Skip to main content

Neuropsychopathology of Autism Spectrum Disorder: Complex Interplay of Genetic, Epigenetic, and Environmental Factors

  • Chapter
  • First Online:
Personalized Food Intervention and Therapy for Autism Spectrum Disorder Management

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 24))

Abstract

Autism spectrum disorder (ASD) is a complex heterogeneous consortium of pervasive development disorders (PDD) which ranges from atypical autism, autism, and Asperger syndrome affecting brain in the developmental stage. This debilitating neurodevelopmental disorder results in both core as well as associated symptoms. Core symptoms observed in autistic patients are lack of social interaction, pervasive, stereotyped, and restricted behavior while the associated symptoms include irritability, anxiety, aggression, and several comorbid disorders.

ASD is a polygenic disorder and is multifactorial in origin. Copy number variations (CNVs) of several genes that regulate the synaptogenesis and signaling pathways are one of the major factors responsible for the pathogenesis of autism. The complex integration of various CNVs cause mutations in the genes which code for molecules involved in cell adhesion, voltage-gated ion-channels, scaffolding proteins as well as signaling pathways (PTEN and mTOR pathways). These mutated genes are responsible for affecting synaptic transmission by causing plasticity dysfunction responsible, in turn, for the expression of ASD.

Epigenetic modifications affecting DNA transcription and various pre-natal and post-natal exposure to a variety of environmental factors are also precipitating factors for the occurrence of ASD. All of these together cause dysregulation of glutamatergic signaling as well as imbalance in excitatory: inhibitory pathways resulting in glial cell activation and release of inflammatory mediators responsible for the aberrant social behavior which is observed in autistic patients.

In this chapter we review and provide insight into the intricate integration of various genetic, epigenetic, and environmental factors which play a major role in the pathogenesis of this disorder and the mechanistic approach behind this integration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders. American Psychiatric Association.

    Google Scholar 

  2. WHO. (2017). Autism spectrum disorders. WHO.

    Google Scholar 

  3. Rudra, A., Belmonte, M.K., Soni, P. K., Banerjee, S., Mukerji, S., Chakrabarti, B. (2017). Prevalence of autism spectrum disorder and autistic symptoms in a school-based cohort of children in Kolkata, India. Autism Research, 10, 1597–1605. https://doi.org/10.1002/aur.1812

  4. Fombonne, E. (2005). Epidemiology of autistic disorder and other pervasive developmental disorders. The Journal of Clinical Psychiatry, 3–8.

    Google Scholar 

  5. Holt, R., & Monaco, A. P. (2011). Links between genetics and pathophysiology in the autism spectrum disorders. EMBO Molecular Medicine, 3, 438–450. https://doi.org/10.1002/emmm.201100157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Santangelo, S. L., & Tsatsanis, K. (2005). What is known about autism: Genes, brain, and behavior. American Journal of Pharmacogenomics, 5, 71–92.

    Article  CAS  PubMed  Google Scholar 

  7. Werling, D. M., & Geschwind, D. H. (2013). Sex differences in autism spectrum disorders. Current Opinion in Neurology, 26, 146–153. https://doi.org/10.1097/WCO.0b013e32835ee548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sandin, S., Lichtenstein, P., Kuja-Halkola, R., Hultman, C., Larsson, H., Reichenberg, A. (2017). The heritability of autism spectrum disorder. JAMA, 318, 1182. https://doi.org/10.1001/jama.2017.12141

  9. Banerjee, S., Riordan, M., & Bhat, M. A. (2014). Genetic aspects of autism spectrum disorders: Insights from animal models. Frontiers in Cellular Neuroscience, 8, 58. https://doi.org/10.3389/fncel.2014.00058

    Article  PubMed  PubMed Central  Google Scholar 

  10. Betancur, C., Sakurai, T., & Buxbaum, J. D. (2009). The emerging role of synaptic cell-adhesion pathways in the pathogenesis of autism spectrum disorders. Trends in Neurosciences, 32, 402–412. https://doi.org/10.1016/j.tins.2009.04.003

    Article  CAS  PubMed  Google Scholar 

  11. Antshel, K.M., Zhang-James, Y., Wagner, K. E., Ledesma, A., Faraone, SV. (2016). An update on the comorbidity of ADHD and ASD: A focus on clinical management. Expert Review of Neurotherapeutics, 16, 279–293. https://doi.org/10.1586/14737175.2016.1146591

  12. Estabillo, J. A., Matson, J. L., & Cervantes, P. E. (2018). Autism symptoms and problem behaviors in children with and without developmental regression. Journal of Developmental and Physical Disabilities, 30, 17–26. https://doi.org/10.1007/s10882-017-9573-x

    Article  Google Scholar 

  13. Frye, R. E., & Rossignol, D. A. (2016). Identification and treatment of pathophysiological comorbidities of autism spectrum disorder to achieve optimal outcomes. Clinical Medicine Insights: Pediatrics, 10, 43–56. https://doi.org/10.4137/CMPed.S38337

    Article  PubMed  PubMed Central  Google Scholar 

  14. Helverschou, S. B., Bakken, T. L., & Martinsen, H. (2011). Psychiatric disorders in people with autism spectrum disorders: Phenomenology and recognition. In International handbook of autism and pervasive developmental disorders (pp. 53–74). New York: Springer.

    Chapter  Google Scholar 

  15. El-Fishawy, P., & State, M. W. (2010). The genetics of autism: Key issues, recent findings, and clinical implications. The Psychiatric Clinics of North America, 33, 83–105. https://doi.org/10.1016/j.psc.2009.12.002

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu, J., Nyholt, D. R., Magnussen, P., Parano, E., Pavone, P., Geschwind, D., et al. (2001). A genome-wide screen for autism susceptibility loci. American Journal of Human Genetics, 69, 327–340.

    Google Scholar 

  17. Caglayan, A. O. (2010). Genetic causes of syndromic and non-syndromic autism. Developmental Medicine and Child Neurology, 52, 130–138. https://doi.org/10.1111/j.1469-8749.2009.03523.x

    Article  PubMed  Google Scholar 

  18. Persico, A. M., & Sacco, R. (2014). Endophenotypes in autism spectrum disorders. In Comprehensive guide to autism (pp. 77–95). New York: Springer.

    Chapter  Google Scholar 

  19. Pieretti, M., Zhang, F.P., Fu, Y.H., Warren, ST., Oostra, BA., Caskey, CT., et al. (1991). Absence of expression of the FMR-1 gene in fragile X syndrome. Cell, 66, 817–822.

    Google Scholar 

  20. Sitzmann, A.F., Hagelstrom, R.T., Tassone, F., Hagerman, R.J., Butler, M.G. (2018). Rare FMR1 gene mutations causing fragile X syndrome: A review. American Journal of Medical Genetics - Part A, 176, 11–18. https://doi.org/10.1002/ajmg.a.38504

  21. Persico, A. M., & Napolioni, V. (2013). Autism genetics. Behavioural Brain Research, 251, 95–112. https://doi.org/10.1016/j.bbr.2013.06.012

    Article  PubMed  Google Scholar 

  22. Clayton-Smith, J., & Laan, L. (2003). Angelman syndrome: A review of the clinical and genetic aspects. Journal of Medical Genetics, 40, 87–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vijayakumar, P. (2018). Identification imprinting gene expression at 15q11-q13 region in Angelman syndrome. Parkinsonism & Related Disorders, 46, e53–e54. https://doi.org/10.1016/j.parkreldis.2017.11.181

    Article  Google Scholar 

  24. Kotulska, K., & Jóźwiak, S. (2011). Autism in monogenic disorders. European Journal of Paediatric Neurology, 15, 177–180. https://doi.org/10.1016/j.ejpn.2010.08.007

    Article  PubMed  Google Scholar 

  25. Napolioni, V., & Curatolo, P. (2008). Genetics and molecular biology of tuberous sclerosis complex. Current Genomics, 9, 475–487. https://doi.org/10.2174/138920208786241243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Peters, S., Beaudet, A., Madduri, N., & Bacino, C. (2004). Autism in Angelman syndrome: Implications for autism research. Clinical Genetics, 66, 530–536. https://doi.org/10.1111/j.1399-0004.2004.00362.x

    Article  CAS  PubMed  Google Scholar 

  27. Tan, W.-H., Bacino, C. A., Skinner, S. A., Irina, Anselm., Rene, Barbieri-Welge., Astrid, Bauer-Carlin., et al. (2011). Angelman syndrome: Mutations influence features in early childhood. American Journal of Medical Genetics - Part A, 155, 81–90. https://doi.org/10.1002/ajmg.a.33775

  28. McCarroll, S. A., & Altshuler, D. M. (2007). Copy-number variation and association studies of human disease. Nature Genetics, 39, S37–S42. https://doi.org/10.1038/ng2080

    Article  CAS  PubMed  Google Scholar 

  29. Sharp, A. J., Locke, D. P., McGrath, S. D., Cheng, Z., Bailey, J. A., Vallente, R. U., et al. (2005). Segmental duplications and copy-number variation in the human genome. American Journal of Human Genetics, 77, 78–88. https://doi.org/10.1086/431652

  30. Marshall, C. R., & Scherer, S. W. (2012). Detection and characterization of copy number variation in autism spectrum disorder. Methods in Molecular Biology (Clifton, N.J.), 115–135.

    Google Scholar 

  31. Glessner, J. T., Wang, K., Cai, G., Korvatska, O, Kim, C. E,, Wood, S., et al. (2009). Autism genome-wide copy number variation reveals ubiquitin and neuronal genes. Nature, 459, 569–573. https://doi.org/10.1038/nature07953

  32. Sanders, S. J., Ercan-Sencicek, A. G., Hus, V., Luo, R., Murtha, M. T., Moreno-De-Luca, D., et al. (2011). Multiple recurrent de novo CNVs, including duplications of the 7q11.23 Williams syndrome region, are strongly associated with autism. Neuron, 70, 863–885. https://doi.org/10.1016/j.neuron.2011.05.002

  33. Sener, E. F. (2014). Association of copy number variations in autism spectrum disorders: A systematic review. Chinese Journal of Biology, 2014, 1–9. https://doi.org/10.1155/2014/713109

    Article  CAS  Google Scholar 

  34. Menashe, I., Larsen, E. C., & Banerjee-Basu, S. (2013). Prioritization of copy number variation loci associated with autism from AutDB-An integrative multi-study genetic database. PLoS One, 8. https://doi.org/10.1371/journal.pone.0066707

  35. Sanders, S. J., He, X., Willsey, A. J., Ercan-Sencicek, A. G., Samocha, K. E., Cicek, A. E., et al. (2015). Insights into autism spectrum disorder genomic architecture and biology from 71 risk loci. Neuron, 87, 1215–1233. https://doi.org/10.1016/j.neuron.2015.09.016

  36. Iossifov, I., O’Roak, B. J., Sanders, S. J., Ronemus, M., Krumm, N., Levy, D., et al. (2014). The contribution of de novo coding mutations to autism spectrum disorder. Nature, 515, 216–221. https://doi.org/10.1038/nature13908

  37. Hoeffer, C. A., & Klann, E. (2010). mTOR signaling: At the crossroads of plasticity, memory and disease. Trends in Neurosciences, 33, 67–75. https://doi.org/10.1016/j.tins.2009.11.003

    Article  CAS  PubMed  Google Scholar 

  38. Yeung, K. S., Tso, W. W. Y., Ip, J. J. K., Mak, C. C. Y., Leung, G. K. C., Tsang, M. H. Y., et al. (2017). Identification of mutations in the PI3K-AKT-mTOR signaling pathway in patients with macrocephaly and developmental delay and/or autism. Molecular Autism, 8, 66. https://doi.org/10.1186/s13229-017-0182-4

  39. Ebert, D. H., & Greenberg, M. E. (2013). Activity-dependent neuronal signaling and autism spectrum disorder. Nature, 493, 327–337. https://doi.org/10.1038/nature11860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jiang, Y. H., & Ehlers, M. D. (2013). Modeling autism by SHANK gene mutations in mice. Neuron, 78, 8–27. https://doi.org/10.1016/j.neuron.2013.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Song, J. Y., Ichtchenko, K., Südhof, T. C., & Brose, N. (1999). Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. Proceedings of the National Academy of Sciences of the United States of America, 96, 1100–1105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Varoqueaux, F., Jamain, S., & Brose, N. (2004). Neuroligin 2 is exclusively localized to inhibitory synapses. European Journal of Cell Biology, 83, 449–456. https://doi.org/10.1078/0171-9335-00410

    Article  CAS  PubMed  Google Scholar 

  43. Südhof, T. C. (2017). Synaptic neurexin complexes: A molecular code for the logic of neural circuits. Cell, 171, 745–769. https://doi.org/10.1016/j.cell.2017.10.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fabrichny, I. P., Leone, P., Sulzenbacher, G., Comoletti, D., Miller, M. T., Taylor, P., et al. (2007). Structural analysis of the synaptic protein neuroligin and its β-neurexin complex: Determinants for folding and cell adhesion. Neuron, 56, 979–991. https://doi.org/10.1016/j.neuron.2007.11.013

  45. Banovic, D., Khorramshahi, O., Owald, D., Wichmann, C., Riedt, T., Fouquet, W., et al. (2010). Drosophila neuroligin 1 promotes growth and postsynaptic differentiation at glutamatergic neuromuscular junctions. Neuron, 66, 724–738. https://doi.org/10.1016/j.neuron.2010.05.020

  46. Budreck, E. C., & Scheiffele, P. (2007). Neuroligin-3 is a neuronal adhesion protein at GABAergic and glutamatergic synapses. The European Journal of Neuroscience, 26, 1738–1748. https://doi.org/10.1111/j.1460-9568.2007.05842.x

    Article  PubMed  Google Scholar 

  47. Hunter, J. W., Mullen, G. P., McManus, J. R., Heatherly, J. M., Duke, A., Rand, J. B. (2010). Neuroligin-deficient mutants of C. elegans have sensory processing deficits and are hypersensitive to oxidative stress and mercury toxicity. Disease Models & Mechanisms, 3, 366–376. https://doi.org/10.1242/dmm.003442

  48. Tabuchi, K., & Südhof, T. C. (2002). Structure and evolution of neurexin genes: Insight into the mechanism of alternative splicing. Genomics, 79, 849–859. https://doi.org/10.1006/geno.2002.6780

    Article  CAS  PubMed  Google Scholar 

  49. Ichtchenko, K., Nguyen, T., & Südhof, T. C. (1996). Structures, alternative splicing, and neurexin binding of multiple neuroligins. The Journal of Biological Chemistry, 271, 2676–2682. https://doi.org/10.1074/JBC.271.5.2676

    Article  CAS  PubMed  Google Scholar 

  50. Hoon, M., Bauer, G., Fritschy, J.-M., Moser, T., Falkenburger, B. H., Varoqueauxet, F. (2009). Neuroligin 2 controls the maturation of GABAergic synapses and information processing in the retina. The Journal of Neuroscience, 29, 8039–8050. https://doi.org/10.1523/JNEUROSCI.0534-09.2009

  51. Hoon, M., Soykan, T., Falkenburger, B., Matthieu, H., Annarita, P., Karl-Friedrich, S., et al. (2011). Neuroligin-4 is localized to glycinergic postsynapses and regulates inhibition in the retina. Proceedings of the National Academy of Sciences, 108, 3053–3058. https://doi.org/10.1073/pnas.1006946108

  52. Bolliger, M. F., Frei, K., Winterhalter, K. H., & Gloor, S. M. (2001). Identification of a novel neuroligin in humans which binds to PSD-95 and has a widespread expression. Biochemical Journal, 356, 581–588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Levinson, J. N., & El-Husseini, A. (2005). Building excitatory and inhibitory synapses: Balancing neuroligin partnerships. Neuron, 48, 171–174. https://doi.org/10.1016/j.neuron.2005.09.017

    Article  CAS  PubMed  Google Scholar 

  54. Chen, Y.-C., Lin, Y. Q., Banerjee, S., Venken, K., Li, J., Ismat, A., et al. (2012). Drosophila neuroligin 2 is required presynaptically and postsynaptically for proper synaptic differentiation and synaptic transmission. The Journal of Neuroscience, 32, 16018–16030. https://doi.org/10.1523/JNEUROSCI.1685-12.2012

  55. Chih, B., Engelman, H., & Scheiffele, P. (2005). Control of excitatory and inhibitory synapse formation by neuroligins. Science, 307, 1324–1328. https://doi.org/10.1126/science.1107470

    Article  CAS  PubMed  Google Scholar 

  56. Parente, D. J., Garriga, C., Baskin, B., Douglas, G., Cho, M. T., Araujo, G. C. et al. (2017). Neuroligin 2 nonsense variant associated with anxiety, autism, intellectual disability, hyperphagia, and obesity. American Journal of Medical Genetics - Part A, 173, 213–216. https://doi.org/10.1002/ajmg.a.37977

  57. Bottos, A., Rissone, A., Bussolino, F., & Arese, M. (2011). Neurexins and neuroligins: Synapses look out of the nervous system. Cellular and Molecular Life Sciences, 68, 2655–2666. https://doi.org/10.1007/s00018-011-0664-z

    Article  CAS  PubMed  Google Scholar 

  58. Jamain, S., Quach, H., Betancur, C., Råstam, M., Colineaux, C., Gillberg, I. C., et al. (2003). Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nature Genetics, 34, 27–29. https://doi.org/10.1038/ng1136

  59. Martella, G., Meringolo, M., Trobiani, L., De Jaco, A., Pisani, A., Bonsi, P., et al. (2018). The neurobiological bases of autism spectrum disorders: The R451C-neuroligin 3 mutation hampers the expression of long-term synaptic depression in the dorsal striatum. The European Journal of Neuroscience, 47, 701–708. https://doi.org/10.1111/ejn.13705

  60. Tabuchi, K., Blundell, J., Etherton, M. R., Hammer, R. E., Liu, X., Powell, C. M., et al. (2007). A neuroligin-3 mutation implicated in autism increases inhibitory synaptic transmission in mice. Science, 318, 71–76. https://doi.org/10.1126/science.1146221

  61. Jamain, S., Radyushkin, K., Hammerschmidt, K., Sylvie, G., Susann, B., Frederique V. et al. (2008). Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism. Proceedings of the National Academy of Sciences, 105, 1710–1715. https://doi.org/10.1073/pnas.0711555105

  62. Taniguchi, H., Gollan, L., Scholl, F. G., Veeravan, M., Elizabeth, D., Nicolas, L., et al. (2007). Silencing of neuroligin function by postsynaptic neurexins. The Journal of Neuroscience, 27, 2815–2824. https://doi.org/10.1523/JNEUROSCI.0032-07.2007

  63. Baudouin, S., & Scheiffele, P. (2010). SnapShot: neuroligin-neurexin complexes. Cell, 141, 908–908.e1. https://doi.org/10.1016/J.CELL.2010.05.024

    Article  PubMed  Google Scholar 

  64. Craig, A. M., & Kang, Y. (2007). Neurexin–neuroligin signaling in synapse development. Current Opinion in Neurobiology, 17, 43–52. https://doi.org/10.1016/j.conb.2007.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Scheiffele, P., Fan, J., Choih, J., Fetter, R., Serafini, T. (2000). Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell, 101, 657–669.

    Google Scholar 

  66. Zahir, F. R., Baross, A., Delaney, A. D., Eydoux. P., Fernandes, N. D., Pugh., T. et al. (2007). A patient with vertebral, cognitive and behavioural abnormalities and a de novo deletion of NRXN1. Journal of Medical Genetics, 45, 239–243. https://doi.org/10.1136/jmg.2007.054437

  67. Dachtler, J., Glasper, J., Cohen, R. N., Ivorra, J. L., Swiffen, D. J., Jackson, A. J., et al. (2014). Deletion of α-neurexin II results in autism-related behaviors in mice. Translational Psychiatry, 4, e484. https://doi.org/10.1038/tp.2014.123

  68. Rabaneda, L. G., Robles-Lanuza, E., Nieto-González, J. L., & Scholl, F. G. (2014). Neurexin dysfunction in adult neurons results in autistic-like behavior in mice. Cell Reports, 8, 338–346. https://doi.org/10.1016/j.celrep.2014.06.022

    Article  CAS  PubMed  Google Scholar 

  69. Etherton, M. R., Blaiss, C. A., Powell, C. M., & Sudhof, T. C. (2009). Mouse neurexin-1 deletion causes correlated electrophysiological and behavioral changes consistent with cognitive impairments. Proceedings of the National Academy of Sciences, 106, 17998–18003. https://doi.org/10.1073/pnas.0910297106

    Article  Google Scholar 

  70. Wang, J., Gong, J., Li, L., Chen, Y., Liu, L., Gu, H., et al. (2018). Neurexin gene family variants as risk factors for autism spectrum disorder. Autism Research, 11, 37–43. https://doi.org/10.1002/aur.1881

  71. Zuko, A., Kleijer, K. T. E., Oguro-Ando, A., Kas, M. J. H., van Daalen, E., van der Zwaag, B., et al. (2013). Contactins in the neurobiology of autism. European Journal of Pharmacology, 719, 63–74. https://doi.org/10.1016/j.ejphar.2013.07.016

  72. Berglund, E. O., Murai, K. K., Fredette, B., Sekerková, G., Marturano, B., Weber, L., et al. (1999). Ataxia and abnormal cerebellar microorganization in mice with ablated contactin gene expression. Neuron, 24, 739–750.

    Google Scholar 

  73. Morrow, E. M., Yoo, S.-Y., Flavell, S. W., Kim, T. K., Lin, Y., Hill, R. S., et al. (2008). Identifying autism loci and genes by tracing recent shared ancestry. Science, 321, 218–223. https://doi.org/10.1126/science.1157657

  74. Shimoda, Y., & Watanabe, K. (2009). Contactins: Emerging key roles in the development and function of the nervous system. Cell Adhesion & Migration, 3, 64–70.

    Article  Google Scholar 

  75. Tong, D., Chen, R., Lu, Y., Li, W., Zhang, Y. F., Lin, J. K., et al. (2018). The critical role of ASD-related gene CNTNAP3 in regulating synaptic development and social behavior in mice. bioRxiv 260083. https://doi.org/10.1101/260083

  76. Cottrell, C. E., Bir, N., Varga, E., Alvarez, C. E., Bouyain, S., Zernzach, R., et al. (2011). Contactin 4 as an autism susceptibility locus. Autism Research, 4, 189–199. https://doi.org/10.1002/aur.184

  77. Guo, H., Xun, G., Peng, Y., Li, X., et al. (2012). Disruption of Contactin 4 in two subjects with autism in Chinese population. Gene, 505, 201–205. https://doi.org/10.1016/J.GENE.2012.06.051

  78. Pinto, D., Pagnamenta, A. T., Klei, L., Anney, R., Merico, D., Regan, R., et al. (2010). Functional impact of global rare copy number variation in autism spectrum disorders. Nature, 466, 368–372. https://doi.org/10.1038/nature09146

  79. van Daalen, E., Kemner, C., Verbeek, N. E., Zwaag, B. V., Dijkhuizen, T., Rump P., et al. (2011). Social responsiveness scale-aided analysis of the clinical impact of copy number variations in autism. Neurogenetics, 12, 315–323. https://doi.org/10.1007/s10048-011-0297-2

  80. Heyden, A., Angenstein, F., Sallaz, M., Seidenbecher, C., Montag, D. (2008). Abnormal axonal guidance and brain anatomy in mouse mutants for the cell recognition molecules close homolog of L1 and NgCAM-related cell adhesion molecule. Neuroscience, 155, 221–233. https://doi.org/10.1016/j.neuroscience.2008.04.080

  81. Ishiguro, H., Liu, Q. R., Gong, J.-P., Hall, F. S., Ujike, H., Morales, M., et al. (2006). NrCAM in addiction vulnerability: Positional cloning, drug-regulation, haplotype-specific expression and altered drug reward in knockout mice. Neuropsychopharmacology, 31, 572–584. https://doi.org/10.1038/sj.npp.1300855

  82. Sytnyk, V., Leshchyns’ka, I., & Schachner, M. (2017). Neural cell adhesion molecules of the immunoglobulin superfamily regulate synapse formation, maintenance, and function. Trends in Neurosciences, 40, 295–308. https://doi.org/10.1016/J.TINS.2017.03.003

    Article  CAS  PubMed  Google Scholar 

  83. Bonora, E., Lamb, J. A., Barnby, G., Nuala, Sykes., Moberly, T., Beyer, K. S., et al. (2005). Mutation screening and association analysis of six candidate genes for autism on chromosome 7q. European Journal of Human Genetics, 13, 198–207. https://doi.org/10.1038/sj.ejhg.5201315

  84. Marui, T., Funatogawa, I., Koishi, S., et al. (2009). Association of the neuronal cell adhesion molecule (NrCAM) gene variants with autism. The International Journal of Neuropsychopharmacology, 12, 1. https://doi.org/10.1017/S1461145708009127

  85. Sakurai, T., Ramoz, N., Reichert, J. G., Corwin, T. E., Kryzak, L., Smith., C. J., et al. (2006). Association analysis of the NrCAM gene in autism and in subsets of families with severe obsessive-compulsive or self-stimulatory behaviors. Psychiatric Genetics, 16, 251–257. https://doi.org/10.1097/01.ypg.0000242196.81891.c9

  86. Sakurai, T., Lustig, M., Babiarz, J., Furley, A. J. W., Tait, S., Brophy, P. J., et al. (2001). Overlapping functions of the cell adhesion molecules Nr-CAM and L1 in cerebellar granule cell development. The Journal of Cell Biology, 154, 1259–1273. https://doi.org/10.1083/jcb.200104122

  87. Matzel, L. D., Babiarz, J., Townsend, D. A., Grossman H. C., Grumet, M., et al. (2008). Neuronal cell adhesion molecule deletion induces a cognitive and behavioral phenotype reflective of impulsivity. Genes, Brain and Behavior, 7, 470–480. https://doi.org/10.1111/j.1601-183X.2007.00382.x

  88. Moy, S. S., Nonneman, R. J., Young, N. B., et al. (2009). Impaired sociability and cognitive function in NrCAM-null mice. Behavioural Brain Research, 205, 123–131. https://doi.org/10.1016/j.bbr.2009.06.021

  89. Mohan, V., Sullivan, C. S., Guo, J., Wade, S. D., Majumder, S., Agarwal, A., et al. (2018). Temporal regulation of dendritic spines through NrCAM-Semaphorin3F receptor signaling in developing cortical pyramidal neurons. Cerebral Cortex. https://doi.org/10.1093/cercor/bhy004

  90. Demyanenko, G. P., Riday, T. T., Tran, T. S., Dalal, J., Darnell, E. P., Brennaman, L. H., et al. (2011). NrCAM deletion causes topographic mistargeting of thalamocortical axons to the visual cortex and disrupts visual acuity. Journal of Neuroscience, 31(4), 1545–1558. https://doi.org/10.1523/JNEUROSCI.4467-10.2011.NrCAM

  91. Shapiro, L., Love, J., & Colman, D. R. (2007). Adhesion molecules in the nervous system: Structural insights into function and diversity. Annual Review of Neuroscience, 30, 451–474. https://doi.org/10.1146/annurev.neuro.29.051605.113034

    Article  CAS  PubMed  Google Scholar 

  92. Dalva, M. B., McClelland, A. C., & Kayser, M. S. (2007). Cell adhesion molecules: Signalling functions at the synapse. Nature Reviews Neuroscience, 8, 206–220. https://doi.org/10.1038/nrn2075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hirano, S., Suzuki, S. T., & Redies, C. (2003). The cadherin superfamily in neural development: Diversity, function and interaction with other molecules. Frontiers in Bioscience, 8, d306–d355.

    Article  CAS  PubMed  Google Scholar 

  94. Hirano, S., & Takeichi, M. (2012). Cadherins in brain morphogenesis and wiring. Physiological Reviews, 92, 597–634. https://doi.org/10.1152/physrev.00014.2011

    Article  CAS  PubMed  Google Scholar 

  95. El-Amraoui, A., & Petit, C. (2010). Cadherins as targets for genetic diseases. Cold Spring Harbor Perspectives in Biology, 2, a003095–a003095. https://doi.org/10.1101/cshperspect.a003095

    Article  PubMed  PubMed Central  Google Scholar 

  96. Hawi, Z., Tong, J., Dark, C., Yates, H.,  Johnson, B.,  Bellgrove, M.A.,  et al. (2018). The role of cadherin genes in five major psychiatric disorders: A literature update. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 177, 168–180. https://doi.org/10.1002/ajmg.b.32592

  97. Redies, C., Hertel, N., & Hübner, C. A. (2012). Cadherins and neuropsychiatric disorders. Brain Research, 1470, 130–144. https://doi.org/10.1016/j.brainres.2012.06.020

    Article  CAS  PubMed  Google Scholar 

  98. Willemsen, M. H., Fernandez, B. A., Bacino, C. A., Gerkes, E., de Brouwer, A. P., Pfundt, R., et al. (2010). Identification of ANKRD11 and ZNF778 as candidate genes for autism and variable cognitive impairment in the novel 16q24.3 microdeletion syndrome. European Journal of Human Genetics, 18, 429–435. https://doi.org/10.1038/ejhg.2009.192

  99. O’Roak, B. J., Vives, L., Girirajan, S., Karakoc, E., Krumm, N., Coe, B. P., et al. (2012). Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations. Nature, 485, 246–250. https://doi.org/10.1038/nature10989

  100. Pagnamenta, A. T., Khan, H., Walker, S., Gerrelli, D., Wing, K., Bonaglia, M. C., et al. (2011). Rare familial 16q21 microdeletions under a linkage peak implicate cadherin 8 (CDH8) in susceptibility to autism and learning disability. Journal of Medical Genetics, 48, 48–54. https://doi.org/10.1136/jmg.2010.079426

  101. Wang, K., Zhang, H., Ma, D., Bucan, M., Glessner, J. T., Abrahams, B. S., et al. (2009). Common genetic variants on 5p14.1 associate with autism spectrum disorders. Nature, 459, 528–533. https://doi.org/10.1038/nature07999

  102. Chapman, N. H., Estes, A., Munson, J., Bernier, R., Webb, S. J., Rothstein, J. H., et al. (2011). Genome-scan for IQ discrepancy in autism: Evidence for loci on chromosomes 10 and 16. Human Genetics, 129, 59–70. https://doi.org/10.1007/s00439-010-0899-z

  103. Camacho, A., Simón, R., Sanz, R., Viñuela, A., Martínez-Salio, A., Mateos, F., et al. (2012). Cognitive and behavioral profile in females with epilepsy with PDCH19 mutation: Two novel mutations and review of the literature. Epilepsy & Behavior, 24, 134–137. https://doi.org/10.1016/J.YEBEH.2012.02.023

  104. Depienne, C., Trouillard, O., Saint-Martin, C., Gourfinkel-An, I., Bouteiller, D., Carpentier, W., et al. (2009). Spectrum of SCN1A gene mutations associated with Dravet syndrome: Analysis of 333 patients. Journal of Medical Genetics, 46, 183–191. https://doi.org/10.1136/jmg.2008.062323

  105. Ji, L., Chauhan, A., Brown, W. T., & Chauhan, V. (2009). Increased activities of Na+/K+-ATPase and Ca2+/Mg2+-ATPase in the frontal cortex and cerebellum of autistic individuals. Life Sciences, 85, 788–793. https://doi.org/10.1016/j.lfs.2009.10.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Li, B.-M., Liu, X.-R., Yi, Y.-H., Deng, Y. H., Su, T., Zou, X., et al. (2011). Autism in Dravet syndrome: Prevalence, features, and relationship to the clinical characteristics of epilepsy and mental retardation. Epilepsy & Behavior, 21, 291–295. https://doi.org/10.1016/j.yebeh.2011.04.060

  107. Weiss, L. A., Escayg, A., Kearney, J. A., Trudeau, M., MacDonald, B.T., Mori, M., et al. (2003). Sodium channels SCN1A, SCN2A and SCN3A in familial autism. Molecular Psychiatry, 8, 186–194. https://doi.org/10.1038/sj.mp.4001241

  108. Han, S., Tai, C., Westenbroek, R. E., Yu, F. H., Cheah, C. S., Potter, G. B., et al. (2012). Autistic-like behaviour in Scn1a+/− mice and rescue by enhanced GABA-mediated neurotransmission. Nature, 489, 385–390. https://doi.org/10.1038/nature11356

  109. Harkin, L. A., McMahon, J. M., Iona, X., Dibbens, L., Pelekanos, J. L., Zuberi, S. M., et al. (2007). The spectrum of SCN1A-related infantile epileptic encephalopathies. Brain, 130, 843–852. https://doi.org/10.1093/brain/awm002

  110. Ben-Shalom, R., Keeshen, C. M., Berrios, K. N., An, J. Y., Sanders, S., & Bender, K. (2017). Opposing effects on NaV 1.2 function underlie differences between SCN2A variants observed in individuals with autism spectrum disorder or infantile seizures. Biological Psychiatry, 82, 224–232. https://doi.org/10.1016/j.biopsych.2017.01.009.Opposing

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sanders, S. J., Murtha, M. T., Gupta, A. R., Murdoch, J. D., Raubeson, M. J., Willsey A. J. et al. (2012). De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature, 485, 237–241. https://doi.org/10.1038/nature10945

  112. De Rubeis, S., He, X., Goldberg, A. P., Poultney, C. S., Samocha, K., Cicek, A. E., et al. (2014). Synaptic, transcriptional and chromatin genes disrupted in autism. Nature, 515, 209–215. https://doi.org/10.1038/nature13772

  113. Kabir, Z. D., Martínez-Rivera, A., & Rajadhyaksha, A. M. (2017). From gene to behavior: L-type calcium channel mechanisms underlying neuropsychiatric symptoms. Neurotherapeutics, 14, 588–613. https://doi.org/10.1007/s13311-017-0532-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Liao, P., & Soong, T. W. (2010). CaV1.2 channelopathies: From arrhythmias to autism, bipolar disorder, and immunodeficiency. Pflügers Archiv - European Journal of Physiology, 460, 353–359. https://doi.org/10.1007/s00424-009-0753-0

    Article  CAS  PubMed  Google Scholar 

  115. Smith, M., Flodman, P. L., Gargus, J. J., Simon, M. T., Verrell, K.,  Haas, R., et al. (2012). Mitochondrial and ion channel gene alterations in autism. Biochimica et Biophysica Acta - Bioenergetics, 1817, 1796–1802. https://doi.org/10.1016/j.bbabio.2012.04.004

  116. Splawski, I., Yoo, D. S., Stotz, S. C., Cherry, A., Clapham, D. E., Keating, M. T.  (2006). CACNA1H mutations in autism spectrum disorders. The Journal of Biological Chemistry, 281, 22085–22091. https://doi.org/10.1074/jbc.M603316200

  117. Breitenkamp, A. F. S., Matthes, J., Nass, R. D., Sinzig, J.,  Lehmkuhl, G., Nürnberg, P., et al. (2014). Rare mutations of CACNB2 found in autism spectrum disease-affected families alter calcium channel function. PLoS One, 9. https://doi.org/10.1371/journal.pone.0095579

  118. Splawski, I., Timothy, K. W., Sharpe, L. M., Decher, N., Kumar, P., Bloiseet R., et al. (2004). CaV1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell, 119, 19–31. https://doi.org/10.1016/j.cell.2004.09.011

  119. Strom, S. P., Stone, J. L., Ten Bosch, J. R., Merriman, B., Cantor, R. M., Geschwind D. H., et al. (2010). High-density SNP association study of the 17q21 chromosomal region linked to autism identifies CACNA1G as a novel candidate gene. Molecular Psychiatry, 15, 996–1005. https://doi.org/10.1038/mp.2009.41

  120. D’Adamo, M. C., Catacuzzeno, L., Di Giovanni, G., Franciolini., F & Pessia M., et al. (2013). K+ channelepsy: Progress in the neurobiology of potassium channels and epilepsy. Frontiers in Cellular Neuroscience, 7, 134. https://doi.org/10.3389/fncel.2013.00134

  121. Sicca, F., Imbrici, P., D’Adamo, M. C., Moro, F., Bonatti, F., Brovedani, P., et al. (2011). Autism with seizures and intellectual disability: Possible causative role of gain-of-function of the inwardly-rectifying K+ channel Kir4.1. Neurobiology of Disease, 43, 239–247. https://doi.org/10.1016/J.NBD.2011.03.016

  122. Verpelli, C., Schmeisser, M. J., Sala, C., & Boeckers, T. M. (2012). Scaffold proteins at the postsynaptic density. Advances in Experimental Medicine and Biology, 29–61.

    Google Scholar 

  123. Sheng, M., & Kim, E. (2000). The Shank family of scaffold proteins. Journal of Cell Science, 113.

    Google Scholar 

  124. Monteiro, P., & Feng, G. (2017). SHANK proteins: Roles at the synapse and in autism spectrum disorder. Nature Reviews Neuroscience, 18, 147–157. https://doi.org/10.1038/nrn.2016.183

    Article  CAS  PubMed  Google Scholar 

  125. Hung, A. Y., Futai, K., Sala, C., Valtschanoff, J. G., Ryu, J., Woodworth, M. A., et al. (2008). Smaller dendritic spines, weaker synaptic transmission, but enhanced spatial learning in mice lacking Shank1. The Journal of Neuroscience, 28, 1697–1708. https://doi.org/10.1523/JNEUROSCI.3032-07.2008

  126. Silverman, J. L., Yang, M., Lord, C., & Crawley, J. N. (2010). Behavioural phenotyping assays for mouse models of autism. Nature Reviews Neuroscience, 11, 490–502. https://doi.org/10.1038/nrn2851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Sungur, A. Ö., Jochner, M. C. E., Harb, H., Rust, M. B. (2017). Aberrant cognitive phenotypes and altered hippocampal BDNF expression related to epigenetic modifications in mice lacking the post-synaptic scaffolding protein SHANK1: Implications for autism spectrum disorder. Hippocampus, 27, 906–919. https://doi.org/10.1002/hipo.22741

  128. Modi, M. E., Brooks, J. M., Guilmette, E. R., Mercedes, B., Radka G., Dominik R., Hyperactivity and hypermotivation associated with increased striatal mGluR1 signaling in a Shank2 rat model of autism. Frontiers in Molecular Neuroscience, 11, 107. https://doi.org/10.3389/FNMOL.2018.00107

  129. Won, H., Lee, H.-R., Gee, H. Y., Mah, W., Kim, J. I., Lee, J., et al. (2012). Autistic-like social behaviour in Shank2-mutant mice improved by restoring NMDA receptor function. Nature, 486, 261–265. https://doi.org/10.1038/nature11208

  130. Boccuto, L., Lauri, M., Sarasua, S. M., Skinner, C. D., Buccella, D., Dwivedi, A., et al. (2013). Prevalence of SHANK3 variants in patients with different subtypes of autism spectrum disorders. European Journal of Human Genetics, 21, 310–316. https://doi.org/10.1038/ejhg.2012.175

  131. Qin, L., Ma, K., Wang, Z. J., Hu, Z., Matas, E., Wei, J., et al. (2018). Social deficits in Shank3-deficient mouse models of autism are rescued by histone deacetylase (HDAC) inhibition. Nature Neuroscience, 21, 564–575. https://doi.org/10.1038/s41593-018-0110-8

  132. Sarasua, S. M., Dwivedi, A., Boccuto, L., Rollins, J. D., Chen, C. F., Rogers, R. C., et al. (2011). Association between deletion size and important phenotypes expands the genomic region of interest in Phelan-McDermid syndrome (22q13 deletion syndrome). Journal of Medical Genetics, 48, 761–766. https://doi.org/10.1136/jmedgenet-2011-100225

  133. Sala, C., Piëch, V., Wilson, N. R., Passafaro, M., Liu, G., Sheng, M., et al. (2001). Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron, 31, 115–130.

    Google Scholar 

  134. Tu, J. C., Xiao, B., Naisbitt, S., Tu, J. C., Xiao, B., Naisbitt, S., et al. (1999). Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron, 23, 583–592.

    Google Scholar 

  135. Peça, J., Feliciano, C., Ting, J. T., Wang, W., Wells, M. F., Venkatraman, T. N., et al. (2011). Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature, 472, 437–442. https://doi.org/10.1038/nature09965

  136. Schmeisser, M. J., Ey, E., Wegener, S., Bockmann, J., Stempel, A. V., Kuebler, A., et al. (2012). Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature, 486, 256–260. https://doi.org/10.1038/nature11015

  137. Wang, X., McCoy, P. A., Rodriguiz, R. M., Pan, Y., Je, H. S., Roberts, A. C., et al. (2011). Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Human Molecular Genetics, 20, 3093–3108. https://doi.org/10.1093/hmg/ddr212

  138. Han, K., Holder Jr., J. L., Schaaf, C. P., Lu, H., Chen, H., Kang, H., et al. (2013). SHANK3 overexpression causes manic-like behaviour with unique pharmacogenetic properties. Nature, 503, 72–77. https://doi.org/10.1038/nature12630

  139. Avruch, J., Khokhlatchev, A., Kyriakis, J. M., Luo, Z., Tzivion, G., Vavvas, D., et al. (2001). Ras activation of the Raf kinase: Tyrosine kinase recruitment of the MAP kinase cascade. Recent Progress in Hormone Research, 56, 127–155.

    Google Scholar 

  140. Neale, B. M., Kou, Y., Liu, L., Samocha, K. E., Sabo, A., Lin, C. F., et al. (2012). Patterns and rates of exonic de novo mutations in autism spectrum disorders. Nature, 485, 242–245. https://doi.org/10.1038/nature11011

  141. Hay, N., & Sonenberg, N. (2004). Upstream and downstream of mTOR. Genes & Development, 18, 1926–1945. https://doi.org/10.1101/gad.1212704

    Article  CAS  Google Scholar 

  142. Hershey, J. W. B., Sonenberg, N., & Mathews, M. B. (2012). Principles of translational control: An overview. Cold Spring Harbor Perspectives in Biology, 4, a011528–a011528. https://doi.org/10.1101/cshperspect.a011528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Kumar, V., Zhang, M. X., Swank, M. W., Kunz, J., Wu, G. Y. (2005). Regulation of dendritic morphogenesis by Ras-PI3K-Akt-mTOR and Ras-MAPK signaling pathways. The Journal of Neuroscience, 25, 11288–11299. https://doi.org/10.1523/JNEUROSCI.2284-05.2005

  144. Banko, J. L., Poulin, F., Hou, L., DeMaria, C. T., Sonenberg, N., Klann E. (2005). The translation repressor 4E-BP2 is critical for eIF4F complex formation, synaptic plasticity, and memory in the hippocampus. The Journal of Neuroscience, 25, 9581–9590. https://doi.org/10.1523/JNEUROSCI.2423-05.2005

  145. Hou, L., Antion, M. D., Hu, D., Spencer, C. M., Paylor, R., Klann, E. (2006). Dynamic translational and proteasomal regulation of fragile X mental retardation protein controls mGluR-dependent long-term depression. Neuron, 51, 441–454. https://doi.org/10.1016/j.neuron.2006.07.005

  146. Hou, L., & Klann, E. (2004). Activation of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin signaling pathway is required for metabotropic glutamate receptor-dependent long-term depression. The Journal of Neuroscience, 24, 6352–6361. https://doi.org/10.1523/JNEUROSCI.0995-04.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Huber, K. M., Roder, J. C., & Bear, M. F. (2001). Chemical induction of mGluR5- and protein synthesis--dependent long-term depression in hippocampal area CA1. Journal of Neurophysiology, 86, 321–325.

    Article  CAS  PubMed  Google Scholar 

  148. Zheng, F., & Gallagher, J. P. (1992). Metabotropic glutamate receptors are required for the induction of long-term potentiation. Neuron, 9, 163–172. https://doi.org/10.1016/0896-6273(92)90231-2

    Article  CAS  PubMed  Google Scholar 

  149. Sarbassov, D. D., Ali, S. M., Kim, D. H., Guertin, D. A., Latek, R. R., Erdjument-Bromage, H., et al. (2004). Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Current Biology, 14, 1296–1302. https://doi.org/10.1016/j.cub.2004.06.054

  150. Jacinto, E. (2008). What controls TOR? IUBMB Life, 60, 483–496. https://doi.org/10.1002/iub.56

    Article  CAS  PubMed  Google Scholar 

  151. Kim, D. H., Sarbassov, D. D., Ali, S. M., King, J. E., Latek, R. R., Erdjument-Bromage, H., et al. (2002). mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell, 110, 163–175.

    Google Scholar 

  152. Costa-Mattioli, M., Sossin, W. S., Klann, E., & Sonenberg, N. (2009). Translational control of long-lasting synaptic plasticity and memory. Neuron, 61, 10–26. https://doi.org/10.1016/j.neuron.2008.10.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Proud, C. G. (2009). mTORC1 signaling and mRNA translation: Figure 1. Biochemical Society Transactions, 37, 227–231. https://doi.org/10.1042/BST0370227

    Article  CAS  PubMed  Google Scholar 

  154. Li, J., Yen, C., Liaw, D., Podsypanina, K., Bose, S., Wang, S. I., et al. (1997). PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science, 275, 1943–1947.

    Google Scholar 

  155. Endersby, R., & Baker, S. J. (2008). PTEN signaling in brain: Neuropathology and tumorigenesis. Oncogene, 27, 5416–5430. https://doi.org/10.1038/onc.2008.239

    Article  CAS  PubMed  Google Scholar 

  156. Pende, M., Um, S. H., Mieulet, V., Sticker, M., Goss, V. L., Mestan, J., et al. (2004). S6K1(-/-)/S6K2(-/-) mice exhibit perinatal lethality and rapamycin-sensitive 5′-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway. Molecular and Cellular Biology, 24, 3112–3124.

    Google Scholar 

  157. Chen, J., Alberts, I., & Li, X. (2014). Dysregulation of the IGF-I/PI3K/AKT/mTOR signaling pathway in autism spectrum disorders. International Journal of Developmental Neuroscience, 35, 35–41. https://doi.org/10.1016/j.ijdevneu.2014.03.006

    Article  CAS  PubMed  Google Scholar 

  158. Gkogkas, C. G., Khoutorsky, A., Ran, I., Rampakakis, E., Nevarko, T., Weatherill, D. B., et al. (2012). Autism-related deficits via dysregulated eIF4E-dependent translational control. Nature, 493, 371–377. https://doi.org/10.1038/nature11628

  159. Wang, H., & Doering, L. C. (2013). Reversing autism by targeting downstream mTOR signaling. Frontiers in Cellular Neuroscience, 7, 28. https://doi.org/10.3389/fncel.2013.00028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kelleher, R. J., & Bear, M. F. (2008). The autistic neuron: Troubled translation? Cell, 135, 401–406. https://doi.org/10.1016/j.cell.2008.10.017

    Article  CAS  PubMed  Google Scholar 

  161. Auerbach, B. D., Osterweil, E. K., & Bear, M. F. (2011). Mutations causing syndromic autism define an axis of synaptic pathophysiology. Nature, 480, 63–68. https://doi.org/10.1038/nature10658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Bourgeron, T. (2009). A synaptic trek to autism. Current Opinion in Neurobiology, 19, 231–234. https://doi.org/10.1016/j.conb.2009.06.003

    Article  CAS  PubMed  Google Scholar 

  163. Sawicka, K., & Zukin, R. S. (2012). Dysregulation of mTOR signaling in neuropsychiatric disorders: Therapeutic implications. Neuropsychopharmacology, 37, 305–306. https://doi.org/10.1038/npp.2011.210

    Article  CAS  PubMed  Google Scholar 

  164. Buxbaum, J. D., Cai, G., Chaste, P., Nygren, G., Goldsmith, J., Reichert, J., et al. (2007). Mutation screening of the PTEN gene in patients with autism spectrum disorders and macrocephaly. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 144B, 484–491. https://doi.org/10.1002/ajmg.b.30493

  165. Baker, P., Piven, J., & Sato, Y. (1998). Autism and tuberous sclerosis complex: Prevalence and clinical features. Journal of Autism and Developmental Disorders, 28, 279–285.

    Article  CAS  PubMed  Google Scholar 

  166. Kwon, C. H., Luikart, B. W., Powell, C. M., Zhou, J., Matheny, S. A., Zhang W., et al. (2006). Pten regulates neuronal arborization and social interaction in mice. Neuron, 50, 377–388. https://doi.org/10.1016/j.neuron.2006.03.023

  167. Wong, C. W., Or, P. M. Y., Wang, Y., Li, L., Li, J., Yan, M., et al. (2018). Identification of a PTEN mutation with reduced protein stability, phosphatase activity, and nuclear localization in Hong Kong patients with autistic features, neurodevelopmental delays, and macrocephaly. Autism Research. https://doi.org/10.1002/aur.1950

  168. Smalley, S. L. (1998). Autism and tuberous sclerosis. Journal of Autism and Developmental Disorders, 28, 407–414.

    Article  CAS  PubMed  Google Scholar 

  169. Smalley, S. L., Tanguay, P. E., Smith, M., & Gutierrez, G. (1992). Autism and tuberous sclerosis. Journal of Autism and Developmental Disorders, 22, 339–355.

    Article  CAS  PubMed  Google Scholar 

  170. Wiznitzer, M. (2004). Autism and tuberous sclerosis. Journal of Child Neurology, 19, 675–679. https://doi.org/10.1177/08830738040190090701

    Article  PubMed  Google Scholar 

  171. Lv, J. W., Cheng, T. L., Qiu, Z. L., & Zhou, W. H. (2013). Role of the PTEN signaling pathway in autism spectrum disorder. Neuroscience Bulletin, 29, 773–778. https://doi.org/10.1007/s12264-013-1382-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Meikle, L., Talos, D. M., Onda, H., Pollizzi, K., Rotenberg, A., Sahin, M., et al. (2007). A mouse model of tuberous sclerosis: Neuronal loss of Tsc1 causes dysplastic and ectopic neurons, reduced myelination, seizure activity, and limited survival. The Journal of Neuroscience, 27, 5546–5558. https://doi.org/10.1523/JNEUROSCI.5540-06.2007

  173. Zeng, L.-H., Rensing, N. R., Zhang, B., Gutmann, D. H., Gambello, M. J., Wong, M., et al. (2011). Tsc2 gene inactivation causes a more severe epilepsy phenotype than Tsc1 inactivation in a mouse model of tuberous sclerosis complex. Human Molecular Genetics, 20, 445–454. https://doi.org/10.1093/hmg/ddq491

  174. Richter, J. D., & Klann, E. (2009). Making synaptic plasticity and memory last: Mechanisms of translational regulation. Genes & Development, 23, 1–11. https://doi.org/10.1101/gad.1735809

    Article  CAS  Google Scholar 

  175. Richter, J. D., & Sonenberg, N. (2005). Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature, 433, 477–480. https://doi.org/10.1038/nature03205

    Article  CAS  PubMed  Google Scholar 

  176. Bourgeron, T. (2007). The possible interplay of synaptic and clock genes in autism spectrum disorders. Cold Spring Harbor Symposia on Quantitative Biology, 72, 645–654. https://doi.org/10.1101/sqb.2007.72.020

    Article  CAS  PubMed  Google Scholar 

  177. Neves-Pereira, M., Muller, B., Massie, D., Williams, J. H., O’Brien, P. C., Hughes, A., et al. (2009). Deregulation of EIF4E: A novel mechanism for autism. Journal of Medical Genetics, 46, 759–765. https://doi.org/10.1136/jmg.2009.066852

  178. Rubenstein, J. L. R., & Merzenich, M. M. (2003). Model of autism: Increased ratio of excitation/inhibition in key neural systems. Genes, Brain, and Behavior, 2, 255–267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Uhlhaas, P. J., & Singer, W. (2012). Neuronal dynamics and neuropsychiatric disorders: Toward a translational paradigm for dysfunctional large-scale networks. Neuron, 75, 963–980. https://doi.org/10.1016/j.neuron.2012.09.004

    Article  CAS  PubMed  Google Scholar 

  180. Santoro, M. R., Bray, S. M., & Warren, S. T. (2012). Molecular mechanisms of fragile X syndrome: A twenty-year perspective. Annual Review of Pathology: Mechanisms of Disease, 7, 219–245. https://doi.org/10.1146/annurev-pathol-011811-132457

    Article  CAS  Google Scholar 

  181. Wang, H., Kim, S. S., & Zhuo, M. (2010). Roles of fragile X mental retardation protein in dopaminergic stimulation-induced synapse-associated protein synthesis and subsequent α-amino-3-hydroxyl-5-methyl-4-isoxazole-4-propionate (AMPA) receptor internalization. The Journal of Biological Chemistry, 285, 21888–21901. https://doi.org/10.1074/jbc.M110.116293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Wang, T., Bray, S. M., & Warren, S. T. (2012). New perspectives on the biology of fragile X syndrome. Current Opinion in Genetics & Development, 22, 256–263. https://doi.org/10.1016/j.gde.2012.02.002

    Article  CAS  Google Scholar 

  183. Jacquemont, S., Hagerman, R. J., Hagerman, P. J., & Leehey, M. A. (2007). Fragile-X syndrome and fragile X-associated tremor/ataxia syndrome: Two faces of FMR1. Lancet Neurology, 6, 45–55. https://doi.org/10.1016/S1474-4422(06)70676-7

    Article  CAS  PubMed  Google Scholar 

  184. O’Donnell, W. T., & Warren, S. T. (2002). A decade of molecular studies of fragile X syndrome. Annual Review of Neuroscience, 25, 315–338. https://doi.org/10.1146/annurev.neuro.25.112701.142909

    Article  CAS  PubMed  Google Scholar 

  185. Napoli, I., Mercaldo, V., Boyl, P. P., Eleuteri, B., Zalfa, F., De Rubeis, S., et al. (2008). The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP. Cell, 134, 1042–1054. https://doi.org/10.1016/j.cell.2008.07.031

  186. Schenck, A., Bardoni, B., Langmann, C., Harden, N., Mandel, J. L., Giangrande, A. (2003). CYFIP/Sra-1 controls neuronal connectivity in Drosophila and links the Rac1 GTPase pathway to the fragile X protein. Neuron, 38, 887–898.

    Google Scholar 

  187. Oguro-Ando, A., Rosensweig, C., Herman, E., Nishimura, Y., Werling, D., Bill, B. R., et al. (2015). Increased CYFIP1 dosage alters cellular and dendritic morphology and dysregulates mTOR. Molecular Psychiatry, 20, 1069–1078. https://doi.org/10.1038/mp.2014.124

  188. Narayanan, U., Nalavadi, V., Nakamoto, M., Thomas, G., Ceman, S., Bassell, G. J., et al. (2008). S6K1 phosphorylates and regulates Fragile X Mental Retardation Protein (FMRP) with the neuronal protein synthesis-dependent Mammalian Target of Rapamycin (mTOR) signaling cascade. The Journal of Biological Chemistry, 283, 18478–18482. https://doi.org/10.1074/jbc.C800055200

  189. Magdalon, J., Sánchez-Sánchez, S., Griesi-Oliveira, K., & Sertié, A. (2017). Dysfunctional mTORC1 signaling: A convergent mechanism between syndromic and nonsyndromic forms of autism spectrum disorder? International Journal of Molecular Sciences, 18, 659. https://doi.org/10.3390/ijms18030659

    Article  CAS  PubMed Central  Google Scholar 

  190. Sharma, A., Hoeffer, C. A., Takayasu, Y., Miyawaki, T., McBride, S. M., Klann, E. (2010). Dysregulation of mTOR signaling in fragile X syndrome. The Journal of Neuroscience, 30, 694–702. https://doi.org/10.1523/JNEUROSCI.3696-09.2010

  191. Eshraghi, A. A., Liu, G., Kay, S.-I. S., Eshraghi, R. S., Mittal, J., Moshiree, B., et al. (2018). Epigenetics and autism spectrum disorder: Is there a correlation? Frontiers in Cellular Neuroscience, 12, 78. https://doi.org/10.3389/fncel.2018.00078

  192. LaSalle, J. M. (2013). Epigenomic strategies at the interface of genetic and environmental risk factors for autism. Journal of Human Genetics, 58, 396–401. https://doi.org/10.1038/jhg.2013.49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Miyake, K., Hirasawa, T., Koide, T., & Kubota, T. (2012). Epigenetics in autism and other neurodevelopmental diseases. Advances in Experimental Medicine and Biology, 91–98.

    Google Scholar 

  194. Rangasamy, S., D’mello, S. R., & Narayanan, V. (2013). Epigenetics, autism spectrum, and neurodevelopmental disorders. Neurotherapeutics, 10(4), 742–756. https://doi.org/10.1007/s13311-013-0227-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Zhubi, A., Cook, E. H., Guidotti, A., & Grayson, D. R. (2014). Epigenetic mechanisms in autism spectrum disorder. International Review of Neurobiology, 203–244.

    Google Scholar 

  196. Schaevitz, L. R., & Berger-Sweeney, J. E. (2012). Gene-environment interactions and epigenetic pathways in autism: The importance of one-carbon metabolism. ILAR Journal, 53, 322–340. https://doi.org/10.1093/ilar.53.3-4.322

    Article  CAS  PubMed  Google Scholar 

  197. Volk, H. E., Lurmann, F., Penfold, B., Hertz-Picciotto, I., McConnell, R. (2013). Traffic-related air pollution, particulate matter, and autism. JAMA Psychiatry, 70, 71. https://doi.org/10.1001/jamapsychiatry.2013.266

  198. Rasalam, A. D., Hailey, H., Williams, J. H. G., Moore, S. J., Turnpenny, P. D., et al. (2005). Characteristics of fetal anticonvulsant syndrome associated autistic disorder. Developmental Medicine and Child Neurology, 47, 551–555.

    Google Scholar 

  199. Wolstenholme, J. T., Edwards, M., Shetty, S. R. J., Gatewood, J. D., Taylor, J. A., Rissman, E. F., et al. (2012). Gestational exposure to bisphenol A produces transgenerational changes in behaviors and gene expression. Endocrinology, 153, 3828–3838. https://doi.org/10.1210/en.2012-1195

  200. Kumsta, R., Hummel, E., Chen, F. S., & Heinrichs, M. (2013). Epigenetic regulation of the oxytocin receptor gene: Implications for behavioral neuroscience. Frontiers in Neuroscience, 7, 83. https://doi.org/10.3389/fnins.2013.00083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Lukas, M., & Neumann, I. D. (2013). Oxytocin and vasopressin in rodent behaviors related to social dysfunctions in autism spectrum disorders. Behavioural Brain Research, 251, 85–94. https://doi.org/10.1016/j.bbr.2012.08.011

    Article  CAS  PubMed  Google Scholar 

  202. Murakami, G., Hunter, R. G., Fontaine, C., Ribeiro, A., Pfaff, D. (2011). Relationships among estrogen receptor, oxytocin and vasopressin gene expression and social interaction in male mice. The European Journal of Neuroscience, 34, 469–477. https://doi.org/10.1111/j.1460-9568.2011.07761.x

  203. Veenema, A., & Neumann, I. (2008). Central vasopressin and oxytocin release: Regulation of complex social behaviours. In Advances in vasopressin and oxytocin - From genes to behaviour to disease (pp. 261–276). Elsevier.

    Google Scholar 

  204. Viberg, H., Mundy, W., & Eriksson, P. (2008). Neonatal exposure to decabrominated diphenyl ether (PBDE 209) results in changes in BDNF, CaMKII and GAP-43, biochemical substrates of neuronal survival, growth, and synaptogenesis. Neurotoxicology, 29, 152–159. https://doi.org/10.1016/j.neuro.2007.10.007

    Article  CAS  PubMed  Google Scholar 

  205. Ali, A., Cui, X., & Eyles, D. (2018). Developmental vitamin D deficiency and autism: Putative pathogenic mechanisms. The Journal of Steroid Biochemistry and Molecular Biology, 175, 108–118. https://doi.org/10.1016/j.jsbmb.2016.12.018

    Article  CAS  PubMed  Google Scholar 

  206. Whitehouse, A. J. O., Holt, B. J., Serralha, M., Holt, P. G., Hart, P. H., Kusel, M. M. (2013). Maternal vitamin D levels and the autism phenotype among offspring. Journal of Autism and Developmental Disorders, 43, 1495–1504. https://doi.org/10.1007/s10803-012-1676-8

  207. Vinkhuyzen, A. A. E., Eyles, D. W., Burne, T. H. J., Blanken, L. M. E., Kruithof C. J., Verhulst, F., et al. (2017). Gestational vitamin D deficiency and autism spectrum disorder. British Journal of Psychiatry Open, 3, 85–90. https://doi.org/10.1192/bjpo.bp.116.004077

  208. Baccarelli, A., & Bollati, V. (2009). Epigenetics and environmental chemicals. Current Opinion in Pediatrics, 21, 243–251.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Bahrami, A., Sadeghnia, H. R., Tabatabaeizadeh, S.-A., Bahrami-Taghanaki, H., Behboodi, N., Esmaeili, H., et al. (2018). Genetic and epigenetic factors influencing vitamin D status. Journal of Cellular Physiology, 233, 4033–4043. https://doi.org/10.1002/jcp.26216

  210. LaSalle, J. M. (2011). A genomic point-of-view on environmental factors influencing the human brain methylome. Epigenetics, 6, 862–869. https://doi.org/10.4161/EPI.6.7.16353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Fatemi, S. H., Snow, A. V., Stary, J. M., Araghi-Niknam, M., Reutiman, T.J., Suzanne Lee, et al. (2005). Reelin signaling is impaired in autism. Biological Psychiatry, 57, 777–787. https://doi.org/10.1016/j.biopsych.2004.12.018

  212. Siniscalco, D., Cirillo, A., Bradstreet, J. J., & Antonucci, N. (2013). Epigenetic findings in autism: New perspectives for therapy. International Journal of Environmental Research and Public Health, 10, 4261–4273. https://doi.org/10.3390/ijerph10094261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Zhu, L., Wang, X., Li, X.-L., Towers, A., Cao, X., Wang, P., et al. (2014). Epigenetic dysregulation of SHANK3 in brain tissues from individuals with autism spectrum disorders. Human Molecular Genetics, 23, 1563–1578. https://doi.org/10.1093/hmg/ddt547

  214. Behnia, F., Parets, S. E., Kechichian, T., Yin, H., Dutta, E. H., Saade, G. R., et al. (2015). Fetal DNA methylation of autism spectrum disorders candidate genes: Association with spontaneous preterm birth. American Journal of Obstetrics and Gynecology, 212, 533.e1–533.e9. https://doi.org/10.1016/j.ajog.2015.02.011

  215. Jack, A., Connelly, J. J., & Morris, J. P. (2012). DNA methylation of the oxytocin receptor gene predicts neural response to ambiguous social stimuli. Frontiers in Human Neuroscience, 6, 280. https://doi.org/10.3389/fnhum.2012.00280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Beri, S., Tonna, N., Menozzi, G., Clara Bonaglia, M. C., Sala, C., Giorda, R., et al. (2007). DNA methylation regulates tissue-specific expression of Shank3. Journal of Neurochemistry, 101, 1380–1391. https://doi.org/10.1111/j.1471-4159.2007.04539.x

  217. Durand, C. M., Betancur, C., Boeckers, T. M., Bockmann, J., Chaste, P., Fauchereau, F., et al. (2007). Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nature Genetics, 39, 25–27. https://doi.org/10.1038/ng1933

  218. Uchino, S., & Waga, C. (2013). SHANK3 as an autism spectrum disorder-associated gene. Brain Dev, 35, 106–110. https://doi.org/10.1016/j.braindev.2012.05.013

    Article  PubMed  Google Scholar 

  219. Ramaswami, G. (2018). Genetics of autism spectrum disorder. Handbook of Clinical Neurology, 147, 321–329. https://doi.org/10.1016/B978-0-444-63233-3.00021-X

    Article  PubMed  Google Scholar 

  220. García-Sáez, A. J. (2012). The secrets of the Bcl-2 family. Cell Death and Differentiation, 19, 1733–1740. https://doi.org/10.1038/cdd.2012.105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Nguyen, A., Rauch, T. A., Pfeifer, G. P., & Hu, V. W. (2010). Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain. The FASEB Journal, 24, 3036–3051. https://doi.org/10.1096/fj.10-154484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Boukhtouche, F., Vodjdani, G., Jarvis, C. I., Bakouche, J., Staels B.,  Mallet J., et al. (2006). Human retinoic acid receptor-related orphan receptor α1 overexpression protects neurones against oxidative stress-induced apoptosis. Journal of Neurochemistry, 96, 1778–1789. https://doi.org/10.1111/j.1471-4159.2006.03708.x

  223. Hu, V. W. (2012). Is retinoic acid-related orphan receptor-alpha (RORA) a target for gene–environment interactions contributing to autism? Neurotoxicology, 33, 1434–1435. https://doi.org/10.1016/J.NEURO.2012.07.009

    Article  CAS  PubMed  Google Scholar 

  224. Nardone, S., Sharan Sams, D., Reuveni, E., Getselter, D., Oron, O., Karpuj, M., et al. (2014). DNA methylation analysis of the autistic brain reveals multiple dysregulated biological pathways. Translational Psychiatry, 4, e433. https://doi.org/10.1038/tp.2014.70

  225. Berger, S. L. (2007). The complex language of chromatin regulation during transcription. Nature, 447, 407–412. https://doi.org/10.1038/nature05915

    Article  CAS  PubMed  Google Scholar 

  226. Akbarian, S., & Huang, H.-S. (2009). Epigenetic regulation in human brain—Focus on histone lysine methylation. Biological Psychiatry, 65, 198–203. https://doi.org/10.1016/j.biopsych.2008.08.015

    Article  CAS  PubMed  Google Scholar 

  227. Shulha, H. P., Cheung, I., Whittle, C., Wang, J., Virgil, D., Lin, C. L., et al. (2012). Epigenetic signatures of autism. Archives of General Psychiatry, 69, 314. https://doi.org/10.1001/archgenpsychiatry.2011.151

  228. Adegbola, A., Gao, H., Sommer, S., & Browning, M. (2008). A novel mutation inJARID1C/SMCX in a patient with autism spectrum disorder (ASD). American Journal of Medical Genetics - Part A, 146A, 505–511. https://doi.org/10.1002/ajmg.a.32142

    Article  CAS  PubMed  Google Scholar 

  229. Wang, H., Duclot, F., Liu, Y., Wang, Z., & Mohamed, Kabbaj. (2013). Histone deacetylase inhibitors facilitate partner preference formation in female prairie voles. Nature Neuroscience, 16, 919–924. https://doi.org/10.1038/nn.3420

  230. Sun, W., Poschmann, J., Cruz-Herrera del Rosario, R., Parikshak, N. N., Hajan H. S., Kumar, V., et al. (2016). Histone acetylome-wide association study of autism spectrum disorder. Cell, 167, 1385–1397.e11. https://doi.org/10.1016/j.cell.2016.10.031

  231. James, S. J., Shpyleva, S., Melnyk, S., Pavliv, O., Pogribny, I. P., (2013). Complex epigenetic regulation of Engrailed-2 (EN-2) homeobox gene in the autism cerebellum. Translational Psychiatry, 3, e232–e238. https://doi.org/10.1038/tp.2013.8

  232. Kalkbrenner, A. E., Windham, G. C., Serre, M. L., Akita, Y., Wang, X., Hoffman K., et al. (2015). Particulate matter exposure, prenatal and postnatal windows of susceptibility, and autism spectrum disorders. Epidemiology, 26, 30–42. https://doi.org/10.1097/EDE.0000000000000173

  233. Gekas, C., Dieterlen-Lièvre, F., Orkin, S. H., & Mikkola, H. K. A. (2005). The placenta is a niche for hematopoietic stem cells. Developmental Cell, 8, 365–375. https://doi.org/10.1016/j.devcel.2004.12.016

    Article  CAS  PubMed  Google Scholar 

  234. Patterson, P. H. (2009). Immune involvement in schizophrenia and autism: Etiology, pathology and animal models. Behavioural Brain Research, 204, 313–321. https://doi.org/10.1016/j.bbr.2008.12.016

    Article  CAS  PubMed  Google Scholar 

  235. Rhodes, K. E., Gekas, C., Wang, Y., Lux, C. T., Francis, C. S., Chan, D. N., et al. (2008). The emergence of hematopoietic stem cells is initiated in the placental vasculature in the absence of circulation. Cell Stem Cell, 2, 252–263. https://doi.org/10.1016/j.stem.2008.01.001

  236. Takeda, A. (2001). Zinc homeostasis and functions of zinc in the brain. BioMetals, 14, 343–351. https://doi.org/10.1023/A:1012982123386

    Article  CAS  PubMed  Google Scholar 

  237. Russo, A. J. (2011). Increased copper in individuals with autism normalizes post zinc therapy more efficiently in individuals with concurrent GI disease. Nutrition and Metabolic Insights, 4, 49–54. https://doi.org/10.4137/NMI.S6827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Yasuda, H., Yoshida, K., Yasuda, Y., & Tsutsui, T. (2011). Infantile zinc deficiency: Association with autism spectrum disorders. Scientific Reports, 1, 129. https://doi.org/10.1038/srep00129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Grabrucker, A. M., Knight, M. J., Proepper, C., Bockmann, J., Joubert, M., Rowan, M., et al. (2011). Concerted action of zinc and ProSAP/Shank in synaptogenesis and synapse maturation. The EMBO Journal, 30, 569–581. https://doi.org/10.1038/emboj.2010.336

  240. Cezar, L. C., Kirsten, T. B., da Fonseca, C. C. N., de Lima, A. P. N., Bernardi, M. M., Felicio, L. F. (2018). Zinc as a therapy in a rat model of autism prenatally induced by valproic acid. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 84, 173–180. https://doi.org/10.1016/J.PNPBP.2018.02.008

  241. Huang, Y. Z., Pan, E., Xiong, Z.-Q., & McNamara, J. O. (2008). Zinc-mediated transactivation of TrkB potentiates the hippocampal mossy fiber-CA3 pyramid synapse. Neuron, 57, 546–558. https://doi.org/10.1016/J.NEURON.2007.11.026

    Article  CAS  PubMed  Google Scholar 

  242. Nuttall, J. R., & Oteiza, P. I. (2012). Zinc and the ERK kinases in the developing brain. Neurotoxicity Research, 21, 128–141. https://doi.org/10.1007/s12640-011-9291-6

    Article  CAS  PubMed  Google Scholar 

  243. Rossignol, D. A., & Frye, R. E. (2011). Melatonin in autism spectrum disorders: A systematic review and meta-analysis. Developmental Medicine and Child Neurology, 53, 783–792. https://doi.org/10.1111/j.1469-8749.2011.03980.x

    Article  PubMed  Google Scholar 

  244. Veatch, O. J., Goldman, S. E., Adkins, K. W., & Malow, B. A. (2015). Melatonin in children with autism spectrum disorders: How does the evidence fit together? Journal of Nature and Science, 1, e125.

    PubMed  PubMed Central  Google Scholar 

  245. Rossignol, D. A., & Frye, R. E. (2012). A review of research trends in physiological abnormalities in autism spectrum disorders: Immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Molecular Psychiatry, 17, 389–401. https://doi.org/10.1038/mp.2011.165

    Article  CAS  PubMed  Google Scholar 

  246. Won, J., Jin, Y., Lee, T. H., Park, S., Lee, T. H., Lee S. R., et al. (2017). Melatonin as an interventional novel candidate for the individual with autistic fragile X syndrome in human

    Google Scholar 

  247. Gardener, H., Spiegelman, D., & Buka, S. L. (2009). Prenatal risk factors for autism: Comprehensive meta-analysis. The British Journal of Psychiatry, 195, 7–14. https://doi.org/10.1192/bjp.bp.108.051672

    Article  PubMed  PubMed Central  Google Scholar 

  248. Kinney, D. K., Munir, K. M., Crowley, D. J., & Miller, A. M. (2008). Prenatal stress and risk for autism. Neuroscience and Biobehavioral Reviews, 32, 1519–1532. https://doi.org/10.1016/j.neubiorev.2008.06.004

    Article  PubMed  PubMed Central  Google Scholar 

  249. Charil, A., Laplante, D. P., Vaillancourt, C., & King, S. (2010). Prenatal stress and brain development. Brain Research Reviews, 65, 56–79. https://doi.org/10.1016/J.BRAINRESREV.2010.06.002

    Article  PubMed  Google Scholar 

  250. Durkin, M. S., Maenner, M. J., Newschaffer, C. J., Lee, L. C., Cunniff, C. M., Daniels, J. L., et al. (2008). Advanced parental age and the risk of autism spectrum disorder. American Journal of Epidemiology, 168, 1268–1276. https://doi.org/10.1093/aje/kwn250

  251. Reichenberg, A., Gross, R., Weiser, M., Bresnahan, M., Silverman, J., Harlap, S., et al. (2006). Advancing paternal age and autism. Archives of General Psychiatry, 63, 1026. https://doi.org/10.1001/archpsyc.63.9.1026

  252. Chandley, A. C. (1991). On the parental origin of de novo mutation in man. Journal of Medical Genetics, 28, 217–223. https://doi.org/10.1136/JMG.28.4.217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Bennett, G. D., Wlodarczyk, B., Calvin, J. A., Craig, J. C., Finnell, R. H. (2000). Valproic acid-induced alterations in growth and neurotrophic factor gene expression in murine embryos [corrected]. Reproductive Toxicology, 14, 1–11. https://doi.org/10.1016/S0890-6238(99)00064-7

  254. Du, L., Zhao, G., Duan, Z., & Li, F. (2017). Behavioral improvements in a valproic acid rat model of autism following vitamin D supplementation. Psychiatry Research, 253, 28–32. https://doi.org/10.1016/j.psychres.2017.03.003

    Article  CAS  PubMed  Google Scholar 

  255. Kumar, H., & Sharma, B. (2016). Memantine ameliorates autistic behavior, biochemistry & blood brain barrier impairments in rats. Brain Research Bulletin, 124, 27–39. https://doi.org/10.1016/j.brainresbull.2016.03.013

    Article  CAS  PubMed  Google Scholar 

  256. Ornoy, A., Weinstein-Fudim, L., Tfilin, M., Ergaz, Z.,  Yanai, J., Szyf, M., et al. (2018). S-adenosyl methionine prevents ASD like behaviors triggered by early postnatal valproic acid exposure in very young mice. Neurotoxicology and Teratology. https://doi.org/10.1016/J.NTT.2018.01.005

  257. Kolozsi, E., Mackenzie, R. N., Roullet, F. I., de Catanzaro, D., Foster, J. A. (2009). Prenatal exposure to valproic acid leads to reduced expression of synaptic adhesion molecule neuroligin 3 in mice. Neuroscience, 163, 1201–1210. https://doi.org/10.1016/J.NEUROSCIENCE.2009.07.021

  258. Smithells, R. W., & Newman, C. G. (1992). Recognition of thalidomide defects. Journal of Medical Genetics, 29, 716–723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Kumar, V., Harjai, K., & Chhibber, S. (2010). Thalidomide treatment modulates macrophage pro-inflammatory function and cytokine levels in Klebsiella pneumoniae B5055 induced pneumonia in BALB/c mice. International Immunopharmacology, 10, 777–783. https://doi.org/10.1016/J.INTIMP.2010.04.008

    Article  CAS  PubMed  Google Scholar 

  260. Roberts, E. M., English, P. B., Grether, J. K., Windham, G. C., Somberg, L., & Wolff, C. (2007). Maternal residence near agricultural pesticide applications and autism spectrum disorders among children in the California Central Valley. Environmental Health Perspectives, 115, 1482–1489. https://doi.org/10.1289/ehp.10168

  261. Kinney, D. K., Barch, D. H., Chayka, B., Napoleon, S., Munir, K. M. (2010). Environmental risk factors for autism: Do they help cause de novo genetic mutations that contribute to the disorder? Medical Hypotheses, 74, 102–106. https://doi.org/10.1016/j.mehy.2009.07.052

  262. Windham, G. C., Zhang, L., Gunier, R., Croen, L. A., Grether, J. K. (2006). Autism spectrum disorders in relation to the distribution of hazardous air pollutants in the San Francisco Bay Area. Environmental Health Perspectives, 114, 1438–1444. https://doi.org/10.1289/ehp.9120

  263. Bagasra, O., Golkar, Z., Garcia, M., Rice, L. N., Pace, D. G. (2013). Role of perfumes in pathogenesis of Autism. Medical Hypotheses, 80, 795–803. https://doi.org/10.1016/J.MEHY.2013.03.014

  264. Sealey, L. A., Hughes, B. W., Sriskanda, A. N., Guest J. R., Gibson, A. D., Johnson-Williams L., et al. (2016). Environmental factors in the development of autism spectrum disorders. Environment International, 88, 288–298. https://doi.org/10.1016/J.ENVINT.2015.12.021

  265. Shaw, W. (2017). Elevated urinary glyphosate and clostridia metabolites with altered dopamine metabolism in triplets with autistic spectrum disorder or suspected seizure disorder: A case study. Integrative Medicine (Encinitas), 16, 50–57.

    Google Scholar 

  266. Mold, M., Umar, D., King, A., & Exley, C. (2018). Aluminium in brain tissue in autism. Journal of Trace Elements in Medicine and Biology, 46, 76–82. https://doi.org/10.1016/j.jtemb.2017.11.012

    Article  CAS  PubMed  Google Scholar 

  267. Kim, S. M., Han, D. H., Lyoo, H. S., Min, K. J., Kim, K. H., Renshaw, P. (2010). Exposure to environmental toxins in mothers of children with autism spectrum disorder. Psychiatry Investigation, 7, 122–127. https://doi.org/10.4306/pi.2010.7.2.122

  268. Cristiano, C., Lama, A., Lembo, F., Mollica, M. P., Calignano, A., & Raso G. M. (2018). Interplay between peripheral and central inflammation in autism spectrum disorders: Possible nutritional and therapeutic strategies. Frontiers in Physiology, 9, 184. https://doi.org/10.3389/fphys.2018.00184

  269. Vuong, H. E., & Hsiao, E. Y. (2017). Emerging roles for the gut microbiome in autism spectrum disorder. Biological Psychiatry, 81, 411–423. https://doi.org/10.1016/J.BIOPSYCH.2016.08.024

    Article  PubMed  Google Scholar 

  270. Bhandari, R., & Kuhad, A. (2015). Neuropsychopharmacotherapeutic efficacy of curcumin in experimental paradigm of autism spectrum disorders. Life Sciences, 141, 156–169. https://doi.org/10.1016/j.lfs.2015.09.012

    Article  CAS  PubMed  Google Scholar 

  271. Bhandari, R., & Kuhad, A. (2017). Resveratrol suppresses neuroinflammation in the experimental paradigm of autism spectrum disorders. Neurochemistry International, 103, 8–23. https://doi.org/10.1016/j.neuint.2016.12.012

    Article  CAS  PubMed  Google Scholar 

  272. Choi, J., Lee, S., Won, J., Jin, Y., Hong, Y., Hur, T. Y., et al. (2018). Pathophysiological and neurobehavioral characteristics of a propionic acid-mediated autism-like rat model. PLoS One, 13, e0192925. https://doi.org/10.1371/journal.pone.0192925

  273. Frye, R. E., Melnyk, S., & MacFabe, D. F. (2013). Unique acyl-carnitine profiles are potential biomarkers for acquired mitochondrial disease in autism spectrum disorder. Translational Psychiatry, 3, e220. https://doi.org/10.1038/tp.2012.143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Macfabe, D. F. (2012). Short-chain fatty acid fermentation products of the gut microbiome: Implications in autism spectrum disorders. Microbial Ecology in Health and Disease, 23. https://doi.org/10.3402/mehd.v23i0.19260

  275. Ha, H. T. T., Leal-Ortiz, S., Lalwani, K., Kiyonaka, S., Hamachi, I., Mysore, S. P.,  Montgomery, J. M., et al. (2018). Shank and zinc mediate an AMPA receptor subunit switch in developing neurons. Frontiers in Molecular Neuroscience, 11, 405. https://doi.org/10.3389/fnmol.2018.00405

  276. Hershfinkel, M. (2014). The zinc-sensing receptor, ZnR/GPR39: Signaling and significance. In Zinc signals in cellular functions and disorders (pp. 111–133). Tokyo: Springer.

    Google Scholar 

  277. Goines, P. E., & Ashwood, P. (2013). Cytokine dysregulation in autism spectrum disorders (ASD): Possible role of the environment. Neurotoxicology and Teratology, 36, 67–81. https://doi.org/10.1016/j.ntt.2012.07.006.Cytokine

    Article  CAS  PubMed  Google Scholar 

  278. Pickering, M., Cumiskey, D., & O’Connor, J. J. (2005). Actions of TNF-α on glutamatergic synaptic transmission in the central nervous system. Experimental Physiology, 90, 663–670. https://doi.org/10.1113/expphysiol.2005.030734

    Article  CAS  PubMed  Google Scholar 

  279. Ohja, K., Gozal, E., Fahnestock, M., Cai, L., Cai, J., Freedmanet J. H., et al. (2017). Neuroimmunologic and neurotrophic interactions in autism spectrum disorders: Relationship to neuroinflammation. Neuromolecular Medicine, 1. https://doi.org/10.1007/s12017-018-8488-8

  280. Zeidán-Chuliá, F., Salmina, A. B., Malinovskaya, N. A., Noda, M., Verkhratsky, A., Moreira, J. C. (2014). The glial perspective of autism spectrum disorders. Neuroscience and Biobehavioral Reviews, 38, 160–172. https://doi.org/10.1016/j.neubiorev.2013.11.008

  281. Ozawa, S., Kamiya, H., & Tsuzuki, K. (1998). Glutamate receptors in the mammalian central nervous system. Progress in Neurobiology, 54, 581–618. https://doi.org/10.1016/S0301-0082(97)00085-3

    Article  CAS  PubMed  Google Scholar 

  282. Bauman, M. L. (2010). Medical comorbidities in autism: Challenges to diagnosis and treatment. Neurotherapeutics, 7, 320–327. https://doi.org/10.1016/j.nurt.2010.06.001

    Article  PubMed  PubMed Central  Google Scholar 

  283. Valiente-Pallejà, A., Torrell, H., Muntané, G., Cortés, M. J., Martínez-Leal, R., Abasolo, N., et al. (2018). Genetic and clinical evidence of mitochondrial dysfunction in autism spectrum disorder and intellectual disability. Human Molecular Genetics, 27, 891–900. https://doi.org/10.1093/hmg/ddy009

  284. Li, X., Chauhan, A., Sheikh, A. M., Patil, S., Chauhan, V., Li, X. M., et al. (2009). Elevated immune response in the brain of autistic patients. Journal of Neuroimmunology, 207, 111–116. https://doi.org/10.1016/j.jneuroim.2008.12.002

  285. Ballas, N., Lioy, D. T., Grunseich, C., & Mandel, G. (2009). Non-cell autonomous influence of MeCP2-deficient glia on neuronal dendritic morphology. Nature Neuroscience, 12, 311–317. https://doi.org/10.1038/nn.2275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Lull, M. E., & Block, M. L. (2010). Microglial activation and chronic neurodegeneration. Neurotherapeutics, 7, 354–365. https://doi.org/10.1016/j.nurt.2010.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Mazahery, H., Stonehouse, W., Delshad, M., Kruger, M. C., Conlon, C. A., Beck, K. L., et al. (2017). Relationship between long chain n-3 polyunsaturated fatty acids and autism spectrum disorder: Systematic review and meta-analysis of case-control and randomised controlled trials. Nutrients, 9, 155. https://doi.org/10.3390/nu9020155

  288. Hertz, L., Dringen, R., Schousboe, A., & Robinson, S. R. (1999). Astrocytes: Glutamate producers for neurons. Journal of Neuroscience Research, 57, 417–428.

    Article  CAS  PubMed  Google Scholar 

  289. Iadecola, C., & Nedergaard, M. (2007). Glial regulation of the cerebral microvasculature. Nature Neuroscience, 10, 1369–1376. https://doi.org/10.1038/nn2003

    Article  CAS  PubMed  Google Scholar 

  290. Wang, D., & Bordey, A. (2008). The astrocyte odyssey. Progress in Neurobiology, 86, 342–367. https://doi.org/10.1016/j.pneurobio.2008.09.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Li, X., Bijur, G. N., & Jope, R. S. (2002). Glycogen synthase kinase-3beta, mood stabilizers, and neuroprotection. Bipolar Disorders, 4, 137–144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  292. Carmody, D. P., & Lewis, M. (2010). Regional white matter development in children with autism spectrum disorders. Developmental Psychobiology, 52, 755–763. https://doi.org/10.1002/dev.20471

    Article  PubMed  Google Scholar 

  293. Corrigan, N. M., Shaw, D. W. W., Estes, A. M., Todd L, R., Jeff, M., Friedman, S. D., et al. (2013). Atypical developmental patterns of brain chemistry in children with autism spectrum disorder. JAMA Psychiatry, 70, 964. https://doi.org/10.1001/jamapsychiatry.2013.1388

  294. Horder, J., Lavender, T., Mendez, M. A., O’Gorman, R., Daly, E., Craig, M. C., et al. (2013). Reduced subcortical glutamate/glutamine in adults with autism spectrum disorders: A [1H]MRS study. Translational Psychiatry, 3, e279. https://doi.org/10.1038/tp.2013.53

  295. Stephenson, D. T., O’Neill, S. M., Narayan, S., Tiwari, A., Arnold, E., Samaroo, H. D., et al. (2011). Histopathologic characterization of the BTBR mouse model of autistic-like behavior reveals selective changes in neurodevelopmental proteins and adult hippocampal neurogenesis. Molecular Autism, 2, 7. https://doi.org/10.1186/2040-2392-2-7

  296. Morgan, J. T., Chana, G., Pardo, C. A., Achim, C., Semendeferi, K., Buckwalter, J., et al. (2010). Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biological Psychiatry, 68, 368–376. https://doi.org/10.1016/j.biopsych.2010.05.024

  297. Suzuki, K., Sugihara, G., Ouchi, Y., Nakamura, K., Futatsubashi, M., Takebayashi, K., et al. (2013). Microglial activation in young adults with autism spectrum disorder. JAMA Psychiatry, 70, 49. https://doi.org/10.1001/jamapsychiatry.2013.272

  298. Vargas, D. L., Nascimbene, C., Krishnan, C., Zimmerman, A. W., Pardo, C. A. (2005). Neuroglial activation and neuroinflammation in the brain of patients with autism. Annals of Neurology, 57, 67–81. https://doi.org/10.1002/ana.20315

Download references

Acknowledgements

Research grants sanctioned by SERB, Department of Science & Technology (grant no SB/FT/LS-284/2012), All India Council of Technical Education (11-25/RIFD/CAYT/POL-II/2013-14) and University Grants Commission (20-29(12)/2012(BSR), New Delhi to Dr Anurag Kuhad are gratefully acknowledged. Senior Research Fellowship sanctioned by Indian Council of Medical Research, New Delhi to Ms. Ranjana Bhandari is also gratefully acknowledged.

Conflict of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhandari, R., Paliwal, J.K., Kuhad, A. (2020). Neuropsychopathology of Autism Spectrum Disorder: Complex Interplay of Genetic, Epigenetic, and Environmental Factors. In: Essa, M., Qoronfleh, M. (eds) Personalized Food Intervention and Therapy for Autism Spectrum Disorder Management. Advances in Neurobiology, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-30402-7_4

Download citation

Publish with us

Policies and ethics