Skip to main content

Elucidating the Internal Structure of Psychophysical Timing Performance in the Sub-second and Second Range by Utilizing Confirmatory Factor Analysis

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 829))

Abstract

The most influential theoretical account in time psychophysics assumes the existence of a unitary internal clock based on neural counting. The distinct timing hypothesis, on the other hand, suggests an automatic timing mechanism for processing of durations in the sub-second range and a cognitively controlled timing mechanism for processing of durations in the range of seconds. Although several psychophysical approaches can be applied for identifying the internal structure of interval timing in the second and sub-second range, the existing data provide a puzzling picture of rather inconsistent results. In the present chapter, we introduce confirmatory factor analysis (CFA) to further elucidate the internal structure of interval timing performance in the sub-second and second range. More specifically, we investigated whether CFA would rather support the notion of a unitary timing mechanism or of distinct timing mechanisms underlying interval timing in the sub-second and second range, respectively. The assumption of two distinct timing mechanisms which are completely independent of each other was not supported by our data. The model assuming a unitary timing mechanism underlying interval timing in both the sub-second and second range fitted the empirical data much better. Eventually, we also tested a third model assuming two distinct, but functionally related mechanisms. The correlation between the two latent variables representing the hypothesized timing mechanisms was rather high and comparison of fit indices indicated that the assumption of two associated timing mechanisms described the observed data better than only one latent variable. Models are discussed in the light of the existing psychophysical and neurophysiological data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Grondin S. Timing and time perception: a review of recent behavioral and neuroscience findings and theoretical directions. Atten Percept Psychophys. 2010;72:561–82.

    Article  PubMed  Google Scholar 

  2. Rammsayer T, Ulrich R. Counting models of temporal discrimination. Psychon Bull Rev. 2001;8:270–7.

    Article  PubMed  CAS  Google Scholar 

  3. Killeen PB, Fetterman JG. A behavioral theory of timing. Psychol Rev. 1988;95:274–95.

    Article  PubMed  CAS  Google Scholar 

  4. Rammsayer TH, Ulrich R. Elaborative rehearsal of nontemporal information interferes with temporal processing of durations in the range of seconds but not milliseconds. Acta Psychol (Amst). 2011;137:127–33.

    Article  Google Scholar 

  5. Allan LG, Kristofferson AB. Psychophysical theories of duration discrimination. Percept Psychophys. 1974;16:26–34.

    Article  Google Scholar 

  6. Creelman CD. Human discrimination of auditory duration. J Acoust Soc Am. 1962;34:582–93.

    Article  Google Scholar 

  7. Gibbon J. Ubiquity of scalar timing with a Poisson clock. J Math Psychol. 1992;36:283–93.

    Article  Google Scholar 

  8. Grondin S. From physical time to the first and second moments of psychological time. Psychol Bull. 2001;127:22–44.

    Article  PubMed  CAS  Google Scholar 

  9. Killeen PB, Weiss NA. Optimal timing and the Weber function. Psychol Rev. 1987;94:455–68.

    Article  PubMed  CAS  Google Scholar 

  10. Treisman M. Temporal discrimination and the indifference interval: implications for a model of the “internal clock”. Psychol Monogr. 1963;77:1–31.

    Article  PubMed  CAS  Google Scholar 

  11. Treisman M, Faulkner A, Naish PLN, Brogan D. The internal clock: evidence for a temporal oscillator underlying time perception with some estimates of its characteristic frequency. Perception. 1990;19:705–43.

    Article  PubMed  CAS  Google Scholar 

  12. Gibbon J. Scalar expectancy theory and Weber’s law in animal timing. Psychol Rev. 1977;84:279–325.

    Article  Google Scholar 

  13. Allan LG, Kristofferson AB. Judgments about the duration of brief stimuli. Percept Psychophys. 1974;15:434–40.

    Article  Google Scholar 

  14. Lewis PA, Miall RC. The precision of temporal judgement: milliseconds, many minutes, and beyond. Philos Trans R Soc Lond B Biol Sci. 2009;364:1897–905.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Gibbon J, Malapani C, Dale CL, Gallistel C. Toward a neurobiology of temporal cognition: advances and challenges. Curr Opin Neurobiol. 1997;7:170–84.

    Article  PubMed  CAS  Google Scholar 

  16. Rammsayer TH. Experimental evidence for different timing mechanisms underlying temporal discrimination. In: Masin SC, editor. Fechner Day 96 Proceedings of the Twelfth Annual Meeting of the International Society for Psychophysics Padua, Italy: The International Society for Psychophysics; 1996. p. 63–8.

    Google Scholar 

  17. Grondin S. Unequal Weber fraction for the categorization of brief temporal intervals. Atten Percept Psychophys. 2010;72:1422–30.

    Article  PubMed  Google Scholar 

  18. Bizo LA, Chu JYM, Sanabria F, Killeen PR. The failure of Weber’s law in time perception and production. Behav Processes. 2006;71:201–10.

    Article  PubMed  Google Scholar 

  19. Münsterberg H. Beiträge zur experimentellen Psychologie: Heft 2. Freiburg: Akademische Verlagsbuchhandlung von J. C. B. Mohr; 1889.

    Google Scholar 

  20. Michon JA. The complete time experiencer. In: Michon JA, Jackson JL, editors. Time, mind, and behavior. Berlin: Springer; 1985. p. 21–54.

    Chapter  Google Scholar 

  21. Buonomano DV, Bramen J, Khodadadifar M. Influence of the interstimulus interval on temporal processing and learning: testing the state-dependent network model. Philos Trans R Soc Lond B Biol Sci. 2009;364:1865–73.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Spencer RMC, Karmarkar U, Ivry RB. Evaluating dedicated and intrinsic models of temporal encoding by varying context. Philos Trans R Soc Lond B Biol Sci. 2009;364:1853–63.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rammsayer TH, Lima SD. Duration discrimination of filled and empty auditory intervals: cognitive and perceptual factors. Percept Psychophys. 1991;50:565–74.

    Article  PubMed  CAS  Google Scholar 

  24. Lewis PA, Miall RC. Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Curr Opin Neurobiol. 2003;13:1–6.

    Article  Google Scholar 

  25. Lewis PA, Miall RC. Brain activation patterns during measurement of sub- and supra- second intervals. Neuropsychologia. 2003;41:1583–92.

    Article  PubMed  CAS  Google Scholar 

  26. Lewis PA, Miall RC. Remembering in time: a continuous clock. Trends Cogn Sci. 2006;10:401–6.

    Article  PubMed  Google Scholar 

  27. Rammsayer T. Sensory and cognitive mechanisms in temporal processing elucidated by a model systems approach. In: Helfrich H, editor. Time and mind II: information processing perspectives. Göttingen: Hogrefe & Huber; 2003. p. 97–113.

    Google Scholar 

  28. Rammsayer T. Neuropharmacological approaches to human timing. In: Grondin S, editor. Psychology of time. Bingley: Emerald; 2008. p. 295–320.

    Google Scholar 

  29. Rammsayer T. Effects of pharmacologically induced dopamine-receptor stimulation on human temporal information processing. Neuroquantology. 2009;7:103–13.

    Article  Google Scholar 

  30. Getty DJ. Discrimination of short temporal intervals: a comparison of two models. Percept Psychophys. 1975;18:1–8.

    Article  Google Scholar 

  31. Merchant H, Harrington DL, Meck WH. Neural basis of the perception and estimation of time. Annu Rev Neurosci. 2013;36:313–36.

    Article  PubMed  CAS  Google Scholar 

  32. Keele S, Nicoletti R, Ivry R, Pokorny R. Do perception and motor production share common timing mechanisms? A correlational analysis. Acta Psychol (Amst). 1985;60:173–91.

    Article  CAS  Google Scholar 

  33. Rammsayer TH, Brandler S. Aspects of temporal information processing: a dimensional analysis. Psychol Res. 2004;69:115–23.

    Article  PubMed  Google Scholar 

  34. Merchant H, Zarco W, Prado L. Do we have a common mechanism for measuring time in the hundreds of millisecond range? Evidence from multiple-interval timing tasks. J Neurophysiol. 2008;99:939–49.

    Article  PubMed  Google Scholar 

  35. Penney TB, Tourret S. Les effets de la modalité sensorielle sur la perception du temps. Psychol Fr. 2005;50:131–43.

    Google Scholar 

  36. van Wassenhove V. Minding time in an amodal representational space. Philos Trans R Soc Lond B Biol Sci. 2009;364:1815–30.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rammsayer TH. Differences in duration discrimination of filled and empty auditory intervals as a function of base duration. Atten Percept Psychophys. 2010;72:1591–600.

    Article  PubMed  Google Scholar 

  38. Kaernbach C. Simple adaptive testing with the weighted up-down method. Percept Psychophys. 1991;49:227–9.

    Article  PubMed  CAS  Google Scholar 

  39. Rammsayer T. Developing a psychophysical measure to assess duration discrimination in the range of milliseconds: methodological and psychometric issues. Eur J Psychol Assess. 2012;28:172–80.

    Article  Google Scholar 

  40. Luce RD, Galanter E. Discrimination. In: Luce RD, Bush RR, Galanter E, editors. Handbook of mathematical psychology. New York: Wiley; 1963. p. 191–243.

    Google Scholar 

  41. Church RM, Gibbon J. Temporal generalization. J Exp Psychol Anim Behav Process. 1982;8:165–86.

    Article  PubMed  CAS  Google Scholar 

  42. McCormack T, Brown GDA, Maylor EA, Richardson LBN, Darby RJ. Effects of aging on absolute identification of duration. Psychol Aging. 2002;17:363–78.

    Article  PubMed  Google Scholar 

  43. Wearden JH, Wearden AJ, Rabbitt PMA. Age and IQ effects on stimulus and response timing. J Exp Psychol Hum Percept Perform. 1997;23:962–79.

    Article  Google Scholar 

  44. Abel SM. Duration discrimination of noise and tone bursts. J Acoust Soc Am. 1972;51:1219–23.

    Article  PubMed  CAS  Google Scholar 

  45. Buonomano DV, Karmarkar UR. How do we tell time? Neuroscientist. 2002;8:42–51.

    Article  PubMed  Google Scholar 

  46. Grondin S, Meilleur-Wells G, Lachance R. When to start explicit counting in time-intervals discrimination task: a critical point in the timing process of humans. J Exp Psychol Hum Percept Perform. 1999;25:993–1004.

    Article  Google Scholar 

  47. Grondin S, Ouellet B, Roussel M-E. Benefits and limits of explicit counting for discriminating temporal intervals. Can J Exp Psychol. 2004;58:1–12.

    Article  PubMed  Google Scholar 

  48. Loehlin JC. Latent variable models – an introduction to factor, path, and structural analysis. 3rd ed. Mahwah: Erlbaum; 1998.

    Google Scholar 

  49. Schermelleh-Engel K, Moosbrugger H, Müller H. Evaluating the fit of structural equation models: tests of significance and descriptive goodness-of-fit measures. Meth Psychol Res. 2003;8:23–74.

    Google Scholar 

  50. Hu L, Bentler PM. Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct Equ Modeling. 1999;6:1–55.

    Article  Google Scholar 

  51. Browne MW, Cudeck R. Alternative ways of assessing model fit. In: Bollen KA, Long JS, editors. Testing structural equation models. Newbury Park: Sage; 1993. p. 136–62.

    Google Scholar 

  52. Kline RB. Principles and practice of structural equation modeling. New York: Guilford; 1998.

    Google Scholar 

  53. Hellström Å, Rammsayer T. Mechanisms behind discrimination of short and long auditory durations. In: da Silva JA, Matsushima EH, Ribeiro-Filho NP, editors. Annual Meeting of the International Society for Psychophysics, Rio de Janeiro: The International Society for Psychophysics; 2002. p. 110–5.

    Google Scholar 

  54. Rammsayer T. Effects of pharmacologically induced changes in NMDA receptor activity on human timing and sensorimotor performance. Brain Res. 2006;1073–1074:407–16.

    Article  PubMed  Google Scholar 

  55. Rammsayer T, Ulrich R. No evidence for qualitative differences in the processing of short and long temporal intervals. Acta Psychol (Amst). 2005;120:141–71.

    Article  Google Scholar 

  56. Gooch CM, Wiener M, Hamilton AC, Coslett HB. Temporal discrimination of sub- and suprasecond time intervals: a voxel-based lesion mapping analysis. Front Integr Neurosci. 2011;5:59. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3190120/.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Lewis PA, Miall RC. A right hemispheric prefrontal system for cognitive time measurement. Behav Processes. 2006;71:226–34.

    Article  PubMed  CAS  Google Scholar 

  58. Wiener M, Turkeltaub P, Coslett HB. The image of time: a voxel-wise meta-analysis. Neuroimage. 2010;49:1728–40.

    Article  PubMed  Google Scholar 

  59. Mangels JA, Ivry RB, Shimizu N. Dissociable contributions of the prefrontal and neocerebellar cortex to time perception. Cogn Brain Res. 1998;7:15–39.

    Article  CAS  Google Scholar 

  60. Nichelli P, Clark K, Hollnagel C, Grafman J. Duration processing after frontal lobe lesions. Ann N Y Acad Sci. 1995;769:183–90.

    Article  PubMed  CAS  Google Scholar 

  61. Wiener M, Matell MS, Coslett HB. Multiple mechanisms for temporal processing. Front Integr Neurosci. 2011;5:31. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3136737/.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Bangert AS, Reuter-Lorenz PA, Seidler RD. Mechanisms of timing across tasks and intervals. Acta Psychol (Amst). 2011;136:20–34.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas H. Rammsayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rammsayer, T.H., Troche, S.J. (2014). Elucidating the Internal Structure of Psychophysical Timing Performance in the Sub-second and Second Range by Utilizing Confirmatory Factor Analysis. In: Merchant, H., de Lafuente, V. (eds) Neurobiology of Interval Timing. Advances in Experimental Medicine and Biology, vol 829. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1782-2_3

Download citation

Publish with us

Policies and ethics