Skip to main content

Biomarkers of Myocardial Necrosis

Past, Present, and Future

  • Chapter
Cardiovascular Biomarkers

Abstract

Biochemical markers play a crucial role in accurate diagnosis of myocardial necrosis and, more importantly, for assessing risk and directing appropriate therapy that improves clinical outcome. Development and utilization of biomarkers has evolved substantially over the past three decades. The earliest biomarkers, such as alanine aminotransferase and lactate dehydrogenase, have fallen out of use with the development of moer sensitive and specific assays for creatine kinase isoenzyme MB and particularly cardiac troponin. Cardiac troponin T or I measurements are now considered surrogates for necrosis and myocardial infarction when elevated in the setting of acute cardiac ischemia. This chapter offers insight into evolution of cardiac biomarkers and offers thoughts regarding the future of necrosis biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rubin E, Farber JL, eds. Essential Pathology, 2nd ed. JB Lippincott, Philadelphia, 1995.

    Google Scholar 

  2. Roe MT, Ohman EM, Maas ACP, et al. Shifting the open artery hypothesis downstream: the quest for optimal reperfusion. J Am Coll Cardiol 2001;37:9–18.

    Article  PubMed  CAS  Google Scholar 

  3. Topol EJ, Yadav JS. Recognition of the importance of embolization in atherosclerotic vascular disease. Circulation 2000;101:570–580.

    PubMed  CAS  Google Scholar 

  4. Gibson CM, Ryan KA, Murphy SA, et al. Impaired coronary blood flow in nonculprit arteries in the setting of acute myocardial infarction. J Am Coll Cardiol 1999;34:974–982.

    Article  PubMed  CAS  Google Scholar 

  5. Nomenclature and Criteria for Diagnosis of Ischemic Heart Disease. Report of the Joint International Society and Federation of Cardiology/World Health Organization Task Force on Standardization of Clinical Nomenclature. Circulaton 1979;59:607–609.

    Google Scholar 

  6. Alpert JS, Thygesen K, Antman E, Bassand JP. Myocardial infarction redefined—a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarction. J Am Coll Cardiol 2000;36:959–969.

    Article  PubMed  CAS  Google Scholar 

  7. Jaffe AS. Elevations in cardiac troponin measurements: false false-positives: the real truth. Cardiovasc Toxicol 2001;1:87–92.

    Article  PubMed  CAS  Google Scholar 

  8. Voss EM, Sharkey SW, Gernert AE, et al. Human and canine cardiac troponin T and creatine kinase-MB distribution in normal and diseased myocardium: infarct sizing using serum profiles. Arch Pathol Lab Med 1995;119:799–806.

    PubMed  CAS  Google Scholar 

  9. Christenson RH, Azzazy HME. Biochemical markers of the acute coronary syndrome. Clin Chem 1998; 44:1855–1864.

    PubMed  CAS  Google Scholar 

  10. Christenson RH, Duh SH, Apple FS, et al. Standardization of cardiac troponin I assays: round robin of ten candidate reference materials. Clin Chem 2001;47:431–437.

    PubMed  CAS  Google Scholar 

  11. Moss DW, Henderson AR. Clinical Enzymology. In: Burtis CA and Ashwood ER, eds. Tietz Textbook of Clinical Chemistry. WB Saunders, Philadelphia, PA, 1999, pp. 617–721.

    Google Scholar 

  12. Lott JA, Stang JM. Serum enzymes and isoenzymes in the diagnosis and differential diagnosis of myocardial ischemia and necrosis. Clin Chem 1980;26:1241–1250.

    PubMed  CAS  Google Scholar 

  13. Jaffe AS, Landt Y, Parvin CA, Abendschein DR, Geltman EM, Ladenson JH. Comparative sensitivity of cardiac troponin I and lactate dehydrogenase isoenzymes for diagnosing acute myocardial infarction. Clin Chem 1996;42:1770–1776.

    PubMed  CAS  Google Scholar 

  14. Leger JJ, Elzinga M. Studies on cardiac myosin light chains: comparison of the sequences of cardiac and skeletal myosin LC-2. Biochem Biophys Res Commun 1977;74:1390–1396.

    Article  PubMed  CAS  Google Scholar 

  15. Khaw BA, Gold HK, Fallon JT, Haber E. Detection of serum cardiac myosin light chains in acute experimental myocardial infarction. Circulation 1979;58:1130–1136.

    Google Scholar 

  16. Mair J, Thome-Kromer B, Wagner I, et al. Concentration time courses of troponin and myosin subunits after acute myocardial infarction. Coron Artery Dis 1994;5:865–872.

    PubMed  CAS  Google Scholar 

  17. Hillis GS, Zhao N, Taggart P, Dalsey WC, Mangione A. Utility of cardiac troponin I, creatine kinase-MB(mass), myosin light chain 1, and myoglobin in the early in-hospital triage of “high risk” patients with chest pain. Heart 1999:82:614–620.

    PubMed  CAS  Google Scholar 

  18. Katus HA, Diederich KW, Hoberg E, Kubler W. Circulating cardiac myosin light chains in patients with angina at rest: identification of a high risk subgroup. J Am Coll Cardiol 1988;11:487–493.

    PubMed  CAS  Google Scholar 

  19. Hoberg E, Katus HA, Diederich KW, Kubler W. Myoglobin, creatine kinase-MB isoenzyme, and myosin light chain release in patients with unstable angina pectoris. Eur Heart J 1987;8:989–994.

    PubMed  CAS  Google Scholar 

  20. Rosalki SB, Roberts R, Katus HA, Giannitsis E, Ladenson JH, Apple FS. Cardiac biomarkers for detection of myocardial infarction: perspectives from past to present. Clin Chem 2004;50:2205–2213.

    Article  PubMed  CAS  Google Scholar 

  21. Ladue JS, Wroblewski F, Karmen A. Serum glutamic oxaloacetic transaminase activity in human acute transmural myocardial infarction. Science 1954;120:497–499.

    Article  PubMed  CAS  Google Scholar 

  22. Warhol MJ, Siegel AJ, Evans WJ, Silverman LM. Skeletal muscle injury and repair in marathon runners after competition. Am J Pathol 1985;118:331–339.

    PubMed  CAS  Google Scholar 

  23. Young A. Plasma creatine kinase after the marathon—a diagnostic dilemma. Br J Sports Med 1984;18: 269–272.

    Article  PubMed  CAS  Google Scholar 

  24. Ingwall JS, Kramer MF, Fifer MA, et al. The creatine kinase system in normal and diseased human myocardium. N Engl J Med 1985;313:1050–1054.

    Article  PubMed  CAS  Google Scholar 

  25. Tsung SH. Creatine kinase isoenzyme patterns in human tissue obtained at surgery. Clin Chem 1976;22: 173–175.

    PubMed  CAS  Google Scholar 

  26. Adams J III, Abendschein DS, Jaffe AS. Biochemical markers of myocardial injury. Is MB the choice for the 1990’s? Circulation 1993;88:750–763.

    PubMed  CAS  Google Scholar 

  27. Keffer JH. Myocardial markers of injury evolution and insights. Am J Clin Pathol 1996;105:305–320.

    PubMed  CAS  Google Scholar 

  28. Roberts R, Henry PD, Witteeven SA, Sobel BE. Quantification of serum creatine phosphokinase isoenzyme activity. Am J Cardiol 1974;33:650–657.

    Article  PubMed  CAS  Google Scholar 

  29. Tunstall-Pedoe H, Kuulasmaa K, Amouyel P, Arveiler D, Rajakangas A, Pajak A. Myocardial infarction and coronary deaths in the World Health Organization MONICA project: registration procedures, event rates, and case-fatality rates in 38 populations from 21 countries in four continents. Circulation 1994;90: 583–612.

    PubMed  CAS  Google Scholar 

  30. Roberts R, Sobel BE, Parker CW. Radioimmunoassay for creatine kinase isoenzymes. Science 1976;194: 855–857.

    Article  PubMed  CAS  Google Scholar 

  31. Vaidya HC, Maynard Y, Dietzler DN, Ladenson JH. Direct measurement of creatine kinase-MB activity in serum after extraction with a monoclonal antibody specific to the MB isoenzyme. Clin Chem 1986;32: 657–663.

    PubMed  CAS  Google Scholar 

  32. Wevers RA, Delsing M, Klein Gebbink JA, Soons JB. Post-synthetic changes in creatine kinase isozymes. Clin Chim Acta 1978;86:323–327.

    Article  PubMed  CAS  Google Scholar 

  33. Puleo PR, Perryman MB, Bresser MA, Rokey R, Pratt CM, Roberts R. Creatine kinase isoform analysis in the detection and assessment of thrombolysis in man. Circulation 1987;75:1162–1169.

    PubMed  CAS  Google Scholar 

  34. Puleo PR, Meyer D, Wathen C, et al. Use of a rapid assay of subforms of creatine kinase-MB to diagnose or rule out acute myocardial infarction. N Engl J Med 1994;331:561–566.

    Article  PubMed  CAS  Google Scholar 

  35. Wu AH, Apple FS, Gibler WB, Jesse RL, Warshaw MM, Valdes R Jr. National Academy of Clinical Biochemistry Standards of Laboratory Practice: recommendations for the use of cardiac markers in coronary artery diseases. Clin Chem 1999;45:1104–1121.

    PubMed  CAS  Google Scholar 

  36. Ishikawa Y, Saffitz JE, Mealman RL, Grace AM, Roberts R. Reversible myocardial ischemic injury is not associated with increased creatine kinase activity in plasma. Clin Chem 1997;43:467–475.

    PubMed  CAS  Google Scholar 

  37. Lee TH, Rouan GW, Weisberg MC, et al. Sensitivity of routine clinical criteria for diagnosing myocardial infarction within 24 hours of hospitalization. Ann Intern Med 1987;106:181–186.

    PubMed  CAS  Google Scholar 

  38. Christenson RH, Vaidya H, Landt Y, et al. Standardization of creatine kinase-MB (CK-MB) mass assays: the use of recombinant CK-MB as a reference material. Clin Chem 1999;45:1414–1423.

    PubMed  CAS  Google Scholar 

  39. Luepker RV, Apple FS, Christenson RH, et al. Case definitions for acute coronary heart disease in epidemiology and clinical research studies: a statement from the AHA Council on Epidemiology and Prevention; AHA Statistics Committee; World Heart Federation Council on Epidemiology and Prevention; the European Society of Cardiology Working Group on Epidemiology and Prevention; Centers for Disease Control and Prevention; and the National Heart, Lung, and Blood Institute. Circulation 2003;108:2543–2549.

    Article  PubMed  Google Scholar 

  40. Wu AHB, Lane PL. Metaanalysis in clinical chemistry: validation of cardiac troponin T as a marker for ischemic heart diseases. Clin Chem 1995;41:1228–1233.

    PubMed  CAS  Google Scholar 

  41. Ottani F, Galvani M, Nicolini FA, et al. Elevated cardiac troponin levels predict the risk of adverse outcome in patients with acute coronary syndromes. Am Heart J 2000;140:917–927.

    Article  PubMed  CAS  Google Scholar 

  42. Heidenreich PA, Alloggiamento T, Melsop K, McDonald KM, Go AS, Hlatky MA. The prognostic value of troponin in patients with non-ST elevation acute coronary syndromes: a meta-analysis. J Am Coll Cardiol 2001;38:478–485.

    Article  PubMed  CAS  Google Scholar 

  43. Katrukha AG, Bereznikova AV, Filatov VL, et al. Degradation of cardiac troponin I: implication for reliable immunodetection. Clin Chem 1998;44:2433–2440.

    PubMed  CAS  Google Scholar 

  44. Wu AH, Feng YJ, Moore R, et al. Characterization of cardiac troponin subunit release into serum after acute myocardial infarction and comparison of assays for troponin T and I. American Association for Clinical Chemistry Subcommittee on cTnI Standardization. Clin Chem 1998;44:1198–1208.

    PubMed  CAS  Google Scholar 

  45. Panteghini M, Gerhardt W, Apple FS, Dati F, Ravkilde J, Wu AH. Quality specifications for cardiac troponin assays. Clin Chem Lab Med 2001;39:175–179.

    Article  PubMed  CAS  Google Scholar 

  46. Kaul P, Newby LK, Fu Y, et al. Troponin T and quantitative ST-segment depression offer complementary prognostic information in the risk stratification of acute coronary syndrome patients. J Am Coll Cardiol 2003;41:371–380.

    Article  PubMed  CAS  Google Scholar 

  47. Morrow DA, Cannon CP, Rifai N, et al. Ability of minor elevations of troponins I and T to predict benefit from an early invasive strategy in patients with unstable angina and non-ST elevation myocardial infarction: results from a randomized trial. JAMA 2001:286:2405–2412.

    Article  PubMed  CAS  Google Scholar 

  48. Panteghini M, Pagani F, Yeo KT, et al. Evaluation of imprecision for cardiac troponin assays at lowrange concentrations. Clin Chem 2004;50:327–332.

    Article  PubMed  CAS  Google Scholar 

  49. Christenson RH, Cervelli DR, Bauer RS, Gordon M, Stratus CS. Cardiac troponin I method: performance characteristics including imprecision at low concentrations. Clin Biochem 2004;37:679–683.

    Article  PubMed  CAS  Google Scholar 

  50. Apple FS, Wu AH, Jaffe AS. European Society of Cardiology and American College of Cardiology guidelines for redefinition of myocardial infarction: how to use existing assays clinically and for clinical trials. Am Heart J 2002;144:981–986.

    Article  PubMed  Google Scholar 

  51. Venge P, Lagerqvist B, Diderholm E, Lindahl B, Wallentin L. Clinical performance of three cardiac troponin assays in patients with unstable coronary artery disease (a FRISC II substudy). Am J Cardiol 2002; 89:1035–1041.

    Article  PubMed  CAS  Google Scholar 

  52. Tate JR, Heathcote D, Koerbin G, et al. The harmonization of cardiac troponin I measurement is independent of sample time collection but is dependent on the source of calibrator. Clin Chim Acta 2002;324: 13–23.

    Article  PubMed  CAS  Google Scholar 

  53. Tate JR, Heathcote D, Rayfield J, Hickman PE. The lack of standardization of cardiac troponin I assay systems. Clin Chim Acta 1999;284:141–149.

    Article  PubMed  CAS  Google Scholar 

  54. Balk EM, Ioannidis JP, Salem D, Chew PW, Lau J. Accuracy of biomarkers to diagnose acute cardiac ischemia in the emergency department: a meta-analysis. Ann Emerg Med 2001;37:478–494.

    Article  PubMed  CAS  Google Scholar 

  55. Kubasik NP, Guiney W, Warren K, D’Souza JP, Sine HE, Brody BB. Radioimmunoassay of serum myoglobin: evaluation and modification of a commercial kit and assessment of its usefulness for detecting acute myocardial infarction. Clin Chem 1978;24:2047–2049.

    PubMed  CAS  Google Scholar 

  56. Zaninotto M, Pagani F, Altinier S, et al. Multicenter evaluation of five assays for myoglobin determination. Clin Chem 2000;46:1631–1637.

    PubMed  CAS  Google Scholar 

  57. Panteghini M, Linsinger T, Wu AHB, et al. Standardization of immunoassays for measurement of myoglobin in serum. Phase I: evaluation of candidate secondary reference materials. Clin Chim Acta 2004;341:65–72.

    Article  PubMed  CAS  Google Scholar 

  58. Gornall DA, Roth SN. Serial myoglobin quantitation in the early assessment of myocardial damage: a clinical study. Clin Biochem 1996;29:379–384.

    Article  PubMed  CAS  Google Scholar 

  59. Montague C, Kircher T. Myoglobin in the early evaluation of acute chest pain. Am J Clin Pathol 1995; 104:472–476.

    PubMed  CAS  Google Scholar 

  60. Fesmire FM, Christenson RH, Fody EP, Feintuch TA. Delta creatine kinase-MB outperforms myoglobin at two hours during the emergency department identification and exclusion of troponin positive non-ST-segment elevation acute coronary syndromes. Ann Emerg Med 2004;44:12–19.

    Article  PubMed  Google Scholar 

  61. de Lemos JA, Morrow DA, Gibson CM, et al. The prognostic value of serum myoglobin in patients with non-ST-segment elevation acute coronary syndromes: results from the TIMI 11B and TACTICS-TIMI 18 studies. J Am Coll Cardiol 2002;40:238–244.

    Article  PubMed  Google Scholar 

  62. Newby LK, Storrow AB, Gibler WB, et al. Bedside multimarker testing for risk stratification in chest pain units: the chest pain evaluation by creatine kinase-MB, myoglobin, and troponin I (CHECKMATE) study. Circulation 2001;103:1832–1837.

    PubMed  CAS  Google Scholar 

  63. Newby LK, Christenson RH, Ohman EM, et al. Value of serial troponin T measures for early and late risk stratification in patients with acute coronary syndromes. The GUSTO-IIa Investigators. Circulation 1998;98:1853–1859.

    PubMed  CAS  Google Scholar 

  64. Tanaka T, Hirota Y, Sohmiya K, Nishimura S, Kawamura K. Serum and urinary human heart fatty acid-binding protein in acute myocardial infarction. Clin Biochem 1991;24:195–201.

    Article  PubMed  CAS  Google Scholar 

  65. Kleine AH, Glatz JF, Van Nieuwenhoven FA, Van der Vusse GJ. Release of heart fatty acid-binding protein into plasma after acute myocardial infarction in man. Mol Cell Biochem 1992;116:155–162.

    Article  PubMed  CAS  Google Scholar 

  66. Wodzig KW, Pelsers MM, van der Vusse GJ, Roos W, Glatz JF. One-step enzyme-linked immunosorbent assay (ELISA) for plasma fatty acid-binding protein. Ann Clin Biochem 1997;34:263–268.

    PubMed  CAS  Google Scholar 

  67. Tsuji R, Tanaka T, Sohmiya K, et al. Human heart-type cytoplasmic fatty acid-binding protein in serum and urine during hyperacute myocardial infarction. Int J Cardiol 1993;41:209–217.

    Article  PubMed  CAS  Google Scholar 

  68. Van Nieuwenhoven FA, Kleine AH, Wodzig WH, et al. Discrimination between myocardial and skeletal muscle injury by assessment of the plasma ratio of myoglobin over fatty acid-binding protein. Circulation 1995;92:2848–2854.

    PubMed  Google Scholar 

  69. Ishii J, Wang JH, Naruse H, et al. Serum concentrations of myoglobin vs human heart-type cytoplasmic fatty acid-binding protein in early detection of acute myocardial infarction. Clin Chem 1997;43:1372–1378.

    PubMed  CAS  Google Scholar 

  70. Sly WS, Hu PY. Human carbonic anhydrases and carbonic anhydrase deficiencies. Annu Rev Biochem 1995;64:375–401.

    Article  PubMed  CAS  Google Scholar 

  71. Vaananen HK, Syrjala H, Rahkila P, et al. Serum carbonic anhydrase III and myoglobin concentrations in acute myocardial infarction. Clin Chem 1990;36:635–638.

    PubMed  CAS  Google Scholar 

  72. Brogan GX Jr, Vuori J, Friedman S, et al. Improved specificity of myoglobin plus carbonic anhydrase assay versus that of creatine kinase-MB for early diagnosis of acute myocardial infarction. Ann Emerg Med 1996;27:22–28.

    Article  PubMed  Google Scholar 

  73. Beuerle JR, Azzazy HM, Styba G, Duh SH, Christenson RH. Characteristics of myoglobin, carbonic anhydrase III and the myoglobin/carbonic anhydrase III ratio in trauma, exercise, and myocardial infarction patients. Clin Chim Acta 2000;294:115–128.

    Article  PubMed  CAS  Google Scholar 

  74. Morrow DA, Braunwald E. Future of biomarkers in acute coronary syndromes: moving toward a multimarker strategy. Circulation 2003;108:250–252.

    Article  PubMed  Google Scholar 

  75. Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 2002;1:845–867.

    Article  PubMed  CAS  Google Scholar 

  76. Reynolds MA, Anderberg JM, Buechler KF, et al. A cardiac marker panel for the diagnosis of acute myocardial infarction. Clin Chem 2004;50:A22 (abstract).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Christenson, R.H., Azzazy, H.M.E. (2006). Biomarkers of Myocardial Necrosis. In: Morrow, D.A. (eds) Cardiovascular Biomarkers. Contemporary Cardiology. Humana Press. https://doi.org/10.1007/978-1-59745-051-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-051-5_1

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-526-2

  • Online ISBN: 978-1-59745-051-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics