Skip to main content

Abstract

The primary heart field, secondary heart field, cardiac neural crest, and proepicardial organ are the four major embryonic regions involved in vertebrate heart development. They each make an important contribution to cardiac development with complex developmental timing and regulation. This chapter describes how these regions interact to form the final structure of the heart in relationship to the developmental timeline of human embryology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Srivastava D, Olson EN. A genetic blueprint for cardiac development. Nature 2000;407:221–6.

    Article  PubMed  CAS  Google Scholar 

  2. Kelly RG, Brown NA, Buckingham ME. The arterial pole of the mouse heart forms from Fgf10-expressing cells in pharyngeal mesoderm. Dev Cell 2001;1:435–40.

    Article  PubMed  CAS  Google Scholar 

  3. Mjaatvedt CH, Nakaoka T, Moreno-Rodriguez R, et al. The outflow tract of the heart is recruited from a novel heart-forming field. Dev Biol 2001;238:97–109.

    Article  PubMed  CAS  Google Scholar 

  4. Waldo KL, Kumiski DH, Wallis KT, et al. Conotruncal myocardium arises from a secondary heart field. Development 2001;128:3179–88.

    PubMed  CAS  Google Scholar 

  5. Kelly RG, Buckingham ME. The anterior heart-forming field: Voyage to the arterial pole of the heart. Trends Genet 2002;18:210–6.

    Article  PubMed  CAS  Google Scholar 

  6. Hatada Y, Stern CD. A fate map of the epiblast of the early chick embryo. Development 1994;120:2879–89.

    PubMed  CAS  Google Scholar 

  7. Yutzey KE, Kirby ML. Wherefore heart thou? Embryonic origins of cardiogenic mesoderm. Dev Dyn 2002;223:307–20.

    Article  PubMed  Google Scholar 

  8. Sherman LS, Potter SS, Scott WJ, eds. Human embryology. 3rd ed. New York: Churchill Livingstone, 2001.

    Google Scholar 

  9. Garcia-Martinez V, Schoenwolf GC. Primitive streak origin of the cardiovascular system in avian embryos. Dev Biol 1993;159:706–19.

    Article  PubMed  CAS  Google Scholar 

  10. Psychoyos D, Stern CD. Fates and migratory routes of primitive streak cells in the chick embryo. Development 1996;122:1523–34.

    PubMed  CAS  Google Scholar 

  11. DeHaan RL. Organization of the cardiogenic plate in the early chick embryo. Acta Embryol Morphol Exp 1963;6:26–38.

    Google Scholar 

  12. Ehrman LA, Yutzey KE. Lack of regulation in the heart forming region of avian embryos. Dev Biol 1999;207:163–75.

    Article  PubMed  CAS  Google Scholar 

  13. Harvey RP, Rosenthal N. Heart development. 1st ed. San Diego: Academic Press, 1999.

    Google Scholar 

  14. Kirby ML. Molecular embryogenesis of the heart. Pediatr Dev Pathol 2002;23:537–44.

    Google Scholar 

  15. Lohr JL, Yost JH. Vertebrate model systems in the study of early heart development: Xenopus and Zebrafish. Am J Med Genet Semin Med Genet 2000;97:248–57.

    Article  CAS  Google Scholar 

  16. Waldo K, Miyagawa-Tomita S, Kumiski D, Kirby ML. Cardiac neural crest cells provide new insight into septation of the cardiac outflow tract: Aortic sac to ventricular septal closure. Dev Biol 1998;196:129–44.

    Article  PubMed  CAS  Google Scholar 

  17. Abu-Issa R, Kirby ML. Heart field: From mesoderm to heart tube. Annu Rev Cell Dev Biol 2007;23:45–68.

    Article  PubMed  CAS  Google Scholar 

  18. Kelly RG. Molecular inroads into the anterior heart field. Trends Cardiovasc Med 2005;15:51–6.

    Article  PubMed  CAS  Google Scholar 

  19. Gittenberger-de Groot AC, Vrancken Peeters MP, Bergwerff M, Mentink MM, Poelmann RE. Epicardial outgrowth inhibition leads to compensatory mesothelial outflow tract collar and abnormal cardiac septation and coronary formation. Circ Res 2000;87:969–71.

    PubMed  CAS  Google Scholar 

  20. Lie-Venema H, van den Akker NMS, Bax NAM, et al. Origin, fate, and function of epicardium-derived cells (EPDCs) in normal and abnormal cardiac development. Sci World J TSW Develop Embryol 2007;7:1777–98. DOI 10.1100/tsw.2007.294.

    CAS  Google Scholar 

  21. Kirby ML, Gale TF, Stewart DE. Neural crest cells contribute to normal aorticopulmonary septation. Science 1983;220:1059–61.

    Article  PubMed  CAS  Google Scholar 

  22. Kirby ML, Stewart DE. Neural crest origin of cardiac ganglion cells in the chick embryo: Identification and extirpation. Dev Biol 1983;97:433–43.

    Article  PubMed  CAS  Google Scholar 

  23. Kirby ML, Turnage KL III, Hays BM. Characterization of conotruncal malformations following ablation of “cardiac” neural crest. Anat Rec 1985;213:87–93.

    Article  PubMed  CAS  Google Scholar 

  24. O’Rahilly R, Muller F. The development of the neural crest in the human. J Anat 2007;211:335–51.

    Article  PubMed  Google Scholar 

  25. Porras D, Brown CB. Temporal–spatial ablation of neural crest in the mouse results in cardiovascular defects. Dev Dyn 2008;237:153–62.

    Article  PubMed  CAS  Google Scholar 

  26. Hildreth V, Webb S, Bradshaw L, Brown NA, Anderson RH, Henderson DJ. Cells migrating from the neural crest contribute to the innervation of the venous pole of the heart. J Anat 2008;212:1–11.

    PubMed  Google Scholar 

  27. Poelmann RE, Jongbloed MR, Molin DG, et al. The neural crest is contiguous with the cardiac conduction system in the mouse embryo: A role in induction? Anat Embryol 2004;208:389–93.

    Article  PubMed  CAS  Google Scholar 

  28. Poelmann RE, Gittenberger-de Groot AC. A sub-population of apoptosis prone cardiac neural crest cells targets the venous pole: Multiple functions in heart development? Dev Biol 1999;207:271–86.

    Article  PubMed  CAS  Google Scholar 

  29. Bockman DE, Redmond ME, Kirby ML. Alteration of early vascular development after ablation of cranial neural crest. Anat Rec 1989;225:209–17.

    Article  PubMed  CAS  Google Scholar 

  30. Waldo KL, Lo CW, Kirby ML. Connexin 43 expression reflects neural crest patterns during cardiovascular development. Dev Biol 1999;208:307–23.

    Article  PubMed  CAS  Google Scholar 

  31. Komiyama M, Ito K, Shimada Y. Origin and development of epicardium in the mouse embryo. Anat Embryol 1996;176:183–9.

    Article  Google Scholar 

  32. Noden DM, Poelmann RE, Gittenberger-de Groot AC. Cell origins and tissue boundaries during outflow tract development. Trends Cardiovasc Med 1995;5:69–75.

    Article  PubMed  CAS  Google Scholar 

  33. Mikawa T, Gourdie RG. Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev Biol 1996;173:221–32.

    Article  Google Scholar 

  34. Noden DM. Origins and assembly of avian embryonic blood vessels. Ann NY Acad Sci 1990;588:236–49.

    Article  PubMed  CAS  Google Scholar 

  35. Hood LA, Rosenquist TH. Coronary artery development in the chick: Origin and development of smooth muscle cells, and effects of neural crest ablation. Anat Rec 1992;234:291–300.

    Article  PubMed  CAS  Google Scholar 

  36. Anderson PAW. Developmental cardiac physiology and myocardial function. In: Moller JH, Hoffman JIE, eds. Pediatric cardiovascular medicine. New York: Churchill Livingstone, 2000:35–57.

    Google Scholar 

  37. Huttenbach YL, Ostrowski ML, Thaller D, Kim HS. Cell proliferation in the growing human heart: MIB-1 immunostaining in preterm and term infants at autopsy. Cardiovasc Pathol 2001;10:119–23.

    Article  PubMed  CAS  Google Scholar 

  38. Kern FH, Bengur AR, Bello EA. Developmental cardiac physiology. In: Rogers MC, ed. Textbook of pediatric intensive care. 3rd ed. Baltimore: Lippincott, Williams and Wilkins, 1996:397–423.

    Google Scholar 

  39. Kim HD, Kim DJ, Lee IJ, Rah BJ, Sawa Y, Schaper J. Human fetal heart development after mid-term: Morphometry and ultrastructural study. J Mol Cell Cardiol 1992;24:949–65.

    Article  PubMed  CAS  Google Scholar 

  40. Beltrami AP, Urbanek K, Kajstura J, et al. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med 2001;344:1750–7.

    Article  PubMed  CAS  Google Scholar 

  41. Vick GW, Fisher DA. Cardiac metabolism. In: Garson AJ, Bricker TJ, Timothy J, Fisher DJ, Neish SR, eds. The science and practice of pediatric cardiology. Baltimore: Williams and Wilkens, 1998:155–69.

    Google Scholar 

  42. Opie LH. Carbohydrates and lipids. In: Lionel H. Opie, ed. The heart: Physiology and metabolism. New York: Raven Press, 1991:208–46.

    Google Scholar 

  43. Price KM, Littler WA, Cummins P. Human atrial and ventricular myosin light-chains subunits in the adult and during development. Biochem J 1980;191:571–80.

    PubMed  CAS  Google Scholar 

  44. Morano M, Zacharzowski U, Maier M, et al. Regulation of human heart contractility by essential myosin light chain isoforms. J Clin Invest 1996;98:467–73.

    Article  PubMed  CAS  Google Scholar 

  45. Morano I. Tuning the human heart molecular motors by myosin light chains. J Mol Med 1999;77:544–55.

    Article  PubMed  CAS  Google Scholar 

  46. Boheler KR, Carrier L, de la Bastie D, et al. Skeletal actin mRNA increases in the human heart during ontogenic development and is the major isoform of control and failing adult hearts. J Clin Invest 1991;88:323–30.

    Article  PubMed  CAS  Google Scholar 

  47. Anderson PAW, Kleinman CS, Lister G, Talner N. Cardiovascular function during normal fetal and neonatal development and with hypoxic stress. In: Polin RA, Fox WW, eds. Fetal and neonatal physiology. 2nd ed. Philadelphia: WB Saunders Company, 1998:837–90.

    Google Scholar 

  48. Hewett TE, Grupp IL, Grupp G, Robbins J. Alpha-skeletal actin is associated with increased contractility in the mouse heart. Circ Res 1994;74:740–6.

    PubMed  CAS  Google Scholar 

  49. Muthuchamy M, Grupp IL, Grupp G, et al. Molecular and physiological effects of overexpressing striated muscle beta-tropomyosin in the adult murine heart. J Biol Chem 1995;270:30593–603.

    Article  PubMed  CAS  Google Scholar 

  50. Palmiter KA, Kitada Y, Muthuchamy M, Wieczorek DF, Solaro RJ. Exchange of beta- for alpha-tropomyosin in hearts of transgenic mice induces changes in thin filament response to Ca2+, strong cross-bridge binding, and protein phosphorylation. J Biol Chem 1996;271:11611–4.

    Article  PubMed  CAS  Google Scholar 

  51. Muthuchamy M, Boivin GP, Grupp IL, Wieczorek DF. Beta-tropomyosin overexpression induces severe cardiac abnormalities. J Mol Cell Cardiol 1998;30:1545–57.

    Article  PubMed  CAS  Google Scholar 

  52. Kim SH, Kim HS, Lee MM. Re-expression of fetal troponin isoforms in the postinfarction failing heart of the rat. Circ J 2002;66:959–64.

    Article  PubMed  CAS  Google Scholar 

  53. Hunkeler NM, Kullman J, Murphy AM. Troponin I isoform expression in human heart. Circ Res 1991;69:1409–14.

    PubMed  CAS  Google Scholar 

  54. Purcell IF, Bing W, Marston SB. Functional analysis of human cardiac troponin by the in vitro motility assay: Comparison of adult, fetal and failing hearts. Cardiovasc Res 1999;43:884–91.

    Article  PubMed  CAS  Google Scholar 

  55. Morimoto S, Goto T. Role of troponin I isoform switching in determining the pH sensitivity of Ca(2+) regulation in developing rabbit cardiac muscle. Biochem Biophys Res Commun 2000;267:912–7.

    Article  PubMed  CAS  Google Scholar 

  56. Tanaka H, Sekine T, Nishimaru K, Shigenobu K. Role of sarcoplasmic reticulum in myocardial contraction of neonatal and adult mice. Comp Biochem Physiol A Mol Integr Physiol 1998;120:431–8.

    Article  PubMed  CAS  Google Scholar 

  57. Buchorn R, Hulpke-Wette M, Ruschewski W, et al. Beta-receptor downregulation in congenital heart disease: A risk factor for complications after surgical repair? Ann Thorac Surg 2002;73:610–3.

    Article  Google Scholar 

  58. Schiffmann H, Flesch M, Hauseler C, Pfahlberg A, Bohm M, Hellige G. Effects of different inotropic interventions on myocardial function in the developing rabbit heart. Basic Res Cardiol 2002;97:76–87.

    Article  PubMed  CAS  Google Scholar 

  59. Sun LS. Regulation of myocardial beta-adrenergic receptor function in adult and neonatal rabbits. Biol Neonate 1999;76:181–92.

    Article  PubMed  CAS  Google Scholar 

  60. Dees E, Baldwin HS. New frontiers in molecular pediatric cardiology. Curr Opin Pediatr 2002;14:627–33.

    Article  PubMed  Google Scholar 

  61. McFadden DG, Olson EN. Heart development: Learning from mistakes. Curr Opin Genet Dev 2002;12:328–35.

    Article  PubMed  CAS  Google Scholar 

  62. Martinsen BJ, Groebner NJ, Frasier AJ, Lohr JL. Expression of cardiac neural crest and heart genes isolated by modified differential display. Gene Expr Patterns 2003;3:407–11.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brad J. Martinsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Martinsen, B.J., Lohr, J.L. (2009). Cardiac Development. In: Iaizzo, P. (eds) Handbook of Cardiac Anatomy, Physiology, and Devices. Humana Press. https://doi.org/10.1007/978-1-60327-372-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-372-5_3

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-371-8

  • Online ISBN: 978-1-60327-372-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics