Cai H. 99mTc(CO)3(NTA) and 131I-OIH: comparable plasma clearances in patients with chronic kidney disease. J Nucl Med. 2013;54:578–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Taylor AT, Lipowska M, Marzilli LG. 99mTc(CO)3(NTA): a 99mTc renal tracer with pharmacokinetic properties comparable to those of 131I-OIH in healthy volunteers. J Nucl Med. 2010;51:391–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. El-Maghraby TA, van Eck-Smit BL, de Fijter JW, Pauwels EK. Quantitative scintigraphic parameters for the assessment of renal transplant patients. Eur J Radiol. 1998;28:256–69.

    CAS  PubMed  Google Scholar 

  34. Hilson AJW, Maisey MN, Brown CB, Ogg CS, Bewick MS. Dynamic renal transplant imaging with Tc-99m DTPA (Sn) supplemented by a transplant perfusion index in the management of renal transplants. J Nucl Med. 1978;19:994–1000.

    CAS  PubMed  Google Scholar 

  35. Peters AM, Brown J, Crossman D, et al. Noninvasive measurement of renal blood flow with technetium-99m-DTPA in the evaluation of patients with suspected renovascular hypertension. J Nucl Med. 1990;31:1980–5.

    CAS  PubMed  Google Scholar 

  36. Taylor AT, Folks RD, Rahman AKMF, et al. 99mTc-MAG3: image wisely. Radiology. 2017;284:200–9.

    PubMed  PubMed Central  Google Scholar 

  37. O’Reilly PH. Upper urinary tract: standardization of the renogram technique for investigating the dilated upper urinary tract and assessing the results of surgery. BJU Int. 2003;91:239–43.

    PubMed  Google Scholar 

  38. Prigent A, Cosgriff P, Gates GF, et al. Consensus report on quality control of quantitative measurements of renal function obtained from renogram. Semin Nucl Med. 1999;29:146–59.

    CAS  PubMed  Google Scholar 

  39. Taylor AT, Blaufox MD, De Palma D, et al. Guidance document for structured reporting of diuresis renography. Semin Nucl Med. 2012;42:41–8.

    PubMed  PubMed Central  Google Scholar 

  40. Lindh A, Malmgren M, Ekberg S, Stenstrom M, Granerus G. Analysis of the diuretic response to 7ml/kg hydration prior to captopril renography. Eur J Nucl Med. 1998;25:1190.

    Google Scholar 

  41. Slavin JD, Jung WK, Spencer RP. False-positive study with Tc-99m DTPA caused by infiltration of dose. Clin Nucl Med. 1996;21:978–80.

    PubMed  Google Scholar 

  42. Anderson PJ, Rangarajan V, Gordon I. Assessment of drainage in PUJ obstruction: pelvic excretion efficiency as an index of renal function. Nucl Med Commun. 1997;18:823–6.

    CAS  PubMed  Google Scholar 

  43. Donoso G, Kuyvenhoven JD, Ham H, Piepsz A. 99mTc-MAG3 diuretic renography in children: a comparison between F0 and F = 20. Nucl Med Commun. 2003;24:1189–93.

    CAS  PubMed  Google Scholar 

  44. Piepsz A, Kuyvenhoven JD, Tondeur M, Ham H. Normalized residual activity: usual values and robustness of the method. J Nucl Med. 2002;43:33–8.

    PubMed  Google Scholar 

  45. Wong DC, Rossleigh MA, Farnsworth RH. Diuretic renography with the addition of quantitative gravity-assisted drainage in infants and children. J Nucl Med. 2000;41:1030–6.

    CAS  PubMed  Google Scholar 

  46. Eskild-Jensen A, Gordon I, Piepsz A, Frokier J. Interpretation of the renogram: problems and pitfalls in hydronephrosis in children. BJU Int. 2004;94:887–92.

    PubMed  Google Scholar 

  47. Peters AM, George P, Ballardie F, et al. Appropriate selection of background for 99mTc-DTPA. Nucl Med Commun. 1988;9:973–85.

    CAS  PubMed  Google Scholar 

  48. Halkar RK, Chrem Y, Galt JR, et al. Interoperator variability in quantitating the MAG3 renal uptake based on semiautomated and manual regions of interest. J Nucl Med. 1996;37:293P.

    Google Scholar 

  49. Garcia EV, Taylor A, Halkar RK, et al. RENEX: an expert system for the interpretation of 99mTc-MAG3 scans to detect renal obstruction. J Nucl Med. 2006;47:320–9.

    PubMed  Google Scholar 

  50. Esteves FP, Taylor A, Manatunga A, et al. Normal values for camera-based 99mTc-MAG3 clearance, MAG3 curve parameters, excretory parameters and residual urine volume. AJR. 2006;187:W610–7.

    PubMed  Google Scholar 

  51. Blaufox MD, Fine EJ, Heller S, et al. Prospective study of simultaneous orthoiodohipurate and diethylenetriaminepentaacetic acid captopril renography. J Nucl Med. 1998;39:522–8.

    CAS  PubMed  Google Scholar 

  52. Taylor AT, Nally J, Aurell M, et al. Consensus report on ACE inhibitor renography for detecting renovascular hypertension. J Nucl Med. 1996;37:1876–82.

    CAS  PubMed  Google Scholar 

  53. Chaiwatanarat T, Padhy AK, Bomanji JB. Validation of renal output efficiency as an objective parameter in the evaluation of upper urineary tract obstruction. J Nucl Med. 1993;34:845–8.

    CAS  PubMed  Google Scholar 

  54. Strauss BS, Blaufox MD. Estimation of residual urine and urine flow rates without ureteral catherization. J Nucl Med. 1970;11:81–4.

    CAS  PubMed  Google Scholar 

  55. Manjunath G, Sarnak MJ, Levey AS. Estimating the glomerular filtration rate; dos and don’t’s for assessing kidney function. Postgrad Med. 2001;110(6):55–62.

    CAS  PubMed  Google Scholar 

  56. Prigent A. Monitoring renal function and limitations of renal function tests. Semin Nucl Med. 2008;38:32–46.

    PubMed  Google Scholar 

  57. Stevens LA, Coresh J, Green T, Levey AS. Assessing kidney function—measured and estimated glomerular filtration rate. N Engl J Med. 2006;354:2473–83.

    CAS  PubMed  Google Scholar 

  58. Brown SCW, O’Reilly PH. Glomerular filtration rate measurement: a neglected test in urological practice. Brit J Urol. 1995;75:296–300.

    CAS  PubMed  Google Scholar 

  59. Rosenbaum JL. Evaluation of clearance studies in chronic kidney disease. J Chron Dis. 1970;22:507–14.

    CAS  PubMed  Google Scholar 

  60. Brochner-Mortensen J, Rodbro P. Selection of routine method for determination of glomerular filtration rate in adult patients. Scand J Clin Lab Invest. 1976;36:35–43.

    CAS  PubMed  Google Scholar 

  61. Fleming JS, Zivanovic MA, Blake GM, Burniston M, Cosgriff P. Guidelines for the measurement of glomerular filtration rate using plasma sampling. Nucl Med Commun. 2004;25:759–69.

    PubMed  Google Scholar 

  62. Stevens LA, Levey AS. Measured GFR as a confirmatory test for estimated GFR. J Am Soc Nephrol. 2009;20:2305–13.

    PubMed  Google Scholar 

  63. Bubeck B. Renal clearance determination with one blood sample: improved accuracy and universal applicability by a new calculation principle. Semin Nucl Med. 1993;23:73–86.

    CAS  PubMed  Google Scholar 

  64. Russell CD. Optimum sample times for single-injection, multi-sample renal clearance methods. J Nucl Med. 1993;10:1761–5.

    Google Scholar 

  65. Gates GF. Glomerular filtration rate: estimation from fractional renal accumulation of Tc-99m DTPA (stannous). AJR. 1982;138:565–70.

    CAS  PubMed  Google Scholar 

  66. Inoue Y, Ohtake T, Yokoyama I, Yoshikawa K, Asai S, Ohtomo K. Evaluation of renal function from 99mTc-MAG3 renography without blood sampling. J Nucl Med. 1999;40:793–8.

    CAS  PubMed  Google Scholar 

  67. Schlegel JU, Hamway SA. Individual renal plasma flow determination in 2 minutes. J Urol. 1976;116:2882–285.

    Google Scholar 

  68. Taylor A, Manatunga A, Morton K, et al. Multicenter trial validation of a camera based method to measure Tc-99m mercaptoacetyltriglycine or Tc-99m MAG3, clearance. Radiology. 1997;204:47–54.

    CAS  PubMed  Google Scholar 

  69. Bocher M, Shrem Y, Tappiser A, Klein M, Schecter D, Taylor A Jr, Chisin R. Technetium-99m-MAG3 clearance: comparison of camera based methods. Clin Nucl Med. 2001;26:745–50.

    CAS  PubMed  Google Scholar 

  70. Taylor A, Corrigan PL, Galt J, et al. Measuring technetium-99m-MAG3 clearance with an improved camera-based method. J Nucl Med. 1995;36:1689–95.

    CAS  PubMed  Google Scholar 

  71. Taylor A, Lewis C, Giacometti A, et al. Improved formulas for the estimation of renal depth in adults. J Nucl Med. 1993;34:1766–9.

    CAS  PubMed  Google Scholar 

  72. Tonnesen KH, Munck O, Hald T, et al. Influence on the radiorenogram of variation in skin to kidney distance and the clinical importance hereof. In: Zum Winkel K, Mlaufox MD, Funck-Bretano JL, editors. Proceedings of the international symposium on radionuclides in nephrourology. Stuttgart: Thieme; 1974. p. 79–86.

    Google Scholar 

  73. Samal M, Ptacnik V, Skibova D, Jiskrova H, Kubinyi J. Simple model-based method for gamma-camera measurement of 99m-MAG3 plasma clearance. J Nucl Med Mol Image. 2013;54:170–1.

    Google Scholar 

  74. Dubovsky EV, Russell CD, Bischof-Delaoye A, et al. Report of the radionuclides in nephrourology committee for evaluation of transplanted kidney (review of techniques). Sem Nucl Med. 1999;29:175–88.

    CAS  Google Scholar 

  75. Dubovsky EV, Russell CD. Diagnosis of renovascular hypertension after renal transplantation (suppl). Am J Hypertens. 1991;4:724–30.

    Google Scholar 

  76. Nankivell BJ, Borrows RJ, Fung CL, O’Connell PJ, Allen RDM, Chapman JR. The natural history of chronic allograft nephropathy. N Engl J Med. 2003;349:2326–33.

    CAS  PubMed  Google Scholar 

  77. Hvistendahl JJ, Pedersen TS, Schmidt F, et al. Renal function is modulated by a vesico-renal relflex mechanism during elevated bladder pressure in the pig. Nucl Med Commun. 1998;19:502.

    Google Scholar 

  78. Shulkin BL, Mandell GA, Cooper JA, et al. Procedure guideline for diuretic renography in children 3.0. J Nucl Med Tech. 2008;36:162–8.

    Google Scholar 

  79. Members of the Society for Fetal Urology and Pediatric Nuclear Medicine Council Members, Society of Nuclear Medicine. The “well tempered” diuretic renogram: a standard method to examine the asymptomatic neonate with hydronephrosis or hydroureteronephrosis. J Nucl Med. 1992;33:2047–51.

    Google Scholar 

  80. Hunsche A, Press H, Taylor A. Increasing the dose of furosemide in patients with azotemia and suspected obstruction. Clin Nucl Med. 2004;26:149–53.

    Google Scholar 

  81. Brater CD. Diuretic therapy. N Engl J Med. 1998;339:387–95.

    CAS  PubMed  Google Scholar 

  82. Hemstreet BA, Page RL. Sulfonamide allergies and outcomes related to use of potentially cross-reactive drugs in hospitalized patients. Pharmacotherapy. 2006;26:551–7.

    CAS  PubMed  Google Scholar 

  83. Liu Y, Ghesani NV, Skurnick JH, Zukier LS. The F + 0 protocol for diuretic renography results in fewer interrupted studies due to voiding than the F – 15 protocol. J Nucl Med. 2005;46:317–20.

    Google Scholar 

  84. Kuyvenhoven J, Piepsz M, Ham H. When could the administration of furosemide be avoided? Clin Nucl Med. 2003;28:732–7.

    PubMed  Google Scholar 

  85. Adeyoju AA, Burke D, Atkinson C, et al. The choice of timing for diuresis renography for the assessment of equivocal pelviureteric obstruction. Br J Urol Int. 2001;88:1–5.

    CAS  Google Scholar 

  86. Wong DC, Rossleigh MA, Farnsworth RH. F+0 diuresis renography in infants and children. J Nucl Med. 1999;40:1805–11.

    CAS  PubMed  Google Scholar 

  87. Kass EJ, Majd M. Evaluation and management of upper urinary tract obstruction in infancy and childhood. Urol Clin North Am. 1985;12(1):133–41.

    CAS  PubMed  Google Scholar 

  88. Connolly LP, Zurakowski D, Peters CA, et al. Variability of diuresis renography interpretation due to method of post-diuretic renal pelvic clearance half-time determination. J Urol. 2000;164:467–71.

    CAS  PubMed  Google Scholar 

  89. Brown SCW, Upsdell SM, O’Reilly PH. The importance of renal function for the interpretation of diuresis renography. Br J Urol. 1992;69:121–5.

    CAS  PubMed  Google Scholar 

  90. Kletter K, Nurnberger N. Diagnostic potential of diuresis renography: limitation by the severity of hydronephrosis and by impairment of renal function. Nucl Med Comm. 1989;10:51–61.

    CAS  Google Scholar 

  91. Upsdell SM, Leeson SM, Brooman PJC, et al. Diuretic-induced urinary flow rates at varying clearances and their relevance to the performance and interpretation of diuresis renography. Br J Urol. 1988;61:14–8.

    CAS  PubMed  Google Scholar 

  92. Piepsz A, Tondeur M, Ham HR. NORA: a simple and reliable parameter for estiming renal output with or without frusemide challenge. Nucl Med Commun. 2000;21:317–23.

    CAS  PubMed  Google Scholar 

  93. Upsdell SM, Testa HJ, Lawson RS. The F-15 diuresis renogram in suspected obstruction of the upper urinary tract. Br J Urol. 1992;69:126–31.

    CAS  PubMed  Google Scholar 

  94. Bao J, Manatunga A, Binongo JN, et al. Key variables for interpreting 99mTc-mercaptoacetyltriglycine diuretic scans: development and validation of a predictive model. AJR Am J Roentgenol. 2011;197:325–33.

    PubMed  PubMed Central  Google Scholar 

  95. Bird VG, Gomez-Martin O, Leveillee RJ, Sfakianakis GN, Rivas LA, Amendola MA. A comparison of unenhanced helical computerized tomography findings and renal obstruction determined by furosemide 99mtechnetium mercaptoacetyltriglycine diuretic scintirenography for patients with acute renal colic. J Urol. 2000;167:1597–160395.

    Google Scholar 

  96. Lorberboym M, Kapustin Z, Elias S, Nikolov G, Katz R. The role of renal scintigraphy and unenhanced helical computerized tomography in patients with ureterolithiasis. Eur J Nucl Med. 2000;27:441–6.

    CAS  PubMed  Google Scholar 

  97. Sfakianakis GN, Cohen DJ, Braunstein RH, et al. MAG3-F0 scintigraphy in decision making for emergency intervention in renal colic after helical CT positive for a urolith. J Nucl Med. 2000;41:1813–22.

    CAS  PubMed  Google Scholar 

  98. Prigent A. The diagnosis of renovascular hypertension: the role of captopril renal scintigraphy and related issues. Eur J Nucl Med. 1993;20:625–44.

    CAS  PubMed  Google Scholar 

  99. Eyler WR, Clark MD, Garman JE, Rian RL, Meininger DE. Angiography of the renal areas including a comparative study of renal arterial stenosis in patients with and without hypertension. Radiology. 1962;78:879–92.

    CAS  PubMed  Google Scholar 

  100. Holley KE, Hunt JC, Brown AL Jr, et al. Renal artery stenosis: a clinical pathologic study in normotensive and hypertensive patients. Am J Med. 1964;37:14–22.

    CAS  PubMed  Google Scholar 

  101. Plouin PF, Chatellier G, Darne B, Raynaud A. Blood pressure outcome of angioplasty in atherosclerotic renal artery stenosis: a randomized trial. Essai Multicentrique Medicaments vs Angioplastie (EMMA) Study Group. Hypertension. 1998;31(3):823–9.

    CAS  PubMed  Google Scholar 

  102. van Jaarsveld BC, Krijnen P, Pieterman H, Derkx FH, Deinum J, Postma CT, Dees A, Woittiez AJ, Bartelink AK, Man in ’t Veld AJ, Schalekamp MA. The effect of balloon angioplasty on hypertension in atherosclerotic renal-artery stenosis. Dutch Renal Artery Stenosis Intervention Cooperative Study Group. N Engl J Med. 2000;342(14):1007–14.

    PubMed  Google Scholar 

  103. Webster J, Marshall F, Abdalla M, Dominiczak A, Edwards R, Isles CG, Loose H, Main J, Padfield P, Russell IT, Walker B, Watson M, Wilkinson R. Randomised comparison of percutaneous angioplasty vs continued medical therapy for hypertensive patients with atheromatous renal artery stenosis. Scottish and Newcastle Renal Artery Stenosis Collaborative Group. J Hum Hypertens. 1998;12(5):329–35.

    CAS  PubMed  Google Scholar 

  104. Taylor A. ACE inhibition renography in the evaluation of suspected renovascular hypertension. In: Prigent A, Peipsz A, editors. Functional imaging in nephrourology. London: Taylor and Francis; 2006. p. 149–64.

    Google Scholar 

  105. Helin KH, Tikkanen I, von Knorring JE, et al. Screening for renovascular hypertension in a population with relatively low prevalence. J Hypertens. 1998;16:1523–9.

    CAS  PubMed  Google Scholar 

  106. Blaufox MD, Middleton ML, Bongiovanni J, Davis BR. Cost efficacy of the diagnosis and therapy of renovascular hypertension. J Nucl Med. 1996;37:171–7.

    CAS  PubMed  Google Scholar 

  107. Taylor AT, Blaufox MD, Dubovsky EV et al (2003) Society of Nuclear Medicine procedure guideline for diagnosis of renovascular hypertension. http://snmmi.files.cms-plus.com/docs/Renovascular_Hypertention.pdf

  108. Gainer JV, Morrow JD, Loveland A, King DJ, Brown NJ. Effect of bradykinin-receptor blockade on the response to angiotensin-converting-enzyme inhibitor in normotensive and hypertensive subjects. N Eng J Med. 1998;339:1285–92.

    CAS  Google Scholar 

  109. Karanikas G, Becherer A, Wiesner K, Dudczak R, Kletter K. ACE inhibition is superior to angiotensin receptor blockade for renography in renal artery stenosis. Eur J Nucl Med. 2002;29:312–8.

    CAS  Google Scholar 

  110. Kon V, Fogo A, Ichikawa I, et al. Bradykinin causes selective efferent arteriolar dilation during angiotensin I converting enzyme inhibition. Kidney Int. 1993;44:545–50.

    CAS  PubMed  Google Scholar 

  111. Sandberg K, Hong J. Kidney angeiotensin receptors and their role in renal pathophysiology. Sem Nephrol. 2000;20:402–16.

    CAS  Google Scholar 

  112. MĂĽller-Suur R, Tidgren B, Lundberg HJ. Effect of captopril on MAG3 clearance in patients with and without renal artery stenosis and after PTRA. Eur J Nucl Med. 1998;25:845.

    Google Scholar 

  113. Taylor A, Eshima D. Renal artery stenosis and ischemia: effect on renal blood flow and extraction fraction. Hypertension. 1994;23:96–103.

    CAS  PubMed  Google Scholar 

  114. Visscher CA, de Zeeuw D, de Jong PE, et al. Angiotensin-converting enzyme inhibition-induced changes in hippurate renography and renal function in renovascular hypertension. J Nucl Med. 1996;37:482–8.

    CAS  PubMed  Google Scholar 

  115. Erbslöh-Möller B, Dumas A, Roth D, Sfakianakis G, Bourgoignie JJ. Furosemide I-131 hippuran renography after angiotensin-converting enzyme inhibition for the diagnosis of renovascular hypertension. Am J Med. 1991;90:23–9.

    PubMed  Google Scholar 

  116. Setaro JF, Saddler MC, Chen CC, et al. Simplified captopril renography in diagnosis and treatment of renal artery stenosis. Hypertension. 1991;18:289–98.

    CAS  PubMed  Google Scholar 

  117. Visscher CA, de Zeeuw D, Huisman RM. Effect of chronic ACE inhibition on the diagnostic value of renography for renovascular hypertension: a preliminary report. Nephrol Dial Transplant. 1995;10:263–5.

    CAS  PubMed  Google Scholar 

  118. Taylor A. Functional testing: ACEI renography. Semin Nephrol. 2000;20:437–44.

    CAS  PubMed  Google Scholar 

  119. Picciotto G, Sargiotto A, Petrarulo M, Rabbia C, De Filippi PG, Roccatello D. Reliability of captopril renography in patients under chronic therapy with angiotensin II (AT1) receptor antagonists. J Nucl Med. 2003;44:1574–81.

    CAS  PubMed  Google Scholar 

  120. Claveau-Tremblay R, Turpin S, Debraekeleer M, et al. False-positive captopril renography in patients taking calcium antagonists. J Nucl Med. 1998;39:1621–6.

    CAS  PubMed  Google Scholar 

  121. Ludwig V, Martin WH, Delbeke D. Calcium channel blockers: a potential cause of false-positive captopril renography. Clin Nucl Med. 2003;28:108–12.

    PubMed  Google Scholar 

  122. Sfakianakis GM, Bourgoignie JJ, Georgiou M, et al. Diagnosis of renovascular hypertension with ACE inhibition scintigraphy. Radiol Clin North Am. 1993;31:831–48.

    CAS  PubMed  Google Scholar 

  123. Black HR, Bourgoignie JJ, Pickering T, Svetkey L, Saddler MC, et al. Report of the working party group for patient selection and preparation. Am J Hypertens. 1991;4:745S–456S.

    CAS  PubMed  Google Scholar 

  124. Kopecky RT, McAfee JG, Thomas FD, et al. Enalaprilat-enhanced renography in a rat model of renovascular hypertension. J Nucl Med. 1990;31:501–7.

    CAS  PubMed  Google Scholar 

  125. Fanti S, Dondi M, Guidalotti PL, et al. Bilateral symmetrical induced changes in captopril scintigraphy. J Nucl Med. 1998;39:86P.

    Google Scholar 

  126. Stavropoulos SW, Sevigny SA, Ende JF, Drane WE. Hypotensive response to captopril: a potential pitfall of scintigraphic assessment for renal artery stenosis. J Nucl Med. 1999;40:406–11.

    CAS  PubMed  Google Scholar 

  127. Caglar M, Moretti JL, Buchet P, et al. Enalapril plus frusemide MAG3 scintigraphy in hypertensive patients with atherosclerosis and moderate renal insufficiency. Nucl Med Commun. 1998;19:1135–40.

    CAS  PubMed  Google Scholar 

  128. Nally JW Jr, Chen C, Fine E, et al. Diagnostic criteria of renovascular hypertension with captopril renography. Am J Hypertens. 1991;4:749S–52S.

    PubMed  Google Scholar 

  129. Dey HM, Hoffer PB, Lerner E, et al. Quantitative analysis of the technetium-99m-DTPA captopril renogram: contribution of washout parameters to the diagnosis of renal artery stenosis. J Nucl Med. 1993;34:1416–9.

    CAS  PubMed  Google Scholar 

  130. Fommei E, Ghione S, Hilson AJW, et al. Captopril radionuclide test in renovascular hypertension: a European multicentre study. Eur J Nucl Med. 1993;20:625–44.

    Google Scholar 

  131. Dondi M, Fanti S, De Fabritiis A, et al. Prognostic value of captopril renal scintigraphy in renovascular hypertension. J Nucl Med. 1992;33:2040–4.

    CAS  PubMed  Google Scholar 

  132. Fommei E, Ghione S, Hilson AJW, et al. Captopril radionuclide test in renovascular hypertension: European multicenter study. In: O’Reilly PH, Taylor A, Nally JV, editors. Radionuclides in nephrourology, vol. 1. Field and Wood: Blue Bell, PA; 1994.

    Google Scholar 

  133. Geyskes GG, deBruyn AJG. Captopril renography and the effect of percutaneous transluminal angioplasty on blood pressure in 94 patients with renal artery stenosis. Am J Hypertens. 1991;4:685S–9S.

    CAS  PubMed  Google Scholar 

  134. Kahn D, Ben-Haim S, Bushnell DL, et al. Captopril-enhanced Tc-99m MAG3 renal scintigraphy in subjects with suspected renovascular hypertension. Nucl Med Commun. 1994;15:515–28.

    CAS  PubMed  Google Scholar 

  135. Mittal BR, Kumar P, Arora P, et al. Role of captopril renography in the diagnosis of renovascular hypertension. Am J Kidney Dis. 1996;28:209–13.

    CAS  PubMed  Google Scholar 

  136. Szabo Z, Xia J, Mathews WB. Radiopharmaceuticals for renal positron emission tomography imaging. Semin Nucl Med. 2008;38:20–31.

    PubMed  Google Scholar 

  137. Awasthi V, Pathuri G, Agashe HB, Gali H. Synthesis and in vivo evaluation of p-18F-fluorohippurate as a new radiopharmaceutical for assessment of renal function by PET. J Nucl Med. 2011;52:147–53.

    CAS  PubMed  Google Scholar 

  138. Lipowska M, Jarkas N, Voll RJ, Nye JA, Klenc J, Goodman MM, Taylor AT. Re(CO)3([18F]FEDA), a novel 18F PET renal tracer: radiosynthesis and preclinical evaluation. Nucl Med Biol. 2018;58:42–50.

    CAS  PubMed  Google Scholar 

  139. Alongi P, Picchio M, Zattoni F, Spallino M, Gianolli L, Saladini G, Evangelista L. Recurrent renal cell carcinoma: clinical and prognostic value of FDG PET/CT. Eur J Nucl Med Mol Imaging. 2016;42:464–73.

    Google Scholar 

  140. Wang H, Ding H, Chen J, Chao C, Lu Y, Lin W, Kao C. Meta-analysis of the diagnostic performance of [18F]FDG-PET and PET/CT in renal cell carcinoma. Cancer Imaging. 2012;12:464–74.

    PubMed  PubMed Central  Google Scholar 

  141. Divgi CR, Uzzo RG, Gatsonis C, et al. Positron emission tomography/computed tomography identification of clear cell renal cell carcinoma: results from the REDECT trial. J Clin Oncol. 2012;31:187–94.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew T. Taylor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taylor, A.T. (2020). Nuclear Medicine Imaging Techniques of the Kidney. In: Ahmadzadehfar, H., Biersack, HJ., Freeman, L., Zuckier, L. (eds) Clinical Nuclear Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-39457-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39457-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39455-4

  • Online ISBN: 978-3-030-39457-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics