Skip to main content

Model Selection for Monotonic Polynomial Item Response Models

  • Conference paper
  • First Online:
Quantitative Psychology (IMPS 2017, IMPS 2018)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 265))

Abstract

One flexible approach for item response modeling involves use of a monotonic polynomial in place of the linear predictor for commonly used parametric item response models. Since polynomial order may vary across items, model selection can be difficult. For polynomial orders greater than one, the number of possible order combinations increases exponentially with test length. I reframe this issue as a combinatorial optimization problem and apply an algorithm known as simulated annealing to aid in finding a suitable model. Simulated annealing resembles Metropolis-Hastings: A random perturbation of polynomial order for some item is generated and acceptance depends on the change in model fit and the current algorithm state. Simulations suggest that this approach is often a feasible way to select a better fitting model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability (pp. 395–479). Reading, MA: Addison-Wesley.

    Google Scholar 

  • Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: Application of an EM algorithm. Psychometrika, 46, 443–459.

    Article  MathSciNet  Google Scholar 

  • ÄŒerný, V. (1985). Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. Journal of Optimization Theory and Applications, 45, 41–51.

    Article  MathSciNet  MATH  Google Scholar 

  • Drezner, Z., & Marcoulides, G. A. (1999). Using simulated annealing for selection in multiple regression. Multiple Linear Regression Viewpoints, 25, 1–4.

    Google Scholar 

  • Duncan, K. A., & MacEachern, S. N. (2013). Nonparametric Bayesian modeling of item response curves with a three-parameter logistic prior mean. In M. C. Edwards & R. C. MacCallum (Eds.), Current topics in the theory and application of latent variable models (pp. 108–125). New York, NY: Routledge.

    Google Scholar 

  • Edwards, M. C., Flora, D. B., & Thissen, D. (2012). Multistage computerized adaptive testing with uniform item exposure. Applied Measurement in Education, 25, 118–114.

    Article  Google Scholar 

  • Falk, C. F. (2018). A monotonic polynomial graded response model. Presentation at the International Test Commission Conference, Montreal, Canada.

    Google Scholar 

  • Falk, C. F., & Cai, L. (2016a). Maximum marginal likelihood estimation of a monotonic polynomial generalized partial credit model with applications to multiple group analysis. Psychometrika, 81, 434–460.

    Article  MathSciNet  MATH  Google Scholar 

  • Falk, C. F., & Cai, L. (2016b). Semi-parametric item response functions in the context of guessing. Journal of Educational Measurement, 53, 229–247.

    Article  Google Scholar 

  • Feuerstahler, L. (2016). Exploring alternate latent trait metrics with the filtered monotonic polynomial IRT model. Ph.D. thesis, Department of Psychology, University of Minnesota.

    Google Scholar 

  • Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220, 671–680.

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, S., & Bolt, D. M. (2018). Asymmetric item characteristic curves and item complexity: Insights from simulation and real data analyses. Psychometrika, 83, 453–475.

    Article  MathSciNet  MATH  Google Scholar 

  • Lee, Y. S. (2007). A comparison of methods for nonparametric estimation of item characteristic curves for binary items. Applied Psychological Measurement, 31, 121–134.

    Article  MathSciNet  Google Scholar 

  • Liang, L., & Browne, M. W. (2015). A quasi-parametric method for fitting flexible item response functions. Journal of Educational and Behavioral Statistics, 40, 5–34.

    Article  Google Scholar 

  • Meijer, R. R., & Baneke, J. J. (2004). Analyzing psychopathology items: A case for nonparametric item response theory modeling. Psychological Methods, 9(3), 354–368.

    Article  Google Scholar 

  • Molenaar, D. (2015). Heteroscedastic latent trait models for dichotomous data. Psychometrika, 80(3), 625–644.

    Article  MathSciNet  MATH  Google Scholar 

  • Neale, M. C., Hunter, M. D., Pritikin, J. N., Zahery, M., Brick, T. R., Kickpatrick, R. M., et al. (2016). OpenMx 2.0: Extended structural equation and statistical modeling. Psychometrika, 81, 535–549.

    Article  MathSciNet  MATH  Google Scholar 

  • Orlando, M., & Thissen, D. (2000). Likelihood-based item-fit indices for dichotomous item response theory models. Applied Psychological Measurement, 24, 50–64.

    Article  Google Scholar 

  • Pritikin, J. N. (2016). rpf: Response probability functions. https://CRAN.R-project.org/package=rpf, r package version 0.53.

  • R Core Team. (2015). R: A language and environment for statistical computing. http://www.R-project.org, ISBN 3-900051-07-0.

  • Ramsay, J. O. (1991). Kernel smoothing approaches to nonparametric item characteristic curve estimation. Psychometrika, 56(4), 611–630.

    Article  MATH  Google Scholar 

  • Ramsay, J. O., & Wiberg, M. (2017). A strategy for replacing sum scoring. Journal of Educational and Behavioral Statistics, 42(3), 282–307.

    Article  Google Scholar 

  • Stander, J., & Silverman, B. W. (1994). Temperature schedules for simulated annealing. Statistics and Computing, 4, 21–32.

    Article  Google Scholar 

  • Woods, C. M. (2007). Empirical histograms in item response theory with ordinal data. Educational and Psychological Measurement, 67, 73–87.

    Article  MathSciNet  Google Scholar 

  • Xu, X., & Douglas, J. A. (2006). Computerized adaptive testing under nonparametric IRT models. Psychometrika, 71(1), 121–137.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), [funding reference number RGPIN-2018-05357]. Cette recherche a été financée par le Conseil de recherches en sciences naturelles et en génie du Canada (CRSNG), [numéro de référence RGPIN-2018-05357].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl F. Falk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Falk, C.F. (2019). Model Selection for Monotonic Polynomial Item Response Models. In: Wiberg, M., Culpepper, S., Janssen, R., González, J., Molenaar, D. (eds) Quantitative Psychology. IMPS IMPS 2017 2018. Springer Proceedings in Mathematics & Statistics, vol 265. Springer, Cham. https://doi.org/10.1007/978-3-030-01310-3_7

Download citation

Publish with us

Policies and ethics