Skip to main content

About the (Non)scalar Property for Time Perception

  • Chapter
  • First Online:
Book cover Neurobiology of Interval Timing

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 829))

Abstract

Approaching sensation scientifically is relatively straightforward. There are physical attributes for stimulating the central nervous system, and there are specific receptors for each sense for translating the physical signals into codes that brain will recognize. When studying time though, it is far from obvious that there are any specific receptors or specific stimuli. Consequently, it becomes important to determine whether internal time obeys some laws or principles usually reported when other senses are studied. In addition to reviewing some classical methods for studying time perception, the present chapter focusses on one of these laws, Weber law, also referred to as the scalar property in the field of time perception. Therefore, the question addressed here is the following: does variability increase linearly as a function of the magnitude of the duration under investigation? The main empirical facts relative to this question are reviewed, along with a report of the theoretical impact of these facts on the hypotheses about the nature of the internal mechanisms responsible for estimating time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Traditionally in psychophysics, when a psychometric function is used, the distance on the x axis corresponding to 75 and 25 % of “long” responses, divided by 2, is the discrimination threshold.

  2. 2.

    The reader will also find a Weber fraction increase for tempo discrimination, from 1 to 1.4 s, in Ehrlé and Samson [63, Table 5].

References

  1. Vierordt K. Der zeitsinn nach versuchen. Tubingen: Laupp; 1868.

    Google Scholar 

  2. Bolton T. Rhythm. Am J Psychol. 1894;6(2):145–238.

    Article  Google Scholar 

  3. James W. The principles of psychology. New York: Dover; 1890.

    Book  Google Scholar 

  4. Fraisse P. Les structures rythmiques. Louvain: Studia Psychologica; 1956.

    Google Scholar 

  5. Fraisse P. Psychologie du temps. Paris: Presses Universitaires de France; 1957.

    Google Scholar 

  6. Gibbon J, Allan LG, editors. Timing and time perception, vol. 423. New York: New York Academy of Sciences; 1984.

    Google Scholar 

  7. Grondin S. Methods for studying psychological time. In: Grondin S, editor. Psychology of time. Bingley: Emerald Group; 2008. p. 51–74.

    Google Scholar 

  8. Zakay D, Block RA. Temporal cognition. Curr Dir Psychol Sci. 1997;6(1):12–6.

    Article  Google Scholar 

  9. Ornstein R. On the experience of time. New York: Penguin; 1969.

    Google Scholar 

  10. Boltz MG. Effects of event structure on retrospective duration judgments. Percept Psychophys. 1995;57(7):1080–96.

    Article  PubMed  CAS  Google Scholar 

  11. Bisson N, Grondin S. Time estimates of internet surfing and video gaming. Timing Time Percept. 2013;1(1):39–64.

    Article  Google Scholar 

  12. Bisson N, Tobin S, Grondin S. Remembering the duration of joyful and sad musical excerpts. Neuroquantology. 2009;7(1):46–57.

    Google Scholar 

  13. Bisson N, Tobin S, Grondin S. Prospective and retrospective time estimates of children: a comparison based on ecological tasks. PLoS One. 2012;7(3):e33049. http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0033049.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Grondin S, Plourde M. Judging multi-minute intervals retrospectively. Q J Exp Psychol. 2007;60(9):1303–12.

    Article  Google Scholar 

  15. Tobin S, Bisson N, Grondin S. An ecological approach to prospective and retrospective timing of long durations: a study involving gamers. PLoS One. 2010;5(2):e9271. http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0009271.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Burt CDB. The effect of actual event duration and event memory on the reconstruction of duration information. Appl Cogn Psychol. 1993;7(1):63–73.

    Article  Google Scholar 

  17. Burt CDB, Kemp S. Retrospective duration estimation of public events. Mem Cognit. 1991;19(3):252–62.

    Article  PubMed  CAS  Google Scholar 

  18. Burt CDB. Reconstruction of the duration of autobiographical events. Mem Cognit. 1992;20(2):124–32.

    Article  PubMed  CAS  Google Scholar 

  19. Burt CDB, Kemp S, Conway M. What happens if you retest autobiographical memory 10 years on? Mem Cognit. 2001;29(1):127–36.

    Article  PubMed  CAS  Google Scholar 

  20. Allan LG. The perception of time. Percept Psychophys. 1979;26(5):340–54.

    Article  Google Scholar 

  21. Killeen PR. Counting the minutes. In: Macar F, Pouthas V, Friedman W, editors. Time, action and cognition: towards bridging the gap. Dordrecht: Kluwer; 1992. p. 203–14.

    Chapter  Google Scholar 

  22. Gibbon J. Scalar expectancy theory and Weber’s law in animal timing. Psychol Rev. 1977;84(3):279–325.

    Article  Google Scholar 

  23. Gibbon J. Origins of scalar timing. Learn Motiv. 1991;22(1):3–38.

    Article  Google Scholar 

  24. Grondin S. Timing and time perception: a review of recent behavioral and neuroscience findings and theoretical directions. Atten Percept Psychophys. 2010;72(3):561–82.

    Article  PubMed  Google Scholar 

  25. Stevens SS. Psychophysics: introduction to its perceptual, neural and social prospects. New York: Wiley; 1975.

    Google Scholar 

  26. Eisler H. Experiments on subjective duration 1878–1975: a collection of power function exponents. Psychol Bull. 1976;83(6):1154–71.

    Article  PubMed  CAS  Google Scholar 

  27. Rammsayer TH, Grondin S. Psychophysics of human timing. In: Miller RA, editor. Time and the brain. Reading: Harwood Academic; 2000. p. 157–67.

    Chapter  Google Scholar 

  28. Getty D. Discrimination of short temporal intervals: a comparison of two models. Percept Psychophys. 1975;18(1):1–8.

    Article  Google Scholar 

  29. Killeen PR, Weiss NA. Optimal timing and the Weber function. Psychol Rev. 1987;94(4):455–68.

    Article  PubMed  CAS  Google Scholar 

  30. Creelman CD. Human discrimination of auditory duration. J Acoust Soc Am. 1962;34(5):582–93.

    Article  Google Scholar 

  31. Treisman M. Temporal discrimination and the indifference interval: implications for a model of the “internal clock”. Psychol Monogr. 1963;77(13):1–31.

    Article  PubMed  CAS  Google Scholar 

  32. Grondin S. From physical time to the first and second moments of psychological time. Psychol Bull. 2001;127(1):22–44.

    Article  PubMed  CAS  Google Scholar 

  33. Allan LG, Kristofferson AB. Psychophysical theories of duration discrimination. Percept Psychophys. 1974;16(1):26–34.

    Article  Google Scholar 

  34. Matthews WJ. Can we use verbal estimation to dissect the internal clock? Differentiating the effects of pacemaker rate, switch latencies, and judgment processes. Behav Processes. 2011;86(1):68–74.

    Article  PubMed  Google Scholar 

  35. Allan LG. The influence of the scalar timing model on human timing research. Behav Processes. 1998;44(2):101–17.

    Article  PubMed  CAS  Google Scholar 

  36. Lejeune H, Wearden JH. Scalar properties in animal timing: conformity and violations. Q J Exp Psychol. 2006;59(11):1875–908.

    Article  Google Scholar 

  37. Wearden J. Applying the scalar timing model to human time psychology: progress and challenges. In: Helfrich H, editor. Time and mind II. Göttingen: Hogrefe & Huber; 2003. p. 21–39.

    Google Scholar 

  38. Balsam PD, Drew MR, Gallistel CR. Time and associative learning. Comp Cogn Behav Rev. 2010;5:1–22.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gorea A. Ticks per thought or thoughts per tick? A selective review of time perception with hints on future research. J Physiol Paris. 2011;105(4–6):153–63.

    Article  PubMed  Google Scholar 

  40. Buonomano DV. The biology of time across different scales. Nat Chem Biol. 2007;3(10):594–7.

    Article  PubMed  CAS  Google Scholar 

  41. Buhusi CV, Meck WH. What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci. 2005;6(10):755–65.

    Article  PubMed  CAS  Google Scholar 

  42. Mauk MD, Buonomano DV. The neural basis of temporal processing. Annu Rev Neurosci. 2004;27:307–40.

    Article  PubMed  CAS  Google Scholar 

  43. Wackerman J. Inner and outer horizons of time experience. Span J Psychol. 2007;10:20–32.

    Article  Google Scholar 

  44. Merchant H, Zarco W, Prado L. Do we have a common mechanism for measuring time in the hundreds of millisecond range? Evidence from multiple-interval timing tasks. J Neurophysiol. 2008;99(2):939–49.

    Article  PubMed  Google Scholar 

  45. Grondin S. Unequal Weber fraction for the categorization of brief temporal intervals. Atten Percept Psychophys. 2010;72(5):1422–30.

    Article  PubMed  Google Scholar 

  46. Grondin S. Violation of the scalar property for time perception between 1 and 2 seconds: evidence from interval discrimination, reproduction, and categorization. J Exp Psychol Hum Percept Perform. 2012;38(4):880–90.

    Article  PubMed  Google Scholar 

  47. Drake C, Botte MC. Tempo sensitivity in auditory sequences: evidence for a multiple-look model. Percept Psychophys. 1993;54(3):277–86.

    Article  PubMed  CAS  Google Scholar 

  48. Grondin S, McAuley JD. Duration discrimination in crossmodal sequences. Perception. 2009;38(10):1542–59.

    Article  PubMed  Google Scholar 

  49. Ten Hoopen G, Van Den Berg S, Memelink J, Bocanegra B, Boon R. Multiple-look effects on temporal discrimination within sound sequences. Atten Percept Psychophys. 2011;73(7):2249–69.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Merchant H, Zarco W, Bartolo R, Prado L. The context of temporal processing is represented in the multidimensional relationships between timing tasks. PLoS One. 2008;3(9):e3169. http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0003169.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Keele SW, Nicoletti R, Ivry R, Pokorny RA. Mechanisms of perceptual timing: beat-based or interval-based judgements? Psychol Res. 1989;50(4):251–6.

    Article  Google Scholar 

  52. Grube M, Lee KH, Griffiths TD, Barker AT, Woodruff PW. Transcranial magnetic theta-burst stimulation of the human cerebellum distinguishes absolute, duration-based from relative, beat-based perception of subsecond time intervals. Front Psychol. 2010;1:171. http://www.frontiersin.org/Journal/10.3389/fpsyg.2010.00171/abstract.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Grube M, Cooper FE, Chinnery PF, Griffiths TD. Dissociation of duration-based and beat-based auditory timing in cerebellar degeneration. Proc Natl Acad Sci U S A. 2010;107(25):11597–601.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  54. Teki S, Grube M, Kumar S, Griffiths TD. Distinct neural substrates of duration-based and beat-based auditory timing. J Neurosci. 2011;31(10):3805–12.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Bangert AS, Reuter-Lorenz PA, Seidler RD. Dissecting the clock: understanding the mechanisms of timing across tasks and temporal intervals. Acta Psychol (Amst). 2011;136(1):20–34.

    Article  Google Scholar 

  56. Grondin S, Ouellet B, Roussel MÈ. Benefits and limits of explicit counting for discriminating temporal intervals. Can J Exp Psychol. 2004;58(1):1–12.

    Article  PubMed  Google Scholar 

  57. Grondin S, Killeen PR. Tracking time with song and count: different weber functions for musicians and non-musicians. Atten Percept Psychophys. 2009;71(7):1649–54.

    Article  PubMed  Google Scholar 

  58. Hinton SC, Rao SM. “One thousand-one … one-thousand-two …”: chronometric counting violates the scalar property in interval timing. Psychon Bull Rev. 2004;11(1):24–30.

    Article  PubMed  Google Scholar 

  59. Grondin S, Killeen S. Effects of singing and counting during successive interval productions. Neuroquantology. 2009;7(1):77–84.

    Google Scholar 

  60. Bizo LA, Chu JYM, Sanabria F, Killeen PR. The failure of Weber’s law in time perception and production. Behav Processes. 2006;71(2):201–10.

    Article  PubMed  Google Scholar 

  61. Halpern AR, Darwin CJ. Duration discrimination in a series of rhythmic events. Percept Psychophys. 1982;31(1):86–9.

    Article  PubMed  CAS  Google Scholar 

  62. Grondin S. Duration discrimination of empty and filled intervals marked by auditory and visual signals. Percept Psychophys. 1993;54(3):383–94.

    Article  PubMed  CAS  Google Scholar 

  63. Ehrlé N, Samson S. Auditory discrimination of anisochrony: influence of the tempo and musical backgrounds of listeners. Brain Cogn. 2005;58(1):133–47.

    Article  PubMed  Google Scholar 

  64. Grondin S, Meilleur-Wells G, Lachance R. When to start explicit counting in time-intervals discrimination task: a critical point in the timing process of humans. J Exp Psychol Hum Percept Perform. 1999;25(4):993–1004.

    Article  Google Scholar 

  65. Fraisse P. Time and rhythm perception. In: Carterette E, Friedman M, editors. Handbook of perception VIII. New York: Academic; 1978. p. 203–54.

    Google Scholar 

  66. Woodrow H. The reproduction of temporal intervals. J Exp Psychol. 1930;13(6):479–99.

    Article  Google Scholar 

  67. Stott LH. The discrimination of short tonal durations. Unpublished doctoral dissertation, University of Illinois at Urbana; 1933.

    Google Scholar 

  68. Grondin S. Studying psychological time with Weber’s law. In: Buccheri R, Saniga M, Stuckey M, editors. The nature of time: geometry, physics and perception. Dordrecht: Kluwer; 2003. p. 33–41.

    Google Scholar 

  69. Grondin S. Discriminating time intervals presented in sequences marked by visual signals. Percept Psychophys. 2001;63(7):1214–28.

    Article  PubMed  CAS  Google Scholar 

  70. Madison G. Variability in isochronous tapping: higher order dependencies as a function of intertap interval. J Exp Psychol Hum Percept Perform. 2001;27(2):411–21.

    Article  PubMed  CAS  Google Scholar 

  71. Gibbon J, Malapani C, Dale CL, Gallistel C. Toward a neurobiology of temporal cognition: advances and challenges. Curr Opin Neurobiol. 1997;7(2):170–84.

    Article  PubMed  CAS  Google Scholar 

  72. Meck WH, editor. Functional and neural mechanisms of interval timing. Boca Raton: CRC; 2003.

    Google Scholar 

  73. Hinton SC, Harrington DL, Binder JR, Durgerian S, Rao SM. Neural systems supporting timing and chronometric counting: an FMRI study. Brain Res Cogn Brain Res. 2004;21(2):183–92.

    Article  PubMed  Google Scholar 

  74. Grondin S. Production of time intervals from segmented and nonsegmented inputs. Percept Psychophys. 1992;52(3):345–50.

    Article  PubMed  CAS  Google Scholar 

  75. Crystal JD. Nonlinearities to sensitivity to time: implications for oscillator-based representations of interval and circadian clocks. In: Meck WH, editor. Functional and neural mechanisms of interval timing. Boca Raton: CRC; 2003. p. 61–75.

    Google Scholar 

  76. Crystal JD. Sensitivity to time: implications for the representation of time. In: Wasserman EA, Zentall TR, editors. Comparative cognition: experimental explorations of animal intelligence. New York: Oxford University Press; 2006. p. 270–84.

    Google Scholar 

  77. Cowan N. The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behav Brain Sci. 2001;24(1):87–185.

    Article  PubMed  CAS  Google Scholar 

  78. Miller GA. The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev. 1956;63(2):81–97.

    Article  PubMed  CAS  Google Scholar 

  79. Gilden DL, Marusich LR. Contraction of time in attention-deficit hyperactivity disorder. Neuropsychology. 2009;23(2):265–9.

    Article  PubMed  Google Scholar 

  80. Grondin S. A temporal account of the limited processing capacity. Behav Brain Sci. 2001;24(1):122–3.

    Article  Google Scholar 

  81. Lavoie P, Grondin S. Information processing limitations as revealed by temporal discrimination. Brain Cogn. 2004;54(3):198–200.

    Article  PubMed  Google Scholar 

  82. Michon J. The making of the present: a tutorial review. In: Requin J, editor. Attention and performance VII. Hillsdale: Erlbaum; 1978. p. 89–111.

    Google Scholar 

  83. Pöppe E. A hierarchical model of temporal perception. Trends Cogn Sci. 1997;1(2):56–61.

    Article  Google Scholar 

  84. Grondin S, Rousseau R. Judging the relative duration of multimodal short empty time intervals. Percept Psychophys. 1991;49(3):245–56.

    Article  PubMed  CAS  Google Scholar 

  85. Jones MR, Boltz MG. Dynamic attending and responses to time. Psychol Rev. 1989;96(3):459–91.

    Article  PubMed  CAS  Google Scholar 

  86. Karmarkar UR, Buonomano DV. Timing in the absence of clocks: encoding time in neural network states. Neuron. 2007;53(3):427–38.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  87. Rammsayer TH. Neuropharmacological approaches to human timing. In: Grondin S, editor. Psychology of time. Bingley: Emerald Group; 2008. p. 295–320.

    Google Scholar 

  88. Rammsayer TH, Lima SD. Duration discrimination of filled and empty auditory intervals: cognitive and perceptual factors. Percept Psychophys. 1991;50(6):565–74.

    Article  PubMed  CAS  Google Scholar 

  89. Zelaznik HN, Spencer RMC, Ivry RB. Dissociation of explicit and implicit timing in repetitive tapping and drawing movements. J Exp Psychol Hum Percept Perform. 2002;28(3):575–88.

    Article  PubMed  Google Scholar 

  90. Zelaznik HN, Spencer RMC, Ivry RB. Behavioral analysis of human movement timing. In: Grondin S, editor. Psychology of time. Bingley: Emerald Group; 2008. p. 233–60.

    Google Scholar 

  91. Matell MS, Meck WH. Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Brain Res Cogn Brain Res. 2004;21(2):139–70.

    Article  PubMed  Google Scholar 

  92. Evans JSBT. Dual-processing accounts of reasoning, judgment, and social cognition. Annu Rev Psychol. 2008;59:255–78.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This research program conducted by the author is supported by research grants from the Natural Sciences and Engineering Council of Canada since 1991. I would like to thank Emi Hasuo and Vincent Laflamme for their comments on the text or help with the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Grondin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grondin, S. (2014). About the (Non)scalar Property for Time Perception. In: Merchant, H., de Lafuente, V. (eds) Neurobiology of Interval Timing. Advances in Experimental Medicine and Biology, vol 829. Springer, New York, NY. https://doi.org/10.1007/978-1-4939-1782-2_2

Download citation

Publish with us

Policies and ethics