Skip to main content

Central Fatigue

Critical Issues, Quantification and Practical Implications

  • Chapter
Fatigue

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 384))

Abstract

Central fatigue during exercise is the decrease in muscle force attributable to a decline in motoneuronal output. Several methods have been used to assess central fatigue; however, some are limited or not sensitive enough to detect failure in central drive. Central fatigue develops during many forms of exercise. A number of mechanisms may contribute to its development including an increased inhibition mediated by group III and IV muscle afferents along with a decrease in muscle spindle facilitation. In some situations, motor cortical output is shown to be suboptimal. A specific terminology for central fatigue is included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen GM, Gandevia SC & McKenzie DK (1993a). Accurate measurements of maximal strength and maximal drive with twitch interpolation. Electroencephalography and Clinical Neurophysiology 86, 52P.

    Article  Google Scholar 

  • Allen GM, McKenzie DK, Gandevia SC & Bass S (1993b). Reduced voluntary drive to breathe in asthmatic subjects. Respiration Physiology 93, 29–40.

    Article  PubMed  CAS  Google Scholar 

  • Balestra C, Duchateau J & Hainaut K (1992). Effects of fatigue on the stretch reflex in a human muscle. Electroencephalography and Clinical Neurophysiology 85, 46–52.

    Article  PubMed  CAS  Google Scholar 

  • Belanger AY & McComas AJ (1981). Extent of motor unit activation during effort. Journal of Applied Physiology: Respiratory, Environmental & Exercise Physiology 51, 1131–1135.

    CAS  Google Scholar 

  • Bellemare F & Bigland-Ritchie B (1984). Assessment of human diaphragm strength and activation using phrenic nerve stimulation. Respiration Physiology 58, 263–277.

    Article  PubMed  CAS  Google Scholar 

  • Bellemare F & Bigland-Ritchie B (1987). Central components of diaphragmatic fatigue assessed by phrenic nerve stimulation. Journal of Applied Physiology 62, 1307–1316.

    PubMed  CAS  Google Scholar 

  • Bellemare F, Woods JJ, Johansson R & Bigland-Ritchie B (1983). Motor-unit discharge rates in maximal voluntary contractions of three human muscles. Journal of Neurophysiology 50, 1380–1392.

    PubMed  CAS  Google Scholar 

  • Bigland B & Lippold OCJ (1954). Motor unit activity in the voluntary contraction of human muscles. Journal of Physiology (London) 125, 322–335.

    CAS  Google Scholar 

  • Bigland-Ritchie B, Dawson NJ, Johansson RS & Lippold OCJ (1986). Reflex origin for the slowing of motoneurone firing rates in fatigue of human voluntary contractions. Journal of Physiology (London) 379, 451–459.

    CAS  Google Scholar 

  • Bigland-Ritchie B, Furbush FH, Gandevia SC & Thomas CK (1992a). Voluntary discharge frequencies of human motoneurons at different muscle lengths. Muscle & Nerve 15, 130–137.

    Article  CAS  Google Scholar 

  • Bigland-Ritchie B, Johansson R, Lippold OCJ & Woods JJ (1983). Contractile speed and EMG changes during fatigue of sustained maximal voluntary contractions. Journal of Neurophysiology 50, 313–324.

    PubMed  CAS  Google Scholar 

  • Bigland-Ritchie B, Jones DA, Hosking GP & Edwards RHT (1978). Central and peripheral fatigue in sustained maximum voluntary contractions of human quadriceps muscle. Clinical Science and Molecular Medicine 54, 609–614.

    PubMed  CAS  Google Scholar 

  • Bigland-Ritchie B & Rice CL (1994). Comparison of force-frequency relations in human voluntary and stimulated contractions. Proceedings of the Physiological Society, C103.

    Google Scholar 

  • Bigland-Ritchie B, Thomas CK, Rice CL, Howarth JV & Woods JJ (1992b). Muscle temperature, contractile speed, and motoneuron firing rates during human voluntary contractions. Journal of Applied Physi-ology 73, 2457–2461.

    CAS  Google Scholar 

  • Bongiovanni LG & Hagbarth K-E (1990). Tonic vibration reflexes elicited during fatigue from maximal voluntary contractions in man. Journal of Physiology (London) 423, 1–14.

    CAS  Google Scholar 

  • Brasil-Neto JP, Pascual-Leone A, Valls-solé J, Cammarota A, Cohen LG & Hallet M (1993). Postexercise depression of motor evoked potentials: a measure of central nervous system fatigue. Experimental Brain Research 93, 181–184.

    Article  CAS  Google Scholar 

  • Brouwer B, Ashby P & Midroni G (1989). Excitability of corticospinal neurons during tonic muscle contractions in man. Experimental Brain Research 74, 649–652.

    Article  CAS  Google Scholar 

  • Chaouloff F (1991). Cerebral monoamines and fatigue. In Atlan G, Beliveau L, Bouissou P (eds.), Muscle Fatigue: Biochemical and Physiological Aspects, pp. 234–240. Paris: Masson.

    Google Scholar 

  • De Luca CJ, Lefever RS, McCue MP & Xenakis AP (1982). Behaviour of human motor units in different muscles during linearly varying contractions. Journal of Physiology (London) 329, 113–128.

    Google Scholar 

  • Duchateau J & Hainaut K (1987). Electrical and mechanical changes in immobilized human muscle. Journal of Applied Physiology 62, 2168–2173.

    PubMed  CAS  Google Scholar 

  • Fruede F & Ullsperger P (1987). Changes in Bereitschaftspotential during fatiguing and non-fatiguing hand movements. European Journal of Applied Physiology and Occupational Physiology 56, 105–108.

    Article  Google Scholar 

  • Gandevia SC (1992). Some central and peripheral factors affecting human motoneuronal output in neuromuscular fatigue. Sports Medicine 13, 93–98.

    Article  PubMed  CAS  Google Scholar 

  • Gandevia SC, Allen GM, Butler JE & Taylor JL (1995). Supraspinal factors in human muscle fatigue: evidence for suboptimal output from the motor cortex. Journal of Physiology (London) In press.

    Google Scholar 

  • Gandevia SC, Butler JE, Allen GM & Taylor JL (1994) Prolongation of the’ silent’ period following transcranial magnetic stimulation. Proceedings of the Physiological Society, C138.

    Google Scholar 

  • Gandevia SC, Macefield G, Burke D & McKenzie DK (1990a). Voluntary activation of human motor axons in the absence of muscle afferent feedback. The control of the deafferented hand. Brain 113, 1563–1581.

    Article  PubMed  Google Scholar 

  • Gandevia SC & McKenzie DK (1985). Activation of the human diaphragm during maximal static efforts. Journal of Physiology (London) 367, 45–56.

    CAS  Google Scholar 

  • Gandevia SC & McKenzie DK (1988). Activation of human muscles at short muscle lengths during maximal static efforts. Journal of Physiology (London) 407, 599–613.

    CAS  Google Scholar 

  • Gandevia SC & McKenzie DK (1993). Central factors in human muscle performance. Proceedings of the International Union of Physiological Sciences 122.6/0.

    Google Scholar 

  • Gandevia SC, McKenzie DK & Plassman BL (1990b). Activation of human respiratory muscles during different voluntary manoeuvres. Journal of Physiology (London) 428, 387–403.

    CAS  Google Scholar 

  • Garner SC, Sutton JR, Burse RL, McComas AJ, Cymerman A & Houston CS (1990). Operation Everest II: neuromuscular performance under conditions of extreme simulated altitude. Journal of Applied Physiology 68, 1667–1172.

    Google Scholar 

  • Gooch JL, Newton BY & Petajan JH (1990). Motor unit spike counts before and after maximal voluntary contraction. Muscle & Nerve 13, 1146–1151.

    Article  CAS  Google Scholar 

  • Grimby L, Hannerz J & Hedman B (1981). The fatigue and voluntary discharge properties of single motor units in man. Journal of Physiology (London) 316, 545–554.

    CAS  Google Scholar 

  • Hales JP & Gandevia SC (1988). Assessment of maximal voluntary contraction with twitch interpolation: an instrument to measure twitch responses. Journal of Neuroscience Methods 25, 97–102.

    Article  PubMed  CAS  Google Scholar 

  • Hayward L, Breitbach D & Rymer Z (1988). Increased inhibitory effects on close synergists during muscle fatigue in the decerebrate cat. Brain Research 440, 199–203.

    Article  PubMed  CAS  Google Scholar 

  • Heyes MP, Garnett ES & Coates G (1985). Central dopaminergic activity influences rats ability to exercise. Life Sciences 36, 671–677.

    Article  PubMed  CAS  Google Scholar 

  • Hill AV (1926). Muscular Activity. Baltimore: Williams & Wilkins.

    Google Scholar 

  • Howard JD & Enoka RM (1991). Maximum bilateral contractions are modified by neurally mediated interlimb effects. Journal of Applied Physiology 70, 306–316.

    PubMed  CAS  Google Scholar 

  • Jacobsen S, Wildschiodtz G & Danneskiold-Samsoe B (1991). Isokinetic and isometric muscle strength combined with transcutaneous electrical muscle stimulation in primary fibromyalgia syndrome. Journal of Rheumatology 18, 1390–1393.

    PubMed  CAS  Google Scholar 

  • Kaufman MP, Rybicki KJ, Waldrop TG & Ordway GA (1984a). Effect of ischemia on responses of group III and IV afferents to contraction. Journal of Applied Physiology 57, 644–650.

    PubMed  CAS  Google Scholar 

  • Kaufman MP, Waldrop TG, Rybicki KJ, Ordway GA & Mitchell JH (1984b). Effects of static and rhythmic twitch contractions on the discharge of group III and IV muscle afferents. Cardiovascular Research 18, 663–668.

    Article  PubMed  CAS  Google Scholar 

  • Kerneil D & Monster AW (1982). Motoneurone properties and motor fatigue. Experimental Brain Research 46, 197–204.

    Google Scholar 

  • Killian K (1992). Symptoms limiting exercise. In: Jones NL, Killian KJ (eds.), Breathlessness, pp. 132–142. Hamilton, Canada: Boehringer Ingelheim.

    Google Scholar 

  • Kukulka CG, Moore MA & Russell AG (1986). Changes in human alpha-motoneuron excitability during sustained maximum isometric contractions. Neuroscience Letters 68, 327–333.

    Article  PubMed  CAS  Google Scholar 

  • Lafleur J, Zytnicki D, Horcholle-Bossavit G & Jami L (1992). Depolarization of Ib afferent axons in the cat spinal cord during homonymous muscle contraction. Journal of Physiology (London) 445, 345–354.

    CAS  Google Scholar 

  • Ljubisavljevic M, Jovanovic K & Anastasijevic R (1992). Changes in discharge rate of fusimotor neurones provoked by fatiguing contractions of cat triceps surae muscles. Journal of Physiology (London) 445, 499–513.

    CAS  Google Scholar 

  • Lloyd AR, Gandevia SC & Hales JP (1991). Muscle performance, voluntary activation, twitch properties and perceived effort in normal subjects and patients with the chronic fatigue syndrome. Brain 114, 85–98.

    PubMed  Google Scholar 

  • Loring SH & Hershenson MB (1992). Effects of series compliance on twitches superimposed on voluntary contractions. Journal of Applied Physiology 73, 516–521.

    PubMed  CAS  Google Scholar 

  • Macefield G, Hagbarth K-E, Gorman R, Gandevia SC & Burke D (1991). Decline in spindle support to alpha motoneurones during sustained voluntary contractions. Journal of Physiology (London) 440, 497–512.

    CAS  Google Scholar 

  • Macefield VG, Gandevia SC, Bigland-Ritchie B, Gorman RB & Burke D (1993). The firing rates of human motoneurones voluntarily activated in the absence of muscle afferent feedback. Journal of Physiology (London) 471, 429–443.

    CAS  Google Scholar 

  • Marsden CD, Meadows JC & Merton PA (1969). Muscular wisdom. Journal of Physiology (London) 200, 15P.

    Google Scholar 

  • Marsden CD, Meadows JC & Merton PA (1983). “Muscular wisdom” that minimizes fatigue during prolonged effort in man: peak rates of motoneuron discharge and slowing of discharge during fatigue. Advances in Neurology 39, 169–211.

    PubMed  CAS  Google Scholar 

  • Marsden CD, Merton PA & Morton HB (1980). Maximal twitches from stimulation of the motor cortex in man. Journal of Physiology (London) 312, 5P.

    Google Scholar 

  • Maton B (1991). Central nervous changes in fatigue induced by local work. In Atlan G, Beliveau L, Bouissou P (eds.), Muscle Fatigue: Biochemical and Physiological Aspects, pp. 207–221. Paris: Masson.

    Google Scholar 

  • McComas AJ, Kereshi S & Quinlan J (1983). A method for detecting functional weakness. Journal of Neurology, Neurosurgery & Psychiatry 46, 280–282.

    Article  CAS  Google Scholar 

  • McKenzie DK, Bigland-Ritchie B, Gorman RB & Gandevia SC (1992). Central and peripheral fatigue of human diaphragm and limb muscles assessed by twitch interpolation. Journal of Physiology (London) 454, 643–656.

    CAS  Google Scholar 

  • McKenzie DK & Gandevia SC (1986). Strength and endurance of inspiratory, expiratory, and limb muscles in asthma. American Review of Respiratory Disease 134, 999–1004.

    PubMed  CAS  Google Scholar 

  • McKenzie DK & Gandevia SC (1991). Recovery from fatigue of human diaphragm and limb muscles. Respiration Physiology 84, 49–60.

    Article  PubMed  CAS  Google Scholar 

  • Merton PA (1954). Voluntary strength and fatigue. Journal of Physiology (London) 123, 553–564.

    CAS  Google Scholar 

  • Meurnier S & Pierrot-Deseilligny E (1989). Gating of the afferent volley of the monosynaptic stretch reflex during movement in man. Journal of Physiology (London) 419, 753–763.

    Google Scholar 

  • Mosso A (1904). Fatigue. London: Sonnenschein & Co.

    Google Scholar 

  • Newham DJ, McCarthy T & Turner J (1991). Voluntary activation of human quadriceps during and after isokinetic exercise. Journal of Applied Physiology 71, 2122–2126.

    PubMed  CAS  Google Scholar 

  • Paintal AS (1960). Functional analysis of group III afferent fibers of mammalian muscles. Journal of Physiology (London) 152, 250–270.

    CAS  Google Scholar 

  • Phillips CG & Porter R (1977). Corticospinal Neurones, Their Role in Movement. London: Academic Press.

    Google Scholar 

  • Porter R & Lemon R (1993). Corticospinal Function and Voluntary Movement. Oxford: Clarendon Press.

    Google Scholar 

  • Rutherford OM, Jones DA & Newham DJ (1986). Clinical and experimental application of the percutaneous twitch superimposition technique for the study of human muscle activation. Journal of Neurology, Neurosurgery and Psychiatry 49, 1288–1294.

    Article  CAS  Google Scholar 

  • Sieck GC & Fournier M (1989). Diaphragm motor unit recruitment during ventilatory and nonventilatory behaviours. Journal of Applied Physiology 66, 2539–2545.

    PubMed  CAS  Google Scholar 

  • Thomas CK, Bigland-Ritchie B & Johansson RS (1991). Force-frequency relationships of human thenar motor units. Journal of Neurophysiology 65, 1509–1516.

    PubMed  CAS  Google Scholar 

  • Thomas CK, Woods JJ & Bigland-Ritchie B (1989). Impulse propagation and muscle activation in long maximal voluntary contractions. Journal of Applied Physiology 67, 1835–1842.

    PubMed  CAS  Google Scholar 

  • Van der Linden DW, Kukulka CG & Soderberg GL (1991). The effect of muscle length on motor unit discharge characteristics in human tibialis anterior muscle. Experimental Brain Research 84, 210–218.

    Article  Google Scholar 

  • Vøllestad NK, Sejersted OM, Bahr R, Woods JJ & Bigland-Ritchie B (1988). Motor drive and metabolic responses during repeated submaximal contractions in humans. Journal of Applied Physiology 64, 1421–1427.

    PubMed  Google Scholar 

  • Wood L, Ferrell WR & Baxendale RH (1988). Pressures in normal and acutely distended human knee joints and effects on quadriceps maximal voluntary contractions. Quarterly Journal of Experimental Physiology 73, 305–314.

    PubMed  CAS  Google Scholar 

  • Woods JJ, Furbush F & Bigland-Ritchie B (1987). Evidence for a fatigue-induced reflex inhibition of motoneurone firing rates. Journal of Neurophysiology 58, 125–137.

    PubMed  CAS  Google Scholar 

  • Yue G & Cole KJ (1992). Strength increases from the motor program: comparison of training with maximal voluntary and imagined muscle contractions. Journal of Neurophysiology 67, 1114–1123.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gandevia, S.C., Allen, G.M., McKenzie, D.K. (1995). Central Fatigue. In: Gandevia, S.C., Enoka, R.M., McComas, A.J., Stuart, D.G., Thomas, C.K., Pierce, P.A. (eds) Fatigue. Advances in Experimental Medicine and Biology, vol 384. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1016-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1016-5_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1018-9

  • Online ISBN: 978-1-4899-1016-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics