Skip to main content

A Predator’s View of Animal Color Patterns

  • Chapter
Book cover Evolutionary Biology

Part of the book series: Evolutionary Biology ((EBIO,volume 11))

Abstract

It has long been known that the general colors and tones of animals tend to match their backgrounds (E. Darwin, 1794; Poulton, 1890). The adaptive significance of this has been borne out in numerous experimental studies (DiCesnola, 1904; Sumner, 1934, 1935; Isley, 1938; Popham, 1942; Dice, 1947; Turner, 1961; Kettlewell, 1956, 1973; Kaufman, 1974; Wiklund, 1975; Curio, 1976). There is also a good understanding of warning coloration (Cott, 1940; Wickler, 1968; Edmunds, 1974; Rothschild, 1975). However, the determinants of color pattern are poorly known, although it is known in a general way that the patterns and forms of animals are similar to their backgrounds (Poulton, 1890; Thayer, 1909; Cott, 1940; Wickler, 1968; Robinson, 1969; Edmunds, 1974; Fogden and Fogden, 1974). It is the purpose of this paper to explore the factors that determine color patterns under various specific conditions. The basic assumption is that a color pattern must resemble a random sample of the background seen by predators in order to be cryptic, and must deviate from the background in one or more ways in order to be conspicuous. As a result, the actual pattern evolved in a particular place represents a compromise between factors which favor crypsis and those which favor conspicuous color patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ayala, F. J., and Campbell, C. A., 1974, Frequency-dependent selection, Annu. Rev. Ecol. Syst. 5: 115–138.

    Google Scholar 

  • Baburina, E. A., Nogatyrev, and Protosov, V. R., 1968, A study of age related changes in the visual acuity of some fish, Zool. Zh. 47: 1364–1369.

    Google Scholar 

  • Baerends, G. P., Brower, R., and Waterbolk, H. T., 1955, Ethological studies on Lebistes reticulatus (Peters). I. An analysis of the male courtship patterns, Behaviour 8: 249–334.

    Google Scholar 

  • Barlow, G. W., 1976, The midas cichlid in Nicaragua, in: Investigations of the Ichthyofauna of Nicaraguan Lakes, ( T. B. Thorson, ed.), pp. 332–358, University of Nebraska Press, Lincoln.

    Google Scholar 

  • Barlow, G. W., and Ballin, P., 1976, Predicting and assessing dominance for size and coloration in the polychromatic midas cichlid, Anim. Behay. 24: 793–813.

    Google Scholar 

  • Blaxter, J. H. S., 1970, Light-fishes, in: Marine Ecology ( O. Kinne, ed.), pp. 213–285, London: Wiley-Interscience.

    Google Scholar 

  • Brown, J. L., 1975, The Evolution of Behavior, New York: W. W. Norton.

    Google Scholar 

  • Cain, A. J., 1953, Visual selection by tone of Cepaea nemoralis, J. Conchol. 23: 333–336.

    Google Scholar 

  • Cain, A. J., and Currey, J. D., 1963, Area effects in Cepaea, Philos. Trans. R. Soc. London Ser. B 246: 1–81.

    Google Scholar 

  • Cain, A. J., and Currey, J. D., 1968, Studies on Cepaea. III. Ecogenetics of a population of Cepaea nemoralis (L.) subject to strong area effects, Philos. Trans. R. Soc. London Ser. B. 253: 447–482.

    Google Scholar 

  • Cain, A. J., and Sheppard, P. M., 1950, Selection in the polymorphic land snail Cepaea nemoralis, Heredity 4: 275–294.

    PubMed  CAS  Google Scholar 

  • Cain, A. J., and Sheppard, P. M. 1952, The effects of natural selection on body color in the land snail Cepaea nemoralis, Heredity 6: 217–223.

    Google Scholar 

  • Cain, A. J., and Sheppard, P. M., 1954, Natural selection of Cepaea, Genetics 39: 89–116.

    PubMed  CAS  Google Scholar 

  • Carter, M. A., 1969, Studies on Cepaea. II. Area effects and visual selection in Cepaea nemoralis (L.) and Cepaea hortensis, Philos. Trans. R. Soc. London Ser. B. 253: 397–446.

    Google Scholar 

  • Chace, F. A., Jr., and Hobbs, H. H., Jr., 1969, The freshwater and terrestrial decapod Crustaceans of the West Indies with special reference to Dominica, US Nat. Mus. Bull. No. 292, pp. 1–258.

    Google Scholar 

  • Clark, J. A., 1974, Energy transfer and surface temperature over plants and animals, in: Light as an Ecological Factor, II. Symp. Brit. Ecol. 16, ( G. C. Evans, R. Bainbridge, and O. Rackham, eds.), pp. 451–463, Blackwell, Oxford.

    Google Scholar 

  • Clarke, B. C., 1960, Divergent effects of natural selection on two closely related polymorphic snails, Heredity 14: 423–443.

    Google Scholar 

  • Clarke, B. C., 1964, Frequency-dependent selection for the dominance of rare polymorphic genes, Evolution 18: 364–369.

    Google Scholar 

  • Clarke, B. C., 1969, The evidence for apostatic selection, Heredity 24: 347–352.

    PubMed  CAS  Google Scholar 

  • Clarke, B. C., 1975, Frequency-dependent and density-dependent natural selection, in: The Role of Natural Selection in Human Evolution ( F. M. Salzano, ed.), pp. 187–200, North-Holland, New York.

    Google Scholar 

  • Clarke, B. C., and O’Donald, P., 1964, Frequency-dependent selection, Heredity 19: 201–206.

    Google Scholar 

  • Clarke, C. A., Dickson, C. C. C., and Sheppard, P. M., 1963, Larval color patterns in Papilio demodocus, Evolution 17: 130–137.

    Google Scholar 

  • Cochran, D., 1966, Living Amphibians of the World, Doubleday, New York.

    Google Scholar 

  • Cott, H. B., 1940, Adaptive Coloration in Animals, Methuen, London.

    Google Scholar 

  • Curio, E., 1976, The Ethology of Predation, Springer-Verlag, New York.

    Google Scholar 

  • Currey, J. D., Arnold, R. W., and Carter, M. A., 1964, Further examples of variation of populations of Cepaea nemoralis with habitat, Evolution 18: 111–117.

    Google Scholar 

  • Darwin, E., 1794, The colors of many animals seem to be adapted to their purposes of concealing themselves, either to avoid danger or to spring upon their prey, Zoonomia 1:509. Quoted in Poulton (1890).

    Google Scholar 

  • Dawkins, M., 1971a, Perceptual changes in chicks: Another look at the “search image” concept, Anim. Behay. 19: 566–574.

    Google Scholar 

  • Dawkins, M., 1971b, Shifts of “attention” in chicks during feeding, Anim. Behay. 19: 575–582.

    Google Scholar 

  • Deakin, M. A. B., 1968, Genetic polymorphism in a subdivided population, Aust. J. Biol. Sci. 21: 165–168.

    PubMed  CAS  Google Scholar 

  • Dice, L. R., 1947, Effectiveness of selection by owls of deer-mice (Peromyscus maniculatus) which contrast in color with their background, Contrib. Lab. Vertebr. Biol. Univ. Mich. No. 34, pp. 1–20.

    Google Scholar 

  • DiCesnola, A. P., 1904, Preliminary notes on the protective value of color in Mantis religiosa, Biometrika 3: 58–59.

    Google Scholar 

  • Diener, H. C., Wist, E. R., Dichgans, J., and Brant, T., 1976, The spatial frequency effect on perceived velocity, Vis. Res. 16: 169–176.

    PubMed  CAS  Google Scholar 

  • Diver, C., 1940, The problem of closely related species living in the same area, in: The New Systematics ( J. Huxley, ed.), pp. 303–328, Oxford University Press, Oxford.

    Google Scholar 

  • Edmunds, M., 1974, Defense in Animals: A Survey of Anti-Predator Defenses, Longmans, London.

    Google Scholar 

  • Ehrlich, P., Talbot, F. H., Russel, B. C., and Anderson, G. R. V., 1977, The behaviour of chaetodontid fishes with special reference to Lorenz’s “poster coloration” hypothesis, J. Zool. 183: 213–228.

    Google Scholar 

  • Endler, J. A., 1977, Geographic Variation, Speciation, and Clines, Monographs in Population Biology 10, Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Endler, J. A., 1978a, Fish community structure in tropical montane streams, (to be submitted to Copeia).

    Google Scholar 

  • Endler, J. A., 1978b, The physical basis of Matthiessen’s ratio for fish eye lenses and visual acuity of predator and prey. In preparation.

    Google Scholar 

  • Farr, J. A., 1975, The role of predation in the evolution of social behavior of natural populations of the Guppy, Poecilia reticulata (Pisces: Poeciliidae), Evolution 29: 151–158.

    Google Scholar 

  • Farr, J. A., 1976, Social facilitation of male sexual behavior, intrasexual competition, and sexual selection in the guppy, Poecilia reticulata (Pisces: Poeciliidae), Evolution 30: 707–717.

    Google Scholar 

  • Farr, J. A., 1977, Male rarity or novelty, female choice behavior, and sexual selection of the guppy, Poecilia reticulata (Pisces: Poeciliidae), Evolution 31: 162–168.

    Google Scholar 

  • Farr, J. A., and Herrnkind, W. F., 1974, A quantitative analysis of social interaction of the guppy, Poecilia reticulata (Pisces: Poeciliidae), as a function of population density, Anim. Behay. 22: 582–591.

    Google Scholar 

  • French, R., 1973, A Guide to the Birds of Trinidad and Tobago, Livingstone, Wynnewood, Pa.

    Google Scholar 

  • Fisher, R. A., 1930, The evolution of dominance in certain. polymorphic species, Am. Nat. 64: 385–406.

    Google Scholar 

  • Fogden, M., and Fogden, P., 1974, Animals and Their Colors, Crown, New York.

    Google Scholar 

  • Ford, E. B., 1945, Polymorphism, Biol. Rev. 20: 73–88.

    Google Scholar 

  • Gandolfi, G., 1971, Sexual selection in relation to social status of males in Poecilia reticulata (Teleostei: Poeciliidae), Boll. Zool. 38: 35–48.

    Google Scholar 

  • Gorlick, D. L., 1976, Dominance hierarchies and factors influencing dominance in the guppy, Poecilia reticulata Peters, Anim. Behay. 24: 336–346.

    Google Scholar 

  • Greene, R. J., Jr., 1972, Female preferential selection for males in Lebistes reticulatus, Thesis, Biology Dept., University of Utah.

    Google Scholar 

  • Greenwood, J. J. D., 1974, Visual and other selection in Cepaea: A further example, Heredity 33: 17–31.

    Google Scholar 

  • Haas, R., 1976a, Sexual selection in Nothobranchius guntheri (Pisces: Cyprinodontidae), Evolution 20: 614–622.

    Google Scholar 

  • Haas, R., 1976b, Behavioral biology of the annual killifish, Nothobranchius guntheri, Copeia 1976: 80–91.

    Google Scholar 

  • Halkka, O., and Mikkola, E., 1977, The selection regime of Philaenus spumarius (L.) (Homoptera), in: Measuring Selection in Natural Populations, Lecture Notes in Bio-mathematics 19 ( F. B. Christiansen and T. M. Fenchel, eds.), pp. 445–463. Springer-Verlag, New York.

    Google Scholar 

  • Haskins, C. P., Haskins, E. F., McLaughlin, J. J. A., and Hewitt, R. E., 1961, Polymorphism and population structure in Lebistes reticulatus, a population study, in: Vertebrate Speciation ( W. F. Blair, ed.), pp. 320–395, University of Texas Press, Austin.

    Google Scholar 

  • Haskins, C. P., Young, P., Hewitt, R. E., and Haskins, E. F., 1970, Stabilized heterozygosis of supergenes mediating Y-linked color patterns in populations of Lebistes reticulatus, Heredity 25: 575–589.

    Google Scholar 

  • Hedrick, P. W., Ginevan, M. E., and Ewing, E. P., 1976, Genetic polymorphism in heterogeneous environments, Annu. Rev. Ecol. Syst. 7: 1–32.

    Google Scholar 

  • Hemmings, C. C., 1966, Factors influencing the visibility of objects underwater, in: Light as an Ecological Factor, Symp. Brit. Ecol. Soc. 6 ( R. Bainbridge, C. C. Evans, and O. Rackham, eds.), pp. 359–374, Blackwell, Oxford.

    Google Scholar 

  • Hemmings, C. C., 1974, The visibility of objects underwater, in: Light as an Ecological Factor II, Symp. Brit. Ecol. Soc. 16 ( C. C. Evans, R. Bainbridge, and O. Rackham, eds.), pp. 543–545, Blackwell, Oxford.

    Google Scholar 

  • Herklots, G. A. C., 1961, The Birds of Trinidad and Tobago, Collins, London.

    Google Scholar 

  • Hinton, H. E., 1976, Possible significance of the red patches of the female crab spider Misumena vatia, J. Zool. 180: 35–39.

    Google Scholar 

  • Hobson, E., 1968, Predatory behavior of some shore fishes in the Gulf of California, U.S. Dept. Interior. Bur. Spt. Fish. Wildl. Res. Rep. 73.

    Google Scholar 

  • Holland, W. J., 1908, The Moth Book, Vo. 7, The Nature Library, Doubleday, Page, and Co., New York.

    Google Scholar 

  • Horn, H. S., 1969, Polymorphism and evolution of the Hispaniolan snake genus Uromacer (Colubridae), Breviora, No. 324, pp. 1–23.

    Google Scholar 

  • Isely, F. B., 1938, Survival value of Acridian protective coloration, Ecology 19: 370–389.

    Google Scholar 

  • Jackson, J. F., Ingram III, W., and Campbell, H. W., 1976, The dorsal pigmentation of snakes as an anti-predator strategy: A multivariate approach, Am. Nat. 110: 1029–1053.

    Google Scholar 

  • Jones, J. S., 1973, Ecological genetics and natural selection in mollusks, Science 182: 546–552.

    PubMed  CAS  Google Scholar 

  • Jones, J. S., Leith, B. H., and Rawlings, P., 1977, Polymorphism in Cepea: A problem with too many solutions? Annu. Rev. Ecol. Syst. 8: 109–143.

    Google Scholar 

  • Kaufman, D. W., 1974, Adaptive coloration in Peromyscus polionotus: Experimental selection by owls, J. Mammal. 55: 271–283.

    Google Scholar 

  • Kaufman, D. W., and Kaufman, G. A., 1976, Pelage coloration of the old-field mouse with comments on adaptive coloration, Acta Theriol. 21: 165–168.

    Google Scholar 

  • Keiper, R. R., 1969, Behavioral adaptations of Cryptic moths. IV. Preliminary studies on species resembling dead leaves, J. Lepidol. So. 23: 205–210.

    Google Scholar 

  • Kerfoot, W. C., 1975, The divergence of adjacent populations, Ecology 56: 1298–1313.

    Google Scholar 

  • Kettlewell, H. B. D., 1956, A resumé of the investigations of the evolution of melanism in the Lepidoptera, Proc. R. Soc. London Ser. B 145: 297–303.

    Google Scholar 

  • Kettlewell, H. B. D., 1973, The Evolution of Melanism: A Study of a Recurring Necessity, Oxford University Press, Oxford.

    Google Scholar 

  • King, R. C. (ed.), 1975, Handbook of Genetics, Vols. 3 and 4, Plenum Press, New York.

    Google Scholar 

  • Kortmulder, K., 1972, A comparative study in color patterns and behavior in seven Asiatic Barbus species (Cyprinidae, Ostariophysi, Osteichthys), a progress report, Behaviour, 19 (Suppl.): 1–331.

    Google Scholar 

  • Levene, H., 1953, Genetic equilibrium when more than one ecological niche is available, Am. Nat. 87: 331–333.

    Google Scholar 

  • Levins, R., and MacArthur, R., 1966, The maintenance of genetic polymorphism is a spatially heterogeneous environment: Variations on a theme by Howard Levene, Am. Nat. 100: 585–589.

    Google Scholar 

  • Lewis, T. H., 1949, Dark coloration in the reptiles of the Tularosa Malpais, New Mexico, Copeia 1949: 181–184.

    Google Scholar 

  • Lewontin, R. C., 1974, The Genetic Basis of Evolutionary Change, Columbia University Press, New York.

    Google Scholar 

  • Liley, R. N., 1966, Ethological isolating mechanisms in four sympatric species of Poeciliid fishes, Behaviour 13(Suppl.):l-197.

    Google Scholar 

  • Liley, R. N., and Seghers, B. H., 1975, Factors affecting the morphology and behavior of guppies in Trinidad, in: Function and Evolution in Behavior ( G. P. Baerends, C. Beer, and A. Manning, eds.), pp. 92–118, Oxford University Press, Oxford.

    Google Scholar 

  • Lythgoe, J. N., 1966, Visual pigments and underwater vision, in: Light as an Ecological Factor, Symp. Brit. Ecol. Soc. 6 ( R. Bainbridge, C. C. Evans, and O. Rackham, (eds.), pp. 375–391, Blackwell, Oxford.

    Google Scholar 

  • Lythgoe, J. N., 1974, Problems of seeing color under water, in: Vision in Fishes ( M. Ali, ed.), pp. 619–634, Plenum Press, New York.

    Google Scholar 

  • Maynard-Smith, J., 1970, Genetic polymorphism in a varied environment, Am. Nat. 104: 487–490.

    Google Scholar 

  • McFarland, W. N., and Munz, F. W., 1974, The visible spectrum during twilight and its implications to vision, in: Light as an Ecological Factor, II. Symp. Brit. Ecol. Soc. 16 (G. C., Evans, R. Bainbridge, and O. Rackham, eds.), pp. 249–270, Blackwell, Oxford.

    Google Scholar 

  • McFarland, W. N., and Munz, F. W., 1975, The photic environment of clear tropical seas during the day, Vision Res. 15: 1063–1070.

    PubMed  CAS  Google Scholar 

  • McKaye, K. R., and Barlow, G. W., 1976, Competition between color morphs of the midas cichlid, Cichlasoma citrinellum, in Lake Jiloa, Nicaragua, in: Investigations of the Ichthyofauna of Nicaraguan Lakes ( T. B. Thorson, ed.), pp. 465–475, University of Nebraska Press, Lincoln.

    Google Scholar 

  • Milinski, M., 1977, Do all members of a swarm suffer the same predation?, Z. Tierpsychol. 45: 373–388.

    Google Scholar 

  • Moodie, G. E. E., 1972, Predation, natural selection, and adaptation in an unusual threespine stickleback, Heredity 28: 155–167.

    Google Scholar 

  • Mottram, J. C., 1915, Some observations of pattern-blending with reference to obliterative shading and concealment of outline, Proc. Zool. Soc. London 1915, No. 49, pp. 679–692.

    Google Scholar 

  • Mottram, J. C., 1916, An experimental determination of the factors which cause patterns to appear conspicuous in nature, Proc. Zool. Soc. London 1916, No. 13, pp. 383–419.

    Google Scholar 

  • Munz, F. W., and McFarland, W. N., 1973, The significance of spectral position in the Rhodopsins of tropical marine fishes, Vision Res. 13: 1829–1874.

    PubMed  CAS  Google Scholar 

  • Norris, K. S., 1967, Color adapations in desert reptiles and its thermal relationships, in: Lizard Ecology, A Symposium (W. W. Milstead, ed.), pp. 162–229, University of Missouri Press, Columbia.

    Google Scholar 

  • Norris, K. S., and Lowe, C. H., 1964, An analysis of background color-matching in amphibians and reptiles, Ecology 45: 565–580.

    Google Scholar 

  • O’Donald, P., 1968, Natural selection by glow-worms in a population of Cepaea nemoralis, Nature, 217: 194.

    Google Scholar 

  • Otte, D., 1974, Effects and functions in the evolution of signalling systems, Annu. Rev. Ecol. Syst. 5: 385–417.

    Google Scholar 

  • Otte, D., and Joern, A., 1977, On feeding patterns in desert grasshoppers and the evolution of specialized diets, Proc. Acad. Nat. Sci. Philadelphia 128: 89–126.

    Google Scholar 

  • Papageorgis, C., 1975, Mimicry in neotropical butterflies, Am. Sci. 63: 522–532.

    Google Scholar 

  • Parsons, P. A., 1963, Migration as a factor in natural selection, Genetica 33: 184–206.

    Google Scholar 

  • Pietrewicz, A. T., and Kamil, A. C., 1977, Visual detection of cryptic prey by blue jays (Cyanocitta cristata), Science 195: 580–582.

    PubMed  CAS  Google Scholar 

  • Popham, E. J., Jr., 1942, The variation in the color of certain species of Corixidae and their significance, Proc. Zool. Soc. London Ser. A 111: 135–172.

    Google Scholar 

  • Pough, F. H., 1976, Multiple cryptic effects of crossbanded and ringed patterns of snakes, Copeia 1976: 834–836.

    Google Scholar 

  • Poulton, E. B., 1890. The Colors of Animals, Their Meaning and Use, Especially Considered in the Case of Insects, Kegan Paul, Trench, Trubner and Co., London.

    Google Scholar 

  • Prout, T., 1968, Sufficient conditions for multiple niche polymorphism, Am. Nat. 102: 493–496.

    Google Scholar 

  • Rand, A. S. 1967, Predator-prey interactions and the evolution of aspect diversity, Atas do Simposio sobra a Biota Amazonica 5 (Zoologia): 73–83.

    Google Scholar 

  • Randall, J. E., 1961, Observations on the spawning of Surgeonfishes (Acanthuridae) in the Society Islands, Copeia 1961: 237–238.

    Google Scholar 

  • Richardson, A. M. M., 1975, Winter predation by thrushes: Turdus ericetorum (Turton) on a sand dune population of Cepaea nemoralis (L.), Proc. Malacol. Soc. London, 41: 481–488.

    Google Scholar 

  • Ricklefs, R. E., and O’Rourke, K. E., 1975, Aspect diversity in moths: A temperate-tropical comparison, Evolution 29: 313–324.

    Google Scholar 

  • Robertson, D. R., and Hoffman, S. G., 1977, The roles of female mate choice and predation in the mating systems of some tropical Labroid fishes, Z. Tierpsychol. 45: 298–320.

    Google Scholar 

  • Robinson, M. H., 1969, Defenses against visually hunting predators, Evol. Biol. 3: 225–259.

    Google Scholar 

  • Rosen, D. E., and Bailey, R. M., 1963, The Poeciliid fishes (Cyprinodontiformes), their structure, zoogeography, and systematics, Bull. Am. Mus. Nat. Hist. 126: 1–176.

    Google Scholar 

  • Rothschild, M., 1975, Remarks on carotenoids in the evolution of signals, in: Coevolution of Animals and Plants ( L. E. Gilbert and P. H. Raven, eds.), pp. 20–47, University of Texas Press, Austin.

    Google Scholar 

  • Rowell, C. H. F., 1971, The variable coloration of the Acridoid grasshoppers, Adv. Insect Physiol. 8: 145–198.

    Google Scholar 

  • Royama, T., 1970, Factors governing the hunting behavior and selection of food by the great tit (Parus major L.), J. Anim. Ecol. 39: 619–668.

    Google Scholar 

  • Sargent, T. D., 1969a, Behavioral adaptations of cryptic moths. II. Experimental studies on bark-like species, J. N.Y. Entomol. Soc. 77: 75–79.

    Google Scholar 

  • Sargent, T. D., 1969b, Behavioral adaptations of cryptic moths. III. Resting attitudes of two bark-like species, Melanolophia canadaria and Catocala ultronia, Anim. Behay. 17: 670–672.

    Google Scholar 

  • Sargent, T. D.. 1976, Legion of Night, University of Massachusetts Press, Amherst.

    Google Scholar 

  • Sargent, T. D., and Keiper, R. R., 1969, Behavioral adaptations of cryptic moths, I. Preliminary studies on bark-like species, J. Lepid. Soc. 23: 1–9.

    Google Scholar 

  • Seghers, B. H., 1973, Analysis of geographic variation in the antipredator adaptations of the guppy, Poecilia reticulata, Ph.D. thesis, Zoology Dept., University of British Columbia.

    Google Scholar 

  • Seghers, B. H., 1974a, Schooling behavior in the guppy (Poecilia reticulata): An evolutionary response to predation, Evolution 28: 486–489.

    Google Scholar 

  • Seghers, B. H., 1974b, Geographic variation in the response of guppies (Poecilia reticulata) to aerial predators, Oecologica, 14: 94–98.

    Google Scholar 

  • Semler, D. E., 1971, Some aspects of adaptation in a polymorphism for breeding color in the threespine stickleback (Gasterosteus aculeatus), J. Zool. 165: 291–302.

    Google Scholar 

  • Shapiro, A., 1976, Seasonal polyphenism, Evol. Biol. 9: 259–333.

    Google Scholar 

  • Sheppard, P. M., 1951, Fluctuations in the selective value of certain phenotypes in the polymorphic land snail Cepaea nemoralis (L.), Heredity 5: 125–134.

    PubMed  CAS  Google Scholar 

  • Spence, D. H. N., 1974, Light and plant response in fresh water, in: Light as an Ecological Factor, II, Symp. Brit. Ecol. Soc. 16 ( G. C. Evans, R. Bainbridge, and O. Rackham, eds.), pp. 93–133, Blackwell, Oxford.

    Google Scholar 

  • Stewart, M. M., 1974, Parallel pattern polymorphism in the genus Phrynobatrachus (Amphibia: Ranidae), Copeia 1974: 823–832.

    Google Scholar 

  • Sumner, F. B., 1934, Does protective coloration protect? Results from some experiments with fishes and birds, Proc. Nat. Acad. Sci. USA, 20: 559–564.

    PubMed  CAS  Google Scholar 

  • Sumner, F. B., 1935, Studies on protective color change. III. Experiments with fishes, both as predators and as prey, Proc. Nat. Acad. Sci. USA 21: 345–353.

    PubMed  CAS  Google Scholar 

  • Thayer, G. H., 1909, Concealing-Coloration in the Animal Kingdom: An Exposition of the Laws of Disguise through Color and Pattern: Being a Summary of Abbott H. Thayer’s Discoveries, MacMillan Co., New York.

    Google Scholar 

  • Thresher, R. E., 1977, Eye ornamentation of Caribbean reef fishes, Z. Tierpsychol. 43: 152–158.

    Google Scholar 

  • Turner, E. R. A., 1961, Survival values of different methods of camouflage as shown in a model population, Proc. Zool. Soc. London 136: 273–284.

    Google Scholar 

  • Vine, I., 1971, Risk of visual detection and pursuit by a predator and the selective advantage of flocking behavior, J. Theor. Biol. 30: 405–422.

    PubMed  CAS  Google Scholar 

  • Vine, I., 1973, Detection of prey flocks by predators, J. Theor. Biol. 40: 207–210.

    PubMed  CAS  Google Scholar 

  • Von Frisch, O., 1973, Animal Camouflage, Collins, London.

    Google Scholar 

  • Walls, G. L., 1942, The Vertebrate Eye and Its Adaptive Radiation, Cranbrook Institute of Science, Bloomfield Hills, Mich.

    Google Scholar 

  • Waterman, T. H., 1961, Light sensitivity and vision, in: The Physiology of the Crustacea, vol. 2, Sense Organs, Integration, and Behavior ( T. H. Waterman, ed.), pp. 1–64, Academic Press, New York.

    Google Scholar 

  • Watt, W. B., 1968, Adaptive significance of pigment polymorphisms in Colias butterflies. I. Variation of melanin pigment in relation to thermoregulation, Evolution 22: 437–458.

    Google Scholar 

  • Westlake, D. F., 1966, The light climate for plants in rivers, in: Light as an Ecological Factor, Symp. Brit. Ecol. Soc. 6 ( R. Bainbridge, C. C. Evans, and O. Rackham, eds.), pp. 99–119, Blackwell, Oxford.

    Google Scholar 

  • Weismann, A., 1882, Studies on the Theory of Descent, with notes and additions by the author, translated with notes by R. Meldola, with a prefatory note by C. Darwin, 2 vols. Sampson, Low, Searles, and Rivington, London.

    Google Scholar 

  • Wickler, W., 1968, Mimicry in Plants and Animals, Weidenfield and Nicholson, World University Library, London.

    Google Scholar 

  • Wicklund, C., 1975, Pupal color polymorphism in Papilio machaon L. and the survival in the field of cryptic versus non-cryptic pupae, Trans. R. Entomol. Soc. London 127: 73–84.

    Google Scholar 

  • Wolda, H., 1963, Natural populations of the polymorphic land snail Cepaea nemoralis (L.), Arch. Neerl. Zool. 15: 381–471.

    Google Scholar 

  • Wolken, J. J., 1971, Invertebrate Photoreceptors: A Comparative Study, Academic Press, New York.

    Google Scholar 

  • Yamamoto, T., 1975, The medaka, Oryzias latipes, and the guppy, Lebistes reticulatus, Handbook of Genetics, vol. 4, Vertebrates of Genetic Interest (R. C. King, ed), pp. 133–149, Plenum, New York.

    Google Scholar 

  • Yamanouchi, T., 1956, The visual acuity of the coral fish, Microcanthus strigatus (Cuvier and Valenciennes), Publ. Seto Mar. Biol. Lab. 5: 133–156.

    Google Scholar 

  • Young, A. M., 1971, Wing coloration and reflectance in Morpho butterflies as related to reproductive behavior and escape from avian predators, Oecologica, 7: 209–222.

    Google Scholar 

  • Zaret, T., 1972, Predators, invisible prey, and the nature of polymorphism in the Cladocera (class Crustacea), Limnol. Oceanogr. 17: 171–184.

    Google Scholar 

  • Zaret, T., and Kerfoot, W. C., 1975, Fish predation on Bosmina longirostris: Body size selection versus visibility selection, Ecology 56: 232–237.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer Science+Business Media New York

About this chapter

Cite this chapter

Endler, J.A. (1978). A Predator’s View of Animal Color Patterns. In: Hecht, M.K., Steere, W.C., Wallace, B. (eds) Evolutionary Biology. Evolutionary Biology, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-6956-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-6956-5_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4615-6958-9

  • Online ISBN: 978-1-4615-6956-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics