Skip to main content

Interleukin-2 and the Brain: Dissecting Central Versus Peripheral Contributions Using Unique Mouse Models

  • Protocol
  • First Online:
Book cover Psychoneuroimmunology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 934))

Abstract

Although many studies have documented peripheral immune alterations in patients with psychiatric and neurological disorders, almost all these data in humans are correlative. The actions of IL-2 on neurodevelopment, function, and disease are the result of both IL-2’s actions in the peripheral immune system and intrinsic actions in the CNS. Determining if, and under what conditions (e.g., development, acute injury) these different actions of IL-2 are operative in the brain is essential to make advances in understanding the multifaceted affects of IL-2 on CNS function and disease. Mouse models have provided ways to obtain new insights into how the complex biology of a cytokine such as IL-2 can have simultaneous, dynamic effects on multiple systems (e.g., regulating homeostasis in the brain and immune system, autoimmunity that can affect both systems). Here we describe some of the relevant literature and our research using different mouse models. This includes models such as congenic IL-2 knockout mice bred on immunodeficient backgrounds coupled with immune reconstitution strategies used to dissect neuroimmunological processes involved in the development of septohippocampal pathology, and test the hypothesis that dysregulation of the brain’s endogenous neuroimmunological milieu may occur with the loss of brain IL-2 gene expression and be involved in initiating CNS autoimmunity. Use of animal models like these in the field of psychoneuroimmunology may lead to critical advances into our understanding of the role of brain cytokines and autoimmunity in neurodegenerative diseases (e.g., Alzheimer’s disease), neurodevelopmental disorder (e.g., autism, schizophrenia), and autoimmune diseases including multiple sclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zalcman S, Green-Johnson JM, Murray L, Nance DM, Dyck D, Anisman H, Greenberg AH (1994) Cytokine-specific central monoamine alterations induced by interleukin-1, -2, and -6. Brain Res 643:40–49

    Article  PubMed  CAS  Google Scholar 

  2. Besedovsky HO, Del Rey A, Klusman I, Furukawa H, Monge Arditi G, Kabiersch A (1991) Cytokines as modulators of the hypothalamus-pituitary-adrenal axis. J Steroid Biochem Mol Biol 40:613–618

    Article  PubMed  CAS  Google Scholar 

  3. Blalock JE (1994) The syntax of immune-neuroendocrine communications. Immunol Today 15:504–511

    Article  PubMed  CAS  Google Scholar 

  4. Pan W, Kastin AJ (1999) Penetration of neurotrophins and cytokines across the blood–brain/blood–spinal cord barrier. Adv Drug Deliv Rev 36:291–298

    Article  PubMed  CAS  Google Scholar 

  5. Goehler LE, Erisir A, Gaykema RP (2006) Neural-immune interface in the rat area postrema. Neuroscience 140:1415–1434

    Article  PubMed  CAS  Google Scholar 

  6. Maier SF, Watkins LR (1998) Cytokines for psychologists: implications of bidirectional immune-to-brain communication for understanding behavior, mood and cognition. Psychol Rev 105:83–107

    Article  PubMed  CAS  Google Scholar 

  7. Goehler LE, Lyte M, Gaykema RP (2007) Infection-induced viscerosensory signals from the gut enhance anxiety: implications for psychoneuroimmunology. Brain Behav Immun 21:721–726

    Article  PubMed  CAS  Google Scholar 

  8. Petitto JM, Huang Z (2001) Cloning the full-length IL-2/15 receptor-β cDNA sequence from mouse brain: evidence of enrichment in hippocampal formation neurons. Regul Pept 98:77–87

    Article  PubMed  CAS  Google Scholar 

  9. Cunningham ETJ, Wada E, Carter DB, Tracey DE, Battey JF, De Souza EB (1992) In situ histochemical localization of type I interleukin-1 receptor messenger RNA in the central nervous system, pituitary, and adrenal gland of the mouse. J Neurosci 12:1101–1114

    PubMed  CAS  Google Scholar 

  10. Licinio J, Wong ML, Gold PW (1991) Localization of interleukin-1 receptor antagonist mRNA in rat brain. Endocrinology 129:562–564

    Article  PubMed  CAS  Google Scholar 

  11. Schobitz B, Voorhuis DA, De Kloet ER (1992) Localization of interleukin-6 mRNA and interleukin-6 receptor mRNA in rat brain. Neurosci Lett 136:189–192

    Article  PubMed  CAS  Google Scholar 

  12. Lapchak PA, Araujo DM, Quirion R, Beaudet A (1991) Immunoautoradiographic localization of interleukin 2-like immunoreactivity and interleukin 2 receptors (Tac antigen-like immunoreactivity) in the rat brain. Neuroscience 44:173–184

    Article  PubMed  CAS  Google Scholar 

  13. Petitto JM, Huang Z (1994) Molecular cloning of a partial cDNA of the interleukin-2 receptor-β in normal mouse brain: in situ localization in the hippocampus and expression by neuroblastoma cells. Brain Res 650:140–145

    Article  PubMed  CAS  Google Scholar 

  14. Petitto JM, Huang Z, Raizada M, Rinker CM, McCarthy DB (1998) Molecular cloning of the cDNA coding sequence of IL-2 receptor-γ (γc) from human and murine forebrain: expression in the hippocampus in situ and by brain cells in vitro. Mol Brain Res 53:152–162

    Article  PubMed  CAS  Google Scholar 

  15. Jankowsky J, Patterson P (1999) Cytokine and growth factor involvement in long-term potentiation. Mol Cell Neurosci 14:273–286

    CAS  Google Scholar 

  16. Laye S, Parnet P, Goujon E, Dantzer R (1994) Peripheral administration of lipopolysaccharide induces the expression of cytokine transcripts in the brain and pituitary of mice. Brain Res Mol Brain Res 27:157–162

    Article  PubMed  CAS  Google Scholar 

  17. Gibertini M, Newton C, Klein TW, Friedman H (1995) Legionella pneumophila-induced visual learning impairment reversed by anti-interleukin-1 beta. Proc Soc Exp Biol Med 210:7–11

    PubMed  CAS  Google Scholar 

  18. Aubert A, Vega C, Dantzer R, Goodall G (1995) Pyrogens specifically disrupt the acquisition of a task involving cognitive processing in the rat. Brain Behav Immun 9:129–148

    Article  PubMed  CAS  Google Scholar 

  19. Dantzer R, Bluthe RM, Gheusi G, Cremona S, Laye S, Parnet P, Kelley KW (1998) Molecular basis of sickness behavior. Ann N Y Acad Sci 856:132–138

    Article  PubMed  CAS  Google Scholar 

  20. Pugh CR, Kumagawa K, Fleshner M, Watkins LR, Maier SF, Rudy JW (1998) Selective effects of peripheral lipopolysaccharide administration on contextual and auditory-cue fear conditioning. Brain Behav Immun 3:212–229

    Article  Google Scholar 

  21. Denicoff KD, Rubinow DR, Papa MZ, Simpson C, Seipp CA, Lotze MT, Chang AE, Rosenstein D, Rosenberg SA (1987) The neuropsychiatric effects of treatment with interleukin-2 and lymphokine-activated killer cells. Ann Intern Med 107:293–300

    PubMed  CAS  Google Scholar 

  22. West WH, Tauer KW, Yannelli JR, Marshall GD, Orr DW, Thurman GB, Oldham RK (1987) Constant-infusion recombinant interleukin-2 in adoptive immunotherapy of advanced cancer. N Engl J Med 316:898–905

    Article  PubMed  CAS  Google Scholar 

  23. Capuron L, Ravaud A, Radat F, Dantzer R, Goodall G (1998) Effects of interleukin-2 and alpha interferon cytokine immunotherapy on the mood and cognitive performance of cancer patients. Neuroimmunomodulation 22:9

    Google Scholar 

  24. Eizenberg O, Faber-Elman A, Lotan M, Schwartz M (1995) Interleukin-2 transcripts in human and rodent brains: possible expression by astrocytes. J Neurochem 64:1928–1936

    Article  PubMed  CAS  Google Scholar 

  25. Hanisch UK, Quirion R (1996) Interleukin-2 as a neuroregulatory cytokine. Brain Res Rev 21:246–284

    Article  Google Scholar 

  26. Hanisch U, Neuhaus J, Rowe W, Van-Rossum D, Möller T, Kettenmann H, Quirion R (1997) Neurotoxic consequences of central long-term administration of interleukin-2 in rats. Neuroscience 79:799–818

    Article  PubMed  CAS  Google Scholar 

  27. Labuzek K, Kowalski J, Gabryel B, Herman ZS (2005) Chlorpromazine and loxapine reduce interleukin-1beta and interleukin-2 release by rat mixed glial and microglial cell cultures. Eur Neuropsychopharmacol 15:23–30

    Article  PubMed  CAS  Google Scholar 

  28. Awatsuji H, Furukawa Y, Nakajima M, Furukawa S, Hayashi K (1993) Interleukin-2 as a neurotrophic factor for supporting the survival of neurons cultured from various regions of fetal rat brain. J Neurosci Res 35:305–311

    Article  PubMed  CAS  Google Scholar 

  29. Sarder M, Saito H, Abe K (1993) Interleukin-2 promotes survival and neurite extension of cultured neurons from fetal rat brain. Brain Res 625:347–350

    Article  PubMed  CAS  Google Scholar 

  30. Sarder M, Abe K, Saito H, Nishiyama N (1996) Comparative effect of IL-2 and IL-6 on morphology of cultured hippocampal neurons from fetal rat brain. Brain Res 715:9–16

    Article  PubMed  CAS  Google Scholar 

  31. Hanisch UK, Seto D, Quirion R (1993) Modulation of hippocampal acetylcholine release: a potent central action of interleukin-2. J Neurosci 13:3368–3374

    PubMed  CAS  Google Scholar 

  32. Seto D, Kar S, Quirion R (1997) Evidence for direct and indirect mechanisms in the potent modulatory action of interleukin-2 on the release of acetylcholine in rat hippocampal slices. Br J Pharmacol 120:1151–1157

    Article  PubMed  CAS  Google Scholar 

  33. Lapchak PA (1992) A role for interleukin-2 in the regulation of striatal dopaminergic function. Neuroreport 3:165–168

    Article  PubMed  CAS  Google Scholar 

  34. Villemain F, Owens T, Renno T, Beaudet A (1991) Localization of mRNA for interleukin-2 (IL-2) in mouse brain by in situ hybridization. Soc Neurosci Abstr 17:1199

    Google Scholar 

  35. Araujo DM, Lapchak PA (1994) Induction of immune system mediators in the hippocampal formation in Alzheimer’s and Parkinson’s diseases: selective effects on specific interleukins and interleukin receptors. Neuroscience 61:745–754

    Article  PubMed  CAS  Google Scholar 

  36. Tancredi V, Zona C, Velotti F, Eusebi F, Santoni A (1990) Interleukin-2 suppresses established long-term potentiation and inhibits its induction in the rat hippocampus. Brain Res 525:149–151

    Article  PubMed  CAS  Google Scholar 

  37. Bianchi M, Panerai AE (1993) Interleukin-2 enhances scopolamine-induced amnesia and hyperactivity in the mouse. Neuroreport 4:1046–1048

    Article  PubMed  CAS  Google Scholar 

  38. Bianchi M, Ferrario P, Zonta N, Panerai AE (1995) Effects of interleukin-1 beta and interleukin-2 on amino acids levels in mouse cortex and hippocampus. Neuroreport 6:1689–1692

    Article  PubMed  CAS  Google Scholar 

  39. Mennicken F, Quirion R (1997) Interleukin-2 increases choline acetyltransferase activity in septal-cell cultures. Synapse 26:175–183

    Article  PubMed  CAS  Google Scholar 

  40. Lacosta S, Merali Z, Anisman H (1999) Influence of acute and repeated interleukin-2 administration on spatial learning, locomotor activity, exploratory behaviors, and anxiety. Behav Neurosci 113:1030–1041

    Article  PubMed  CAS  Google Scholar 

  41. Nemni R, Iannaccone S, Quattrini A, Smirne S, Sessa M, Lodi M, Erminio C, Canal N (1992) Effect of chronic treatment with recombinant interleukin-2 on the central nervous system of adult and old mice. Brain Res 591:248–252

    Article  PubMed  CAS  Google Scholar 

  42. Araujo DM, Lapchak PA, Collier B, Quirion R (1989) Localization of interleukin-2 immunoreactivity and interleukin-2 receptors in the rat brain: interaction with the cholinergic system. Brain Res 498:257–266

    Article  PubMed  CAS  Google Scholar 

  43. Petitto JM, McNamara R, Gendreau PL, Huang Z, Jackson A (1999) Impaired learning and memory and altered hippocampal neurodevelopment resulting from IL-2 gene deletion. J Neurosci Res 56:441–446

    Article  PubMed  CAS  Google Scholar 

  44. Schöpke R, Wolfer DP, Lipp HP, Leisinger-Trigona MC (1991) Swimming navigation and structural variations of the infrapyramidal mossy fibers in the hippocampus of the mouse. Hippocampus 3:315–328

    Article  Google Scholar 

  45. Schwegler H, Crusio WE, Lipp HP, Heimrich B (1988) Water-maze learning in the mouse correlates with variation in hippocampal morphology. Behav Genet 18:153–165

    Article  PubMed  CAS  Google Scholar 

  46. Schwegler H, Crusio WE (1995) Correlations between radial-maze learning and structural variations of septum and hippocampus in rodents. Behav Brain Res 67:29–41

    Article  PubMed  CAS  Google Scholar 

  47. Beck RD Jr, King MA, Ha GK, Cushman JD, Huang Z, Petitto JM (2005) IL-2 deficiency results in altered septal and hippocampal cytoarchitecture: relation to development and neurotrophins. J Neuroimmunol 160:146–153

    Article  PubMed  CAS  Google Scholar 

  48. Altman J, Bayer SA (1990) Migration and distribution of two populations of hippocampal granule cell precursors during the perinatal and postnatal periods. J Comp Neurol 301:365–381

    Article  PubMed  CAS  Google Scholar 

  49. Cameron HA, McKay RD (2001) Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 435:406–417

    Article  PubMed  CAS  Google Scholar 

  50. Schwegler H, Crusio WE, Lipp HP, Brust I, Mueller GG (1991) Early postnatal hyperthyroidism alters hippocampal circuitry and improves radial-maze learning in adult mice. J Neurosci 11:2102–2106

    PubMed  CAS  Google Scholar 

  51. Alderson RF, Alterman AL, Barde YA, Lindsay RM (1990) Brain-derived neurotrophic factor increases survival and differentiated functions of rat septal cholinergic neurons in culture. Neuron 5:297–306

    Article  PubMed  CAS  Google Scholar 

  52. Morse JK, Wiegand SJ, Anderson K, You Y, Cai N, Carnahan J, Miller J, DiStefano PS, Altar CA, Lindsay RM et al (1993) Brain-derived neurotrophic factor (BDNF) prevents the degeneration of medial septal cholinergic neurons following fimbria transection. J Neurosci 13:4146–4156

    PubMed  CAS  Google Scholar 

  53. Ward NL, Hagg T (2000) BDNF is needed for postnatal maturation of basal forebrain and neostriatum cholinergic neurons in vivo. Exp Neurol 162:297–310

    Article  PubMed  CAS  Google Scholar 

  54. Knipper M, da Penha Berzaghi M, Blochl A, Breer H, Thoenen H, Lindholm D (1994) Positive feedback between acetylcholine and the neurotrophins nerve growth factor and brain-derived neurotrophic factor in the rat hippocampus. Eur J Neurosci 6:668–671

    Article  PubMed  CAS  Google Scholar 

  55. Larsson E, Mandel RJ, Klein RL, Muzyczka N, Lindvall O, Kokaia Z (2002) Suppression of insult-induced neurogenesis in adult rat brain by brain-derived neurotrophic factor. Exp Neurol 177:1–8

    Article  PubMed  CAS  Google Scholar 

  56. Lee J, Duan W, Mattson MP (2002) Evidence that brain-derived neurotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J Neurochem 82:1367–1375

    Article  PubMed  CAS  Google Scholar 

  57. Besser M, Wank R (1999) Cutting edge: clonally restricted production of the neurotrophins brain-derived neurotrophic factor and neurotrophin-3 mRNA by human immune cells and Th1/Th2-polarized expression of their receptors. J Immunol 162:6303–6306

    PubMed  CAS  Google Scholar 

  58. Canossa M, Griesbeck O, Berninger B, Campana G, Kolbeck R, Thoenen H (1997) Neurotrophin release by neurotrophins: implications for activity-dependent neuronal plasticity. Proc Natl Acad Sci USA 94:13279–13286

    Article  PubMed  CAS  Google Scholar 

  59. Saarelainen T, Vaittinen S, Castren E (2001) trkB-receptor activation contributes to the kainate-induced increase in BDNF mRNA synthesis. Cell Mol Neurobiol 21:429–435

    Article  PubMed  CAS  Google Scholar 

  60. Hellweg R, Humpel C, Lowe A, Hortnagl H (1997) Moderate lesion of the rat cholinergic septohippocampal pathway increases hippocampal nerve growth factor synthesis: evidence for long-term compensatory changes? Brain Res Mol Brain Res 45:177–181

    Article  PubMed  CAS  Google Scholar 

  61. Beck RD Jr, King MA, Huang Z, Petitto JM (2002) Alterations in septohippocampal cholinergic neurons resulting from interleukin-2 gene knockout. Brain Res 955:16–23

    Article  PubMed  CAS  Google Scholar 

  62. Hock C, Heese K, Hulette C, Rosenberg C, Otten U (2000) Region-specific neurotrophin imbalances in Alzheimer disease: decreased levels of brain-derived neurotrophic factor and increased levels of nerve growth factor in hippocampus and cortical areas. Arch Neurol 57:846–851

    Article  PubMed  CAS  Google Scholar 

  63. Merrill JE (1990) Interleukin-2 effects in the central nervous system. Ann N Y Acad Sci 594:188–199

    Article  PubMed  CAS  Google Scholar 

  64. Quirion R, Aubert I, Robitaille Y, Gauthier S, Araujo DM, Chabot JG (1990) Neurochemical deficits in pathological brain aging: specificity and possible relevance for treatment strategies. Clin Neuropharmacol 13:73–80

    Article  Google Scholar 

  65. Zalcman SS (2002) Interleukin-2-induced increases in climbing behavior: inhibition by dopamine D-1 and D-2 receptor antagonists. Brain Res 944:157–164

    Article  PubMed  CAS  Google Scholar 

  66. Turka LA, Walsh PT (2008) IL-2 signaling and CD4+ CD25+ Foxp3+ regulatory T cells. Front Biosci 13:1440–1446

    Article  PubMed  CAS  Google Scholar 

  67. Horak I, Lohler J, Ma A, Smith KA (1995) Interleukin-2 deficient mice: a new model to study autoimmunity and self-tolerance. Immunol Rev 148:35–44

    Article  PubMed  CAS  Google Scholar 

  68. Kundig TM, Schorle H, Bachmann MF, Hengartner H, Zinkernagel RM, Horak I (1993) Immune responses in interleukin-2-deficient mice. Science 262:1059–1061

    Article  PubMed  CAS  Google Scholar 

  69. Schorle H, Holtschke T, Hunig T, Schimpl A, Horak I (1991) Development and function of T cells in mice rendered interleukin-2 deficient by gene targeting. Nature 352:621–624

    Article  PubMed  CAS  Google Scholar 

  70. Kalman J, Engelhardt JI, Le WD, Xie W, Kovacs I, Kasa P, Appel SH (1997) Experimental immune-mediated damage of septal cholinergic neurons. J Neuroimmunol 77:63–74

    Article  PubMed  CAS  Google Scholar 

  71. Semba K, Fibiger HC (1988) Time of origin of cholinergic neurons in the rat basal forebrain. J Comp Neurol 269:87–95

    Article  PubMed  CAS  Google Scholar 

  72. Huang Z, Dauer DJ, Ha GK, Lewis MH, Petitto JM (2009) Interleukin-2 deficiency induced T cell autoimmunity in the mouse brain. Neurosci Lett 463:44–48

    Article  PubMed  CAS  Google Scholar 

  73. Cardona AE, Li M, Lui L, Savarin C, Ransohoff RM (2008) Chemokines in and out of the central nervous system: much more than chemotaxis and inflammation. J Leukoc Biol 84:587–594

    Article  PubMed  CAS  Google Scholar 

  74. Huang Z, Danielle M, Petitto JM (2011) Loss of CNS IL-2 gene expression modifies brain T lymphocyte trafficking: Response of normal versus autoreactive Treg-deficient T cells. Neurosci Lett 499:213–218

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this study was provided by NIH RO1 NS055018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Petitto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Petitto, J.M., Meola, D., Huang, Z. (2012). Interleukin-2 and the Brain: Dissecting Central Versus Peripheral Contributions Using Unique Mouse Models. In: Yan, Q. (eds) Psychoneuroimmunology. Methods in Molecular Biology, vol 934. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-071-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-071-7_15

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-070-0

  • Online ISBN: 978-1-62703-071-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics