Skip to main content

Memantine as an Example of a Fast, Voltage-Dependent, Open Channel N-Methyl-d-Aspartate Receptor Blocker

  • Protocol
Patch-Clamp Methods and Protocols

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 403))

Summary

Electrophysiological techniques can be used to great effect to help determine the mechanism of action of a compound. However, many factors can compromise the resulting data and their analysis, such as the speed of solution exchange, expression of additional ion channel populations including other ligand-gated receptors and voltage-gated channels, compounds having multiple binding sites, and current desensitization and rundown. In this chapter, such problems and their solutions are discussed and illustrated using data from experiments involving the uncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist memantine. Memantine differs from many other NMDA receptor channel blockers in that it is well tolerated and does not cause psychotomimetic effects at therapeutic doses. Various electrophysiological parameters of NMDA-induced current blockade by memantine have been proposed to be important in determining therapeutic tolerability, potency, onset and offset kinetics, and voltage dependency. These were all measured using whole cell patch-clamp techniques using hippocampal neurons. Full results are shown here for memantine, and these are summarized and compared with those from similar experiments with other NMDA channel blockers. The interpretation of these results is discussed, as are theories concerning the tolerability of NMDA channel blockers, with the aim of illustrating how electrophysiological data can be used to form and support a physiological hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reisberg, B., R. Doody, A. Stoffler, F. Schmitt, S. Ferris, and H.J. Motrius (2003) Memantine in moderate-to-sexere Alzheimer’s disease. M. Engl. J. Med. 348, 1333–1341.

    Article  CAS  Google Scholar 

  2. Tariot, P.N., M.R. Farlow, G.T. Grossberg, S.M. Graham, S. McDonald, and I. Gergel (2004) Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil – a randomized controlled trial. JAMA 291, 317–324.

    Article  CAS  PubMed  Google Scholar 

  3. Parsons, C.G., W. Danysz, and G. Quack (1999) Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist – a review of preclinical data. Neuropharmacology 38, 735–767.

    Article  CAS  PubMed  Google Scholar 

  4. Danysz, W. and C.G. Parsons (2003) The NMDA receptor antagonist memantine as a symptomatological and neuroprotective treatment for Alzheimer’s disease: preclinical evidence. Int. J. Geriatr. Psychiatry 18, S23–S32.

    Article  PubMed  Google Scholar 

  5. Johnson, J.W. and S.E. Kotermanski (2006) Mechanism of action of memantine. Curr. Opin. Pharmacol. 6, 61–67.

    Article  CAS  PubMed  Google Scholar 

  6. Parsons, C.G., R. Gruner, J. Rozental, J. Millar, and D. Lodge (1993) Patch-clamp studies on the kinetics and selectivity of N-methyl-D-aspartate receptor antagonism by memantine (1-amino-3,5-dimethyladamantan). Neuropharmacology 32, 1337–1350.

    Article  CAS  PubMed  Google Scholar 

  7. Rogawski, M.A. (1993) Therapeutic potential of excitatory amino-acid antagonists – channel blockers and 2,3-benzodiazepines. Trends Pharmacol. Sci. 14, 325–331.

    Article  CAS  PubMed  Google Scholar 

  8. Blanpied, T.A., F.A. Boeckman, E. Aizenman, and J.W. Johnson (1997) Trapping channel block of NMDA-activated responses by amantadine and memantine. J. Neurophysiol. 77, 309–323.

    CAS  PubMed  Google Scholar 

  9. Bresink, I., T.A. Benke, V.J. Collett, A.J. Seal, C.G. Parsons, J.M. Henley, and G.L. Collingridge (1996) Effects of memantine on recombinant rat NMDA receptors expressed in HEK 293 cells. Br. J. Pharmacol. 119, 195–204.

    CAS  PubMed  Google Scholar 

  10. Chen, H.S.V. and S.A. Lipton (1997) Mechanism of memantine block of NMDA-activated channels in rat retinal ganglion cells: uncompetitive antagonism. J. Physiol. (Lond.) 499, 27–46.

    CAS  Google Scholar 

  11. Parsons, C.G., S. Hartmann, and P. Spielmanns (1998) Budipine is a low affinity, N-methyl-D-aspartate receptor antagonist: patch clamp studies in cultured striatal, hippocampal, cortical and superior colliculus neurones. Neuropharmacology 37, 719–727.

    Article  CAS  PubMed  Google Scholar 

  12. Parsons, C.G., V.A. Panchenko, V.O. Pinchenko, A.Y. Tsyndrenko, and O.A. Krishtal (1996) Comparative patch-clamp studies with freshly dissociated rat hippocampal and striatal neurons on the NMDA receptor antagonistic effects of amantadine and memantine. Eur. J. Neurosci. 8, 446–454.

    Article  CAS  PubMed  Google Scholar 

  13. Parsons, C.G., G. Quack, I. Bresink, L. Baran, E. Przegalinski, W. Kostowski, P. Krzascik, S. Hartmann, and W. Danysz (1995) Comparison of the potency, kinetics and voltage-dependency of a series of uncompetitive NMDA receptor antagonists in-vitro with anticonvulsive and motor impairment activity in-vivo. Neuropharmacology 34, 1239–1258.

    Article  CAS  PubMed  Google Scholar 

  14. Sobolevsky, A. and S. Koshelev (1998) Two blocking sites of amino-adamantane derivatives in open N-methyl-d-aspartate channels. Biophys. J. 74, 1305–1319.

    Article  CAS  PubMed  Google Scholar 

  15. Sobolevsky, A.I., S.G. Koshelev, and B.I. Khodorov (1998) Interaction of memantine and amantadine with agonist-unbound NMDA-receptor channels in acutely isolated rat hippocampal neurons. J. Physiol. (Lond.) 512, 47–60.

    Article  CAS  Google Scholar 

  16. Clark, G.D., D.B. Clifford, and C.F. Zorumski (1990) The effect of agonist concentration, membrane voltage and calcium on N-methyl-D-aspartate receptor desensitization. Neuroscience 39, 787–797.

    Article  CAS  PubMed  Google Scholar 

  17. Grantyn, R. and H.D. Lux (1988) Similarity and mutual exclusion of NMDA-activated and proton-activated transient Na+-currents in rat tectal neurons. Neurosci. Lett. 89, 198–203.

    Article  CAS  PubMed  Google Scholar 

  18. Zilberter, Y., V. Uteshev, S. Sokolova, and B. Khodorov (1991) Desensitization of N-methyl-D-aspartate receptors in neurons dissociated from adult-rat hippocampus. Mol. Pharmacol. 40, 337–341.

    CAS  PubMed  Google Scholar 

  19. Johnson, J.W. and P. Ascher (1987) Glycine potentiates the NMDA response in cultured mouse-brain neurons. Nature 325, 529–531.

    Article  CAS  PubMed  Google Scholar 

  20. Parsons, C.G., X.G. Zong, and H.D. Lux (1993) Whole-cell and single-channel analysis of the kinetics of glycine-sensitive N-methyl-D-aspartate receptor desensitization. Br. J. Pharmacol. 109, 213–221.

    CAS  PubMed  Google Scholar 

  21. Hashimoto, A. and T. Oka (1997) Free D-aspartate and D-serine in the mammalian brain and periphery. Prog. Neurobiol. 52, 325–353.

    Article  CAS  PubMed  Google Scholar 

  22. Hamill, O.P., A. Marty, E. Neher, B. Sakmann, and F.J. Sigworth (1981) Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391, 85–100.

    Article  CAS  PubMed  Google Scholar 

  23. Sigworth, F.J., H. Affolter, and E. Neher (1995) Design of the Epc-9, a computer-controlled patch-clamp amplifier. 2. Software. J. Neurosci. Methods 56, 203–215.

    Article  CAS  PubMed  Google Scholar 

  24. Albuquerque, E.X., E.F.R. Pereira, N.G. Castro, M. Alkondon, S. Reinhardt, H. Schroder, and A. Maelicke (1995) Nicotinic receptor function in the mammalian central-nervous-system, in Diversity of Interacting Receptors. New York Acad Sciences: New York, pp. 48–72.

    Google Scholar 

  25. Black, M., T. Lanthorn, D. Small, G. Mealing, V. Lam, and P. Morley (1996) Study of potency, kinetics of block and toxicity of NMDA receptor antagonists using fura-2. Eur. J. Pharmacol. 317, 377–381.

    Article  CAS  PubMed  Google Scholar 

  26. Rogawski, M.A., S.I. Yamaguchi, S.M. Jones, K.C. Rice, A. Thurkauf, and J.A. Monn (1991) Anticonvulsant activity of the low-affinity uncompetitive N-methyl-D-aspartate antagonist (+/-)-5-aminocarbonyl-10,11-dihydro-5h-dibenzo[a,D]cyclohepten-5, 10-imine (Adci) – comparison with the structural analogs dizocilpine (Mk-801) and carbamazepine. J. Pharmacol. and Exp. Ther. 259, 30–37.

    CAS  Google Scholar 

  27. Frankiewicz, T., B. Potier, Z.I. Bashir, G.L. Collingridge, and C.G. Parsons (1996) Effects of memantine and MK-801 on NMDA-induced currents in cultured neurones and on synaptic transmission and LTP in area CA1 of rat hippocampal slices. Br. J. Pharmacol. 117, 689–697.

    CAS  PubMed  Google Scholar 

  28. Chen, H.S.V., J.W. Pellegrini, S.K. Aggarwal, S.Z. Lei, S. Warach, F.E. Jensen, and S.A. Lipton (1992) Open-channel block of N-methyl-D-aspartate (NMDA) responses by memantine – therapeutic advantage against NMDA receptor-mediated neurotoxicity. Journal of Neuroscience 12, 4427–4436.

    CAS  PubMed  Google Scholar 

  29. Clements, J.D., R.A.J. Lester, G. Tong, C.E. Jahr, and G.L. Westbrook (1992) The time course of glutamate in the synaptic cleft. Science 258, 1498–1501.

    Article  CAS  PubMed  Google Scholar 

  30. Nowak, L., P. Bregestovski, P. Ascher, A. Herbet, and A. Prochiantz (1984) Magnesium gates glutamate-activated channels in mouse central neurons. Nature 307, 462–465.

    Article  CAS  PubMed  Google Scholar 

  31. Andine, P., M. Sandberg, R. Bagenholm, A. Lehmann, and H. Hagberg (1991) Intracellular and extracellular changes of amino-acids in the cerebral-cortex of the neonatal rat during hypoxic-ischemia. Brain Res. Dev. Brain Res. 64, 115–120.

    Article  CAS  PubMed  Google Scholar 

  32. Benveniste, H., J. Drejer, A. Schousboe, and N.H. Diemer (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral-ischemia monitored by intracerebral microdialysis. J. Neurochem. 43, 1369–1374.

    Article  CAS  PubMed  Google Scholar 

  33. Buisson, A., J. Callebert, E. Mathieu, M. Plotkine, and R.G. Boulu (1992) Striatal protection induced by lesioning the substantia-nigra of rats subjected to focal ischemia. J. Neurochem. 59, 1153–1157.

    Article  CAS  PubMed  Google Scholar 

  34. Globus, M.Y.T., R. Busto, E. Martinez, I. Valdes, W.D. Dietrich, and M.D. Ginsberg (1991) Comparative effect of transient global-ischemia on extracellular levels of glutamate, glycine, and gamma-aminobutyric-acid in vulnerable and nonvulnerable brain-regions in the rat. J. Neurochem. 57, 470–478.

    Article  CAS  PubMed  Google Scholar 

  35. Globus, M.Y.T., M.D. Ginsberg, and R. Busto (1991) Excitotoxic index – a biochemical marker of selective vulnerability. Neurosci. Lett. 127, 39–42.

    Article  CAS  PubMed  Google Scholar 

  36. Mitani, A., Y. Andou, and K. Kataoka (1992) Selective vulnerability of hippocampal Ca1 neurons cannot be explained in terms of an increase in glutamate concentration during ischemia in the gerbil – brain microdialysis study. Neuroscience 48, 307–313.

    Article  CAS  PubMed  Google Scholar 

  37. Sobkowicz, H.M. and S.M. Slapnick (1992) Neuronal sprouting and synapse formation in response to injury in the mouse organ of corti in culture. Int. J. Dev. Neurosci 10, 545–566.

    Article  CAS  PubMed  Google Scholar 

  38. Sobkowicz, H.M., S.M. Slapnick, and B.K. August (1993) Presynaptic fibers of spiral neurons and reciprocal synapses in the organ of corti in culture. J. Neurocytol. 22, 979–993.

    Article  CAS  PubMed  Google Scholar 

  39. Davies, S.N., D. Martin, J.D. Millar, J.A. Aram, J. Church, and D. Lodge (1988) Differences in results from invivo and invitro studies on the use-dependency of N-methylaspartate antagonism by Mk-801 and other phencyclidine receptor ligands. Eur. J. Pharmacol. 145, 141–151.

    Article  CAS  PubMed  Google Scholar 

  40. Coan, E.J., A.J. Irving, and G.L. Collingridge (1989) Low-frequency activation of the NMDA receptor system can prevent the induction of Ltp. Neurosci. Lett. 105, 205–210.

    Article  CAS  PubMed  Google Scholar 

  41. Frankiewicz, T. and C.G. Parsons (1999) Memantine restores long term potentiation impaired by tonic N-methyl-D-aspartate (NMDA) receptor activation following reduction of Mg2+ in hippocampal slices. Neuropharmacology 38, 1253–1259.

    Article  CAS  PubMed  Google Scholar 

  42. Furukawa, Y., M. Okada, N. Akaike, T. Hayashi, and J. Nabekura (2000) Reduction of voltage-dependent magnesium block of N-methyl-D-aspartate receptor-mediated current by in vivo axonal injury. Neuroscience 96, 385–392.

    Article  CAS  PubMed  Google Scholar 

  43. Rogawski, M.A. and G.L. Wenk (2003) The neuropharmacological basis for the use of memantine in the treatment of Alzheimer’s disease. CNS Drug Rev. 9, 275–308.

    Article  CAS  PubMed  Google Scholar 

  44. Wang, L.Y. and J.F. Macdonald (1995) Modulation by magnesium of the affinity of NMDA receptors for glycine in murine hippocampal-neurons. J. Physiol. (Lond.) 486, 83–95.

    CAS  Google Scholar 

Download references

Authors

Editor information

Peter Molnar James J. Hickman

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Parsons, C.G., Gilling, K. (2007). Memantine as an Example of a Fast, Voltage-Dependent, Open Channel N-Methyl-d-Aspartate Receptor Blocker. In: Molnar, P., Hickman, J.J. (eds) Patch-Clamp Methods and Protocols. Methods in Molecular Biology™, vol 403. Humana Press. https://doi.org/10.1007/978-1-59745-529-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-529-9_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-698-6

  • Online ISBN: 978-1-59745-529-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics