Skip to main content

The Contributions of Early Experience to Biological Development and Sensitivity to Context

  • Chapter
  • First Online:

Abstract

Although long a focus of developmental psychopathology, in recent years a variety of professional disciplines and the general public have demonstrated an increased interest in the manner in which early life experience relates to the development of health outcomes. Adding to the already rich empirical evidence of early life experience effects on child development, it is now becoming common for studies of adult mental health to include indices of childhood social context. In tandem with this movement, there has been a remarkable advancement in understanding of human biology and the biological mechanisms underlying psychopathology. In combination, these advancements in the study of early experience and biology illuminate many of the etiologic complexities of mental health. This chapter will review theories and evidence for the biological embedding of early life experience and the manner in which context and biology interact to predict psychopathology. In particular, we approach this work through the lens of Biological Sensitivity to Context Theory, which allows for examination of both phenomena and their integration, across development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adler, N. E., Boyce, W. T., Chesney, M. A., Cohen, S., Folkman, S., Kahn, R. L., et al. (1994). Socioeconomic status and health: The challenge of the gradient. American Psychologist, 49(1), 15–24.

    PubMed  Google Scholar 

  • Adler, N. E., Bush, N. R., & Pantell, M. S. (2012). Rigor, vigor, and the study of health disparities. Proceedings of the National Academy of Sciences of the United States of America, 109, 17154–17159. doi:10.1073/pnas.1121399109.

    PubMed Central  PubMed  Google Scholar 

  • Adler, N. E., & Stewart, J. (2010). Preface to the biology of disadvantage: Socioeconomic status and health. Annals of the New York Academy of Sciences, 1186, 1–4. NYAS5385 [pii]10.1111/j.1749-6632.2009.05385.x.

    PubMed  Google Scholar 

  • Alkon, A., Lippert, S., Vujan, N., Rodriquez, M. E., Boyce, W. T., & Eskenazi, B. (2006). The ontogeny of autonomic measures in 6- and 12-month-old infants. Developmental Psychobiology, 48(3), 197–208. doi:10.1002/dev.20129.

    PubMed  Google Scholar 

  • American Psychological Association, T. F. o. S. S. (2007). Report of the APA task force on socioeconomic status. Washington, DC: American Psychological Association.

    Google Scholar 

  • Andersen, S. L., & Teicher, M. H. (2008). Stress, sensitive periods and maturational events in adolescent depression. Trends in Neurosciences, 31(4), 183–191. http://dx.doi.org/10.1016/j.tins.2008.01.004.

    PubMed  Google Scholar 

  • Anisman, H., Zaharia, M. D., Meaney, M. J., & Merali, Z. (1998). Do early-life events permanently alter behavioral and hormonal responses to stressors? International Journal of Developmental Neuroscience, 16(3–4), 149–164.

    PubMed  Google Scholar 

  • Bakermans-Kranenburg, M. J., Van, I. M. H., Pijlman, F. T., Mesman, J., & Juffer, F. (2008). Experimental evidence for differential susceptibility: Dopamine D4 receptor polymorphism (DRD4 VNTR) moderates intervention effects on toddlers’ externalizing behavior in a randomized controlled trial. Developmental Psychology, 44(1), 293–300. doi:10.1037/0012-1649.44.1.293. 2007-19851-030 [pii].

    PubMed  Google Scholar 

  • Barr, C. S., Dvoskin, R. L., Gupte, M., Sommer, W., Sun, H., Schwandt, M. L., et al. (2009). Functional CRH variation increases stress-induced alcohol consumption in primates. Proceedings of the National Academy of Sciences of the United States of America, 106(34), 14593–14598. doi:10.1073/pnas.0902863106.

    PubMed Central  PubMed  Google Scholar 

  • Belsky, J. (1997). Variation in susceptibility to environmental influence: An evolutionary argument. Psychological Inquiry, 8(3), 182–186.

    Google Scholar 

  • Belsky, J. (2005). Differential susceptibility to rearing influence: An evolutionary hypothesis and some evidence. In B. Ellis & D. Bjorklund (Eds.), Origins of the social mind: Evolutionary psychology and child development (pp. 139–163). New York: Guilford Press.

    Google Scholar 

  • Belsky, J., Bakermans-Kranenburg, M. J., & Van IJzendoorn, M. H. (2007). For better and for worse: Differential susceptibility to environmental influences. Current Directions in Psychological Science, 16(6), 300–304.

    Google Scholar 

  • Belsky, J., & Pluess, M. (2009). Beyond diathesis stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135(6), 885–908. 2009-19763-005 [pii]10.1037/a0017376.

    PubMed  Google Scholar 

  • Belsky, J., & Pluess, M. (2013). Beyond risk, resilience and dysregulation: Phenotypic plasticity and human development. Development & Psychopathology, 25, 1243–1261.

    Google Scholar 

  • Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1993). Cardiac psychophysiology and autonomic space in humans: Empirical perspectives and conceptual implications. Psychological Bulletin, 114(2), 296–322.

    PubMed  Google Scholar 

  • Bogdan, R., & Hariri, A. R. (2012). Neural embedding of stress reactivity. [10.1038/nn.3270]. Nature Neuroscience, 15(12), 1605–1607.

    PubMed  Google Scholar 

  • Borghol, N., Suderman, M., McArdle, W., Racine, A., Hallett, M., Pembrey, M., et al. (2012). Associations with early-life socio-economic position in adult DNA methylation. International Journal of Epidemiology, 41(1), 62–74. doi:10.1093/ije/dyr147.

    PubMed Central  PubMed  Google Scholar 

  • Boyce, W. T. (1996). Biobehavioral reactivity and injuries in children and adolescents. In M. H. Bornstein & J. Genevro (Eds.), Child development and behavioral pediatrics: Toward understanding children and health. Mahwah, NJ: Erlbaum.

    Google Scholar 

  • Boyce, W. T. (2004). Social stratification, health and violence in the very young. Annals of the New York Academy of Sciences, 1036, 47–68.

    PubMed  Google Scholar 

  • Boyce, W. T. (2007). A biology of misfortune: Stress reactivity, social context, and the ontogeny of psychopathology in early life. In A. Masten (Ed.), Multilevel dynamics in developmental psychopathology: Pathways to the future (34th ed., pp. 45–82). Minneapolis, MN: University of Minnesota.

    Google Scholar 

  • Boyce, W. T., Chesney, M., Alkon–Leonard, A., Tschann, J., Adams, S., Chesterman, B., et al. (1995). Psychobiologic reactivity to stress and childhood respiratory illnesses: Results of two prospective studies. Psychosomatic Medicine, 57, 411–422.

    PubMed  Google Scholar 

  • Boyce, W. T., & Ellis, B. J. (2005). Biological sensitivity to context: I. An evolutionary–developmental theory of the origins and functions of stress reactivity. Development and Psychopathology, 17(2), 271–301.

    PubMed  Google Scholar 

  • Boyce, W. T., Obradović, J., Bush, N. R., Stamperdahl, J., Kim, Y. S., & Adler, N. E. (2012). Social stratification, classroom climate, and the behavioral adaptation of kindergarten children. Proceedings of the National Academy of Sciences. doi: 10.1073/pnas.1201730109.

    Google Scholar 

  • Braveman, P., & Egerter, S. (2008). Overcoming obstacles to health: Report to the Robert Wood Johnson Foundation Commission to build a healthier America. Princeton, NJ: Robert Wood Johnson Foundation. Retrieved from http://www.commissiononhealth.org

  • Bredy, T. W., Humpartzoomian, R. A., Cain, D. P., & Meaney, M. J. (2003). Partial reversal of the effect of maternal care on cognitive function through environmental enrichment. Neuroscience, 118(2), 571–576. doi:10.1016/s0306-4522(02)00918-1.

    PubMed  Google Scholar 

  • Bredy, T. W., Sun, Y. E., & Kobor, M. S. (2010). How the epigenome contributes to the development of psychiatric disorders. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Developmental Psychobiology, 52(4), 331–342.

    PubMed Central  PubMed  Google Scholar 

  • Burghy, C. A., Stodola, D. E., Ruttle, P. L., Molloy, E. K., Armstrong, J. M., Oler, J. A., et al. (2012). Developmental pathways to amygdala-prefrontal function and internalizing symptoms in adolescence. [10.1038/nn.3257]. Nature Neuroscience, 15(12), 1736–1741. doi: http://www.nature.com/neuro/journal/v15/n12/abs/nn.3257.html#supplementary-information

  • Bush, N. R., Adler, N., & Boyce, W. T. (2013). Mechanisms for socioeconomic health disparities: SES predicts longitudinal change in children’s ANS reactivity. Unpublished work.

    Google Scholar 

  • Bush, N. R., Alkon, A., Stamperdahl, J., Obradović, J., & Boyce, W. T. (2011). Differentiating challenge reactivity from psychomotor activity in studies of children’s psychophysiology: Considerations for theory and measurement. Journal of Experimental Child Psychology, 110(1), 62–79.

    PubMed  Google Scholar 

  • Bush, N. R., Guendelman, M., Adler, N. E., & Boyce, W. T. (2013a). BDNF allelic variants moderate social disparities in children’s chronic cortisol expression. Manuscript submitted for publication.

    Google Scholar 

  • Bush, N. R., Guendelman, M., Adler, N. E., & Boyce, W. T. (2013b). Serotonin transporter allelic variants moderate social disparities in children’s chronic cortisol expression. Unpublished manuscript.

    Google Scholar 

  • Bush, N. R., Obradovic, J., Adler, N., & Boyce, W. T. (2011). Kindergarten stressors and cumulative adrenocortical activation: The “first straws” of allostatic load? Development and Psychopathology, 23(4), 1089–1106. doi:10.1017/s0954579411000514.

    PubMed  Google Scholar 

  • Carlson, M., & Earls, F. (1997). Psychological and neuroendocrinological sequelae of early social deprivation in institutionalized children in Romania. Annals of the New York Academy of Sciences, 807, 419–428.

    PubMed  Google Scholar 

  • Chen, E., Cohen, S., & Miller, G. E. (2010). How low socioeconomic status affects 2-year hormonal trajectories in children. Psychological Science, 21(1), 31–37. doi:10.1177/0956797609355566.

    PubMed  Google Scholar 

  • Chen, E., Langer, D. A., Raphaelson, Y. E., & Matthews, K. A. (2004). Socioeconomic status and health in adolescents: The role of stress interpretations. Child Development, 75(4), 1039–1052.

    PubMed  Google Scholar 

  • Chen, E., Matthews, K. A., & Boyce, W. T. (2002). Socioeconomic differences in children’s health: How and why do these relationships change with age? Psychological Bulletin, 128(2), 295–329.

    PubMed  Google Scholar 

  • Chiao, J. Y. (2009). Cultural neuroscience: A once and future discipline. In Y. C. Joan (Ed.), Progress in brain research (Vol. 178, pp. 287–304). Amsterdam: Elsevier.

    Google Scholar 

  • Christakis, D. A., Ramirez, J. S. B., & Ramirez, J. M. (2012). Overstimulation of newborn mice leads to behavioral differences and deficits in cognitive performance. Scientific Reports, 2. doi: 10.1038/srep00546

    Google Scholar 

  • Cicchetti, D., & Gunnar, M. (2008). Integrating biological measures into the design and evaluation of preventative interventions. Development and Psychopathology, 20, 737–743.

    PubMed  Google Scholar 

  • Cicchetti, D., & Rogosch, F. A. (2001). The impact of child maltreatment and psychopathology on neuroendocrine functioning. Development and Psychopathology, 13(4), 783–804.

    PubMed  Google Scholar 

  • Cohen, S., Janicki-Deverts, D., Chen, E., & Matthews, K. A. (2010). Childhood socioeconomic status and adult health. Annals of the New York Academy of Sciences, 1186(1), 37–55. doi:10.1111/j.1749-6632.2009.05334.x.

    PubMed  Google Scholar 

  • Cohen, S., Kesler, R., & Underwood, L. (1995). Strategies for measuring stress in studies of psychiatric and physical disorders. In R. Cohen, R. C. Kessler, & L. G. Underwood (Eds.), Measuring stress: A guide for health and social scientists (pp. 3–28). New York: Oxford University Press.

    Google Scholar 

  • Conti, G., Hansman, C., Heckman, J. J., Novak, M. F. X., Ruggiero, A., & Suomi, S. J. (2012). Primate evidence on the late health effects of early-life adversity. Proceedings of the National Academy of Sciences of the United States of America, 109(23), 8866–8871. doi:10.1073/pnas.1205340109.

    PubMed Central  PubMed  Google Scholar 

  • Cummings, E. M., El-Sheikh, M., Kouros, C. D., & Keller, P. S. (2007). Children’s skin conductance reactivity as a mechanism of risk in the context of parental depressive symptoms. Journal of Child Psychology and Psychiatry, 48(5), 436–445. JCPP1713 [pii] 10.1111/j.1469-7610.2006.01713.x.

    PubMed  Google Scholar 

  • D’Angiulli, A., Van Roon, P. M., Weinberg, J., Oberlander, T. F., Grunau, R. E., Hertzman, C., et al. (2012). Frontal EEG/ERP correlates of attentional processes, cortisol and motivational states in adolescents from lower and higher socioeconomic status. Frontiers in Human Neuroscience, 6. doi: 10.3389/fnhum.2012.00306.

    Google Scholar 

  • de Kloet, E. R., Sibug, R. M., Helmerhorst, F. M., & Schmidt, M. (2005). Stress, genes and the mechanism of programming the brain for later life. Neuroscience and Biobehavioral Reviews, 29(2), 271–281. doi:10.1016/j.neubiorev.2004.10.008.

    PubMed  Google Scholar 

  • De Meyer, T. (2011). Telomere length integrates psychological factors in the successful aging story, but what about the biology? Psychosomatic Medicine, 73(7), 524–527. doi:10.1097/PSY.0b013e31822ed876.

    PubMed  Google Scholar 

  • Del Giudice, M., Ellis, B. J., & Shirtcliff, E. A. (2011). The adaptive calibration model of stress responsivity [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Neuroscience and Biobehavioral Reviews, 35(7), 1562–1592.

    PubMed Central  PubMed  Google Scholar 

  • DeSantis, A. S., Adam, E. K., Doane, L. D., Mineka, S., Zinbarg, R. E., & Craske, M. G. (2007). Racial/ethnic differences in cortisol diurnal rhythms in a community sample of adolescents. The Journal of Adolescent Health, 41(1), 3–13. doi:10.1016/j.jadohealth.2007.03.006.

    PubMed  Google Scholar 

  • Dettling, A. C., Parker, S. W., Lane, S., Sebanc, A., & Gunnar, M. R. (2000). Quality of care and temperament determine changes in cortisol concentrations over the day for young children in childcare. Psychoneuroendocrinology, 25(8), 819–836.

    PubMed  Google Scholar 

  • Dettmer, A. M., Novak, M. A., Suomi, S. J., & Meyer, J. S. (2012). Physiological and behavioral adaptation to relocation stress in differentially reared rhesus monkeys: Hair cortisol as a biomarker for anxiety-related responses. Psychoneuroendocrinology, 37(2), 191–199. doi:10.1016/j.psyneuen.2011.06.003.

    PubMed Central  PubMed  Google Scholar 

  • Dienstbier, R. A. (1989). Arousal and physiological toughness – Implications for mental and physical health. Psychological Review, 96(1), 84–100.

    PubMed  Google Scholar 

  • Dozier, M., Manni, M., Gordon, M. K., Peloso, E., Gunnar, M. R., Stovall-McClough, K. C., et al. (2006). Foster children’s diurnal production of cortisol: An exploratory study. Child Maltreatment, 11(2), 189–197. doi:10.1177/1077559505285779.

    PubMed  Google Scholar 

  • Drury, S. S., Gleason, M. M., Theall, K. P., Smyke, A. T., Nelson, C. A., Fox, N. A., et al. (2012). Genetic sensitivity to the caregiving context: The influence of 5httlpr and BDNF val66met on indiscriminate social behavior. Physiology & Behavior, 106(5), 728–735. doi:10.1016/j.physbeh.2011.11.014.

    Google Scholar 

  • Drury, S. S., Theall, K., Gleason, M. M., Smyke, A. T., De Vivo, I., Wong, J. Y. Y., et al. (2012). Telomere length and early severe social deprivation: Linking early adversity and cellular aging. Molecular Psychiatry, 17(7), 719–727. doi:10.1038/mp.2011.53.

    PubMed Central  PubMed  Google Scholar 

  • Ellis, B. J., & Boyce, W. T. (2011). Differential susceptibility to the environment: Toward an understanding of sensitivity to developmental experiences and context. Development and Psychopathology, 23(1), 1–5. doi:10.1017/s095457941000060x.

    PubMed  Google Scholar 

  • Ellis, B. J., Boyce, W. T., Belsky, J., Bakermans-Kranenburg, M. J., & van Ijzendoorn, M. H. (2011). Differential susceptibility to the environment: An evolutionary-neurodevelopmental theory. Development and Psychopathology, 23(1), 7–28. doi:10.1017/s0954579410000611.

    PubMed  Google Scholar 

  • Ellis, B. J., Essex, M. J., & Boyce, W. T. (2005). Biological sensitivity to context: II. Empirical explorations of an evolutionary-developmental theory. Development and Psychopathology, 17(2), 303–328.

    PubMed  Google Scholar 

  • Ellis, B. J., McFadyen-Ketchum, S., Dodge, K. A., Pettit, G. S., & Bates, J. E. (1999). Quality of early family relationships and individual differences in the timing of pubertal maturation in girls: A longitudinal test of an evolutionary model. Journal of Personality & Social Psychology, 77(2), 387–401.

    Google Scholar 

  • El-Sheikh, M. (2005). The role of emotional responses and physiological reactivity in the marital conflict-child functioning link. Journal of Child Psychology and Psychiatry, 46(11), 1191–1199. PP418 [pii] 10.1111/j.1469-7610.2005.00418.x.

    PubMed  Google Scholar 

  • El-Sheikh, M., Keller, P. S., & Erath, S. A. (2007). Marital conflict and risk for child maladjustment over time: Skin conductance level reactivity as a vulnerability factor. Journal of Abnormal Child Psychology, 35(5), 715–727. doi:10.1007/s10802-007-9127-2.

    PubMed  Google Scholar 

  • Engert, V., Efanov, S. I., Dedovic, K., Duchesne, A., Dagher, A., & Pruessner, J. C. (2010). Perceived early-life maternal care and the cortisol response to repeated psychosocial stress. Journal of Psychiatry & Neuroscience, 35(6), 370–377. doi:10.1503/jpn.100022.

    Google Scholar 

  • Entringer, S., Epel, E. S., Kumsta, R., Lin, J., Hellhammer, D. H., Blackburn, E. H., et al. (2011). Stress exposure in intrauterine life is associated with shorter telomere length in young adulthood. Proceedings of the National Academy of Sciences, 108(33), E513–E518. doi:10.1073/pnas.1107759108.

    Google Scholar 

  • Entringer, S., Epel, E., LIn, J., Buss, C., Shahbaba, B., Blackburn, E. H., et al. (2013). Maternal psychosocial stress during pregnancy is associated with newborn leukocyte telomere length. American Journal of Obstetrics and Gynecology, 208, 134.e131–134.e137.

    Google Scholar 

  • Epel, E. S., Blackburn, E. H., Lin, J., Dhabhar, F. S., Adler, N. E., Morrow, J. D., et al. (2004). Accelerated telomere shortening in response to life stress. Proceedings of the National Academy of Sciences of the United States of America, 101(49), 17312–17315.

    PubMed Central  PubMed  Google Scholar 

  • Essex, M. J., Boyce, W. T., Hertzman, C., Lam, L. L., Armstrong, J. M., Neumann, S. M. A., et al. (2013). Epigenetic vestiges of early developmental adversity: Childhood stress exposure and DNA methylation in adolescence. Child Development, 84(1), 58–75. doi:10.1111/j.1467-8624.2011.01641.x.

    PubMed Central  PubMed  Google Scholar 

  • Essex, M. J., Klein, M. H., Cho, E., & Kalin, N. H. (2002). Maternal stress beginning in infancy may sensitize children to later stress exposure: Effects on cortisol and behavior. Biological Psychiatry, 52(8), 776–784.

    PubMed  Google Scholar 

  • Evans, G. W., Chen, E., Miller, G., & Seeman, T. (2012). How poverty gets under the skin. In V. Maholmes & R. B. King (Eds.), The Oxford handbook of poverty and child development (pp. 13–26). Oxford: Oxford University Press.

    Google Scholar 

  • Evans, G. W., & Kim, P. (2007). Childhood poverty and health: Cumulative risk exposure and stress dysregulation. Psychological Science, 18(11), 953–957. PSCI2008 [pii] 10.1111/j.1467-9280.2007.02008.x.

    PubMed  Google Scholar 

  • Evans, G. W., Kim, P., Ting, A. H., Tesher, H. B., & Shannis, D. (2007). Cumulative risk, maternal responsiveness, and allostatic load among young adolescents. Developmental Psychology, 43(2), 341–351. 2007-02739-006 [pii] 10.1037/0012-1649.43.2.341.

    PubMed  Google Scholar 

  • Fernald, L. C., Burke, H. M., & Gunnar, M. R. (2008). Salivary cortisol levels in children of low-income women with high depressive symptomatology. Development and Psychopathology, 20, 423–436.

    PubMed  Google Scholar 

  • Fisher, P. A., Stoolmiller, M., Gunnar, M. R., & Burraston, B. O. (2007). Effects of a therapeutic intervention for foster preschoolers on diurnal cortisol activity. Psychoneuroendocrinology, 32(8–10), 892–905. doi:10.1016/j.psyneuen.2007.06.008.

    PubMed Central  PubMed  Google Scholar 

  • Fox, S. E., Levitt, P., & Nelson, C. A. (2010). How the timing and quality of early experiences influence the development of brain architecture [Review]. Child Development, 81(1), 28–40.

    PubMed Central  PubMed  Google Scholar 

  • Ganzel, B. L., Morris, P. A., & Wethington, E. (2010). Allostasis and the human brain: Integrating models of stress from the social and life sciences. Psychological Review, 117(1), 134–174. doi:10.1037/a0017773.

    PubMed Central  PubMed  Google Scholar 

  • Garcia-Coll, C., Akerman, A., & Cicchetti, D. (2000). Cultural influences on developmental processes and outcomes: Implications for the study of development and psychopathology. Development and Psychopathology, 12, 333–356.

    Google Scholar 

  • Ghera, M. M., Marshall, P. J., Fox, N. A., Zeanah, C. H., Nelson, C. A., Smyke, A. T., et al. (2009). The effects of foster care intervention on socially deprived institutionalized children’s attention and positive affect: Results from the BEIP study. Journal of Child Psychology and Psychiatry, 50(3), 246–253. doi:10.1111/j.1469-7610.2008.01954.x.

    PubMed  Google Scholar 

  • Giedd, J. N., Vaituzis, A. C., Hamburger, S. D., Lange, N., Rajapakse, J. C., Kaysen, D., Vauss, Y. C., & Rapoport, J. L. (1996). Quantitative MRI of the temporal lobe, amygdala, and hippocampus in normal human development: Ages 4-18 years. Journal of Comparative Neurology, 366, 223–230.

    Google Scholar 

  • Goldstein, L. H., Trancik, A., Bensadoun, J., Boyce, W. T., & Adler, N. E. (1999). Social dominance and cardiovascular reactivity in preschoolers: Associations with SES and health. Annals of the New York Academy of Sciences, 896, 363–366.

    PubMed  Google Scholar 

  • Green, J., McLaughlin, K. A., Berglund, P. A., Gruber, M., Sampson, N., Zaslavsky, A., et al. (2010). Childhood adversities and adult psychiatric disorders in the national comorbidity survey replication i: Associations with first onset of dsm-iv disorders. Archives of General Psychiatry, 67(2), 113–123. doi:10.1001/archgenpsychiatry.2009.186.

    PubMed Central  PubMed  Google Scholar 

  • Gunnar, M. R., Frenn, K., Wewerka, S. S., & Van Ryzin, M. J. (2009). Moderate versus severe early life stress: Associations with stress reactivity and regulation in 10-12-year-old children. Psychoneuroendocrinology, 34(1), 62–75. S0306-4530(08)00217-5 [pii] 10.1016/j.psyneuen.2008.08.013.

    PubMed Central  PubMed  Google Scholar 

  • Gunnar, M. R., Sebanc, A. M., Tout, K., Donzella, B., & van Dulmen, M. H. (2003). Peer rejection, temperament, and cortisol activity in preschoolers. Developmental Psychobiology, 43(4), 346–358.

    PubMed  Google Scholar 

  • Gunnar, M. R., Tout, K., de Haan, M., Pierce, S., & Stansbury, K. (1997). Temperament, social competence, and adrenocortical activity in preschoolers. Developmental Psychobiology, 31, 65–85.

    PubMed  Google Scholar 

  • Gunnar, M. R., & Vazquez, D. M. (2001). Low cortisol and a flattening of expected daytime rhythm: Potential indices of risk in human development. Development and Psychopathology, 13(3), 515–538.

    PubMed  Google Scholar 

  • Gunnar, M. R., & Vazquez, D. (2006). Stress neurobiology and developmental psychopathology. In D. Cicchetti & D. J. Cohen (Eds.), Developmental psychopathology (Vol. 2, pp. 533–577). Hoboken, NJ: Wiley.

    Google Scholar 

  • Hackman, D. A., & Farah, M. J. (2009). Socioeconomic status and the developing brain. Trends in Cognitive Science, 13(2), 65–73. S1364-6613(08)00263-5 [pii] 10.1016/j.tics.2008.11.003.

    Google Scholar 

  • Hammock, E. A. D., & Levitt, P. (2006). The discipline of neurobehavioral development: The emerging interface of processes that build circuits and skills. Human Development, 49(5), 294–309.

    Google Scholar 

  • Heim, C., Plotsky, P. M., & Nemeroff, C. B. (2004). Importance of studying the contributions of early adverse experience to neurobiological findings in depression. Neuropsychopharmacology, 29(4), 641–648. doi: http://www.nature.com/npp/journal/v29/n4/suppinfo/1300397s1.html

  • Hertzman, C. (1999). The biological embedding of early experience and its effects on health in adulthood. Annals of the New York Academy of Sciences, 896, 85–95.

    PubMed  Google Scholar 

  • Hertzman, C. (2012). Putting the concept of biological embedding in historical perspective. Proceedings of the National Academy of Sciences of the United States of America, 109, 17160–17167. doi:10.1073/pnas.1202203109.

    PubMed Central  PubMed  Google Scholar 

  • Hertzman, C., & Boyce, W. T. (2010). How experience gets under the skin to create gradients in developmental health. Annual Review of Public Health, 31, 329–347. doi:10.1146/annurev.publhealth.012809.103538.

    PubMed  Google Scholar 

  • Hertzman, C., & Wiens, M. (1996). Child development and long-term outcomes: A population health perspective and summary of successful interventions. Social Science and Medicine, 43(7), 1083–1095.

    PubMed  Google Scholar 

  • Keating, D. P., & Hertzman, C. (1999). Developmental health and the wealth of nations: Social, biological, and educational dynamics. New York: Guilford Press.

    Google Scholar 

  • King, J. A., Barkley, R. A., & Barrett, S. (1998). Attention-deficit hyperactivity disorder and the stress response. Biological Psychiatry, 44(1), 72–74.

    PubMed  Google Scholar 

  • Kishiyama, M. M., Boyce, W. T., Jimenez, A. M., Perry, L. M., & Knight, R. T. (2009). Socioeconomic disparities affect prefrontal function in children. Journal of Cognitive Neuroscience, 21(6), 1106–1115. doi:10.1162/jocn.2009.21101.

    PubMed  Google Scholar 

  • Klimes-Dougan, B., Hastings, P. D., Granger, D. A., Usher, B. A., & Zahn-Waxler, C. (2001). Adrenocortical activity in at-risk and normally developing adolescents: Individual differences in salivary cortisol basal levels, diurnal variation, and responses to social challenges. Development and Psychopathology, 13, 695–719.

    PubMed  Google Scholar 

  • Knafo, A., Israel, S., & Ebstein, R. P. (2011). Heritability of children’s prosocial behavior and differential susceptibility to parenting by variation in the dopamine receptor D4 gene. Development and Psychopathology, 23(01), 53–67. doi:10.1017/S0954579410000647.

    PubMed  Google Scholar 

  • Kroenke, C. H., Epel, E., Adler, N., Bush, N. R., Obradovic, J., Lin, J., et al. (2011). Autonomic and adrenocortical reactivity and buccal cell telomere length in kindergarten children. Psychosomatic Medicine, 73(7), 533–540. doi:10.1097/PSY.0b013e318229acfc.

    PubMed Central  PubMed  Google Scholar 

  • Levine, S. (2005). Developmental determinants of sensitivity and resistance to stress. Psychoneuroendocrinology, 30(10), 939–946. S0306-4530(05)00090-9 [pii] 10.1016/j.psyneuen.2005.03.013.

    PubMed  Google Scholar 

  • Liu, D., Diorio, J., Tannenbaum, B., Caldji, C., Francis, D., Freedman, A., et al. (1997). Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science, 277, 1659–1662.

    PubMed  Google Scholar 

  • Loman, M. M., & Gunnar, M. R. (2009). Early experience and the development of stress reactivity and regulation in children. Neuroscience and Biobehavioral Reviews. doi: S0149-7634(09)00075-X[pii].10.1016/j.neubiorev.2009.05.007

    Google Scholar 

  • Lupien, S. J., King, S., Meaney, M. J., & McEwen, B. S. (2000). Child’s stress hormone levels correlate with mother’s socioeconomic status and depressive state. Biological Psychiatry, 48(10), 976–980. S0006-3223(00)00965-3 [pii].

    PubMed  Google Scholar 

  • Lupien, S. J., Ouellet-Morin, I., Hupbach, A., Tu, M. T., Buss, C., Walker, D., et al. (2006). Beyond the stress concept: Allostatic load–a developmental biological and cognitive perspective. In D. Cicchetti & D. J. Cohen (Eds.), Developmental psychopathology, Vol 2: Developmental neuroscience (Vol. 2, pp. 578–628). Hoboken, NJ: Wiley.

    Google Scholar 

  • Luthar, S. S., Lyman, E. L., & Crossman, E. J. (2014). Resilience and positive psychology. In M. Lewis & K. Rudolph (Eds.), Handbook of developmental psychopathology. New York: Springer.

    Google Scholar 

  • Lyons, D. M., Parker, K. J., & Schatzberg, A. F. (2010). Animal models of early life stress: Implications for understanding resilience. Developmental Psychobiology, 52(5), 402–410. doi:10.1002/dev.20429.

    PubMed Central  PubMed  Google Scholar 

  • Macri, S., Zoratto, F., & Laviola, G. (2011). Early-stress regulates resilience, vulnerability and experimental validity in laboratory rodents through mother-offspring hormonal transfer. Neuroscience and Biobehavioral Reviews, 35(7), 1534–1543. doi:10.1016/j.neubiorev.2010.12.014.

    PubMed  Google Scholar 

  • Makinodan, M., Rosen, K. M., Ito, S., & Corfas, G. (2012). A critical period for social experience–dependent oligodendrocyte maturation and myelination. Science, 337(6100), 1357–1360. doi:10.1126/science.1220845.

    PubMed  Google Scholar 

  • Masten, A. (2012). Risk and resilience in development. In P. D. Zelazo (Ed.), Oxford handbook of developmental psychology. Oxford: Oxford Press.

    Google Scholar 

  • McEwen, B. S. (1998). Protective and damaging effects of stress mediators. New England Journal of Medicine, 338, 171–179.

    PubMed  Google Scholar 

  • McEwen, B. S. (2000). Effects of adverse experiences for brain structure and function. Biological Psychiatry, 48(8), 721–731.

    PubMed  Google Scholar 

  • McEwen, B. S. (2007). Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiological Reviews, 87(3), 873–904. 87/3/873 [pii] 10.1152/physrev.00041.2006.

    PubMed  Google Scholar 

  • McEwen, B. S., & Stellar, E. (1993). Stress and the individual. Mechanisms leading to disease. Archives of Internal Medicine, 153(18), 2093–2101.

    PubMed  Google Scholar 

  • McGrath, J. J., Matthews, K. A., & Brady, S. S. (2006). Individual versus neighborhood socioeconomic status and race as predictors of adolescent ambulatory blood pressure and heart rate. Social Science & Medicine, 63(6), 1442–1453. S0277-9536(06)00152-3 [pii] 10.1016/j.socscimed.2006.03.019.

    Google Scholar 

  • McLoyd, V. C. (1998). Socioeconomic disadvantage and child development. American Psychologist, 53(2), 185–204.

    PubMed  Google Scholar 

  • Meaney, M. J. (2010). Epigenetics and the biological definition of gene x environment interactions. Child Development, 81(1), 41–79.

    PubMed  Google Scholar 

  • Meaney, M. J., Aitken, D. H., Van Berkel, C., Bhatnagar, S., & Sapolsky, R. M. (1988). Effect of neonatal handling on age-related impairments associated with the hippocampus. Science, 239, 766–768.

    PubMed  Google Scholar 

  • Miller, G. E., Chen, E., & Zhou, E. S. (2007). If it goes up, must it come down? Chronic stress and the hypothalamic-pituitary-adrenocortical axis in humans. Psychological Bulletin, 133(1), 25–45. doi:10.1037/0033-2909.133.1.25.

    PubMed  Google Scholar 

  • Monroe, S. M., & Harkness, K. L. (2005). Life stress, the “Kindling” hypothesis, and the recurrence of depression: Considerations from a life stress perspective. Psychological Review, 112(2), 417–445. doi:10.1192/bjp.168.1.68 10.1016/s0165-0327(02)00112-x.

    PubMed  Google Scholar 

  • Nelson, C. A., Zeanah, C. H., Fox, N. A., Marshall, P. J., Smyke, A. T., & Guthrie, D. (2007). Cognitive recovery in socially deprived young children: The Bucharest early intervention project. Science, 318(5858), 1937–1940. doi:10.1126/science.1143921.

    PubMed  Google Scholar 

  • O’Donovan, A., Tomiyama, A. J., Lin, J., Puterman, E., Adler, N. E., Kemeny, M., et al. (2012). Stress appraisals and cellular aging: A key role for anticipatory threat in the relationship between psychological stress and telomere length. Brain, Behavior, and Immunity, 26(4), 573–579. http://dx.doi.org/10.1016/j.bbi.2012.01.007.

    PubMed Central  PubMed  Google Scholar 

  • Oberlander, T. F., Weinberg, J., Papsdorf, M., Grunau, R., Misri, S., & Devlin, A. M. (2008). Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress response. Epigenetics, 3(2), 97–106.

    PubMed  Google Scholar 

  • Obradović, J., & Boyce, W. T. (2009). Individual differences in behavioral, physiological, and genetic sensitivities to contexts: Implications for development and adaptation. Developmental Neuroscience, 31(4), 300–308.

    PubMed  Google Scholar 

  • Obradović, J., Bush, N. R., Stamperdahl, J., Adler, N. E., & Boyce, W. T. (2010). Biological sensitivity to context: The interactive effects of stress reactivity and family adversity on socioemotional behavior and school readiness. [Review]. Child Development, 81(1), 270–289.

    PubMed Central  PubMed  Google Scholar 

  • Oomen, C. A., Soeters, H., Audureau, N., Vermunt, L., van Hasselt, F. N., Manders, E. M. M., et al. (2010). Severe early life stress hampers spatial learning and neurogenesis, but improves hippocampal synaptic plasticity and emotional learning under high-stress conditions in adulthood. Journal of Neuroscience, 30(19), 6635–6645. doi:10.1523/jneurosci.0247-10.2010.

    PubMed  Google Scholar 

  • Oosterlaan, J., Geurts, H. M., Knol, D. L., & Sergeant, J. A. (2005). Low basal salivary cortisol is associated with teacher-reported symptoms of conduct disorder. Psychiatry Research, 134(1), 1–10. doi:10.1016/j.psychres.2004.12.005.

    PubMed  Google Scholar 

  • Oosterman, M., De Schipper, J. C., Fisher, P., Dozier, M., & Schuengel, C. (2010). Autonomic reactivity in relation to attachment and early adversity among foster children. Development and Psychopathology, 22(01), 109–118. doi:10.1017/S0954579409990290.

    PubMed Central  PubMed  Google Scholar 

  • Piatti, V. C., Davies-Sala, M. G., Esposito, M. S., Mongiat, L. A., Trinchero, M. F., & Schinder, A. F. (2011). The timing for neuronal maturation in the adult hippocampus is modulated by local network activity. Journal of Neuroscience, 31(21), 7715–7728. doi:10.1523/jneurosci.1380-11.2011.

    PubMed Central  PubMed  Google Scholar 

  • Plotsky, P. M., & Meaney, M. J. (1993). Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Brain Research. Molecular Brain Research, 18(3), 195–200.

    PubMed  Google Scholar 

  • Pollak, S. D. (2005). Early adversity and mechanisms of plasticity: Integrating affective neuroscience with developmental approaches to psychopathology. Development and Psychopathology, 17(3), 735–752. doi:10.1017/s0954579405050352.

    PubMed  Google Scholar 

  • Provencal, N., Suderman, M. J., Guillemin, C., Massart, R., Ruggiero, A., Wang, D. S., et al. (2012). The Signature of maternal rearing in the methylome in rhesus macaque prefrontal cortex and T cells. Journal of Neuroscience, 32(44), 15626–15642. doi:10.1523/jneurosci.1470-12.2012.

    PubMed Central  PubMed  Google Scholar 

  • Puterman, E., & Epel, E. (2012). An intricate dance: Life experience, multisystem resiliency, and rate of telomere decline throughout the lifespan. Social and Personality Psychology Compass, 6(11), 807–825.

    PubMed Central  PubMed  Google Scholar 

  • Rudolph, K. D., Troop-Gordon, W., & Granger, D. A. (2010). Peer victimization and aggression: Moderation by individual differences in salivary cortiol and alpha-amylase. Journal of Abnormal Child Psychology, 38(6), 843–856. doi:10.1007/s10802-010-9412-3.

    PubMed Central  PubMed  Google Scholar 

  • Rudolph, K. D., Troop-Gordon, W., & Granger, D. A. (2011). Individual differences in biological stress responses moderate the contribution of early peer victimization to subsequent depressive symptoms. Psychopharmacology, 214(1), 209–219. doi:10.1007/s00213-010-1879-7.

    PubMed Central  PubMed  Google Scholar 

  • Rutter, M. (2012). Resilience as a dynamic concept. Development and Psychopathology, 24(2), 335–344. doi:10.1017/s0954579412000028.

    PubMed  Google Scholar 

  • Saffery, R., Morley, R., Carlin, J. B., Joo, J.-H. E., Ollikainen, M., Novakovic, B., et al. (2012). Cohort profile: The peri/post-natal epigenetic twins study. International Journal of Epidemiology, 41(1), 55–61. doi:10.1093/ije/dyr140.

    PubMed  Google Scholar 

  • Sahin, E., Colla, S., Liesa, M., Moslehi, J., Muller, F. L., Guo, M, et al. (2011). Telomere dysfunction induces metabolic and mitochondrial compromise (vol 470, pg 359, 2011). Nature, 475(7355). doi: 10.1038/nature10223

    Google Scholar 

  • Sanchez, M. M., Ladd, C. O., & Plotsky, P. M. (2001). Early adverse experience as a developmental risk factor for later psychopathology: Evidence from rodent and primate models. Development and Psychopathology, 13(3), 419–449.

    PubMed  Google Scholar 

  • Sapolsky, R. M. (1994). The physiological relevance of glucocorticoid endangerment of the hippocampus. Brain Corticosteroid Receptors, 746, 294–307.

    Google Scholar 

  • Sapolsky, R. M., Romero, L. M., & Munck, A. U. (2000). How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocrine Reviews, 21, 55–89.

    PubMed  Google Scholar 

  • Seeman, T., Epel, E., Gruenewald, T., Karlamangla, A., & McEwen, B. S. (2010). Socio-economic differentials in peripheral biology: Cumulative allostatic load. Annals of the New York Academy of Sciences, 1186, 223–239.

    PubMed  Google Scholar 

  • Seeman, T., Gruenewald, T., Karlamangla, A., Sidney, S., Liu, K. A., McEwen, B., et al. (2010). Modeling multisystem biological risk in young adults: The coronary artery risk development in young adults study. American Journal of Human Biology, 22(4), 463–472. doi:10.1002/ajhb.21018.

    PubMed Central  PubMed  Google Scholar 

  • Seeman, T., McEwen, B. S., Rowe, J. W., & Singer, B. H. (2001). Allostatic load as a marker of cumulative biological risk: MacArthur studies of successful aging. Proceedings of the National Academy of Sciences of the United States of America, 98(8), 4770–4775. doi:10.1073/pnas.081072698 081072698 [pii].

    PubMed Central  PubMed  Google Scholar 

  • Selye, H. (1950). Stress: The physiology and pathology of exposure to stress. Montreal, QC: Acta Medical Publishers.

    Google Scholar 

  • Selye, H. (1956). Stress and psychiatry. American Journal of Psychiatry, 113(5), 423–427.

    PubMed  Google Scholar 

  • Shalev, I. (2012). Early life stress and telomere length: Investigating the connection and possible mechanisms. A critical survey of the evidence base, research methodology and basic biology. Bioessays, 34(11), 943–952. doi:10.1002/bies.201200084.

    PubMed Central  PubMed  Google Scholar 

  • Shannon, K. E., Beauchaine, T. P., Brenner, S. L., Neuhaus, E., & Gatzke-Kopp, L. (2007). Familial and temperamental predictors of resilience in children at risk for conduct disorder and depression. Development and Psychopathology, 19(3), 701–727. S0954579407000351 [pii] 10.1017/S0954579407000351.

    PubMed Central  PubMed  Google Scholar 

  • Sheridan, M. A., Fox, N. A., Zeanah, C. H., McLaughlin, K. A., & Nelson, C. A. (2012). Variation in neural development as a result of exposure to institutionalization early in childhood. The Proceedings of the National Academy of Sciences of the United States of America, 109(32), 12927–12932. doi:10.1073/pnas.1200041109.

    Google Scholar 

  • Sheridan, M. A., Sarsour, K., Jutte, D., D'Esposito, M., & Boyce, W. T. (2012). The Impact of Social Disparity on Prefrontal Function in Childhood. PLoS ONE, 7(4). doi: 10.1371/journal.pone.0035744

    Google Scholar 

  • Shirtcliff, E. A., Granger, D. A., Booth, A., & Johnson, D. (2005). Low salivary cortisol levels and externalizing behavior problems in youth. Development and Psychopathology, 17, 167–184.

    PubMed  Google Scholar 

  • Simon, N. M., Smoller, J. W., McNamara, K. L., Maser, R. S., Zalta, A. K., Pollack, M. H., et al. (2006). Telomere shortening and mood disorders: preliminary support for a chronic stress model of accelerated aging [Comparative Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't]. Biological Psychiatry, 60(5), 432–435.

    PubMed  Google Scholar 

  • Smider, N. A., Essex, M. J., Kalin, N. H., Buss, K. A., Klein, M. H., Davidson, R. J., et al. (2002). Salivary cortisol as a predictor of socioemotional adjustment during kindergarten: A prospective study. Child Development, 73, 75–92.

    PubMed  Google Scholar 

  • Staff, R. T., Murray, A. D., Ahearn, T. S., Mustafa, N., Fox, H. C., & Whalley, L. J. (2012). Childhood socioeconomic status and adult brain size: Childhood socioeconomic status influences adult hippocampal size. Annals of Neurology, 71(5), 653–660. doi:10.1002/ana.22631.

    PubMed  Google Scholar 

  • Sterling, P., & Eyer, J. (1989). Allostasis: A new paradigm to explain arousal pathology. In S. Fisher & J. Reason (Eds.), Handbook of life stress, cognition and health (pp. 629–649). Oxford: Wiley.

    Google Scholar 

  • Sumner, M. M., Bernard, K., & Dozier, M. (2010). Young children’s full-day patterns of cortisol production on child care days. Archives of Pediatrics & Adolescent Medicine, 164(6), 567–571.

    Google Scholar 

  • Swain, J. E., Lorberbaum, J. P., Kose, S., & Strathearn, L. (2007). Brain basis of early parent-infant interactions: Psychology, physiology, and in vivo functional neuroimaging studies. Journal of Child Psychology and Psychiatry, 48(3–4), 262–287. JCPP1731 [pii] 10.1111/j.1469-7610.2007.01731.x.

    PubMed  Google Scholar 

  • Talge, N. M., Neal, C., & Glover, V. (2007). Antenatal maternal stress and long-term effects on child neurodevelopment: How and why? Journal of Child Psychology and Psychiatry, 48(3–4), 245–261.

    PubMed  Google Scholar 

  • Tarullo, A. R., & Gunnar, M. R. (2006). Child maltreatment and the developing HPA axis. Hormones and Behavior, 50(4), 632–639. doi:10.1016/j.yhbeh.2006.06.010.

    PubMed  Google Scholar 

  • Taylor, Z. E., Spinrad, T. L., Vanschyndel, S. K., Eisenberg, N., Huynh, J., Sulik, M. J., et al. (2013). Sociodemographic risk, parenting, and effortful control: Relations to salivary alpha-amylase and cortisol in early childhood. Developmental Psychobiology, 55(8), 869–80.

    PubMed  Google Scholar 

  • Theall, K. P., Drury, S. S., & Shirtcliff, E. A. (2012). Cumulative neighborhood risk of psychosocial stress and allostatic load in adolescents. American Journal of Epidemiology, 176, S164–S174. doi:10.1093/aje/kws185.

    PubMed Central  PubMed  Google Scholar 

  • Tomiyama, A. J., O’Donovan, A., Lin, J., Puterman, E., Lazaro, A., Chan, J., et al. (2012). Does cellular aging relate to patterns of allostasis? An examination of basal and stress reactive HPA axis activity and telomere length. Physiology & Behavior, 106(1), 40–45. doi:10.1016/j.physbeh.2011.11.016.

    Google Scholar 

  • Tottenham, N., & Sheridan, M. A. (2010). A review of adversity, the amygdala and the hippocampus: a consideration of developmental timing. Frontiers in Human Neuroscience, 3. doi: 10.3389/neuro.09.068.2009

    Google Scholar 

  • Werner, E. E. (2012). Children and war: Risk, resilience, and recovery. Development and Psychopathology, 24(2), 553–558. doi:10.1017/s0954579412000156.

    PubMed  Google Scholar 

  • Whittle, S., Yap, M. B. H., Sheeber, L., Dudgeon, P., Yücel, M., Pantelis, C., et al. (2011). Hippocampal volume and sensitivity to maternal aggressive behavior: A prospective study of adolescent depressive symptoms. Development and Psychopathology, 23(01), 115–129. doi:10.1017/S0954579410000684.

    PubMed  Google Scholar 

  • Wolkowitz, O. M., Epel, E. S., Reus, V. I., & Mellon, S. H. (2010). Depression gets old fast: Do stress and depression accelerate cell aging? Depression and Anxiety, 27(4), 327–338. doi:10.1002/da.20686.

    PubMed  Google Scholar 

  • Zalewski, M., Lengua, L. J., Kiff, C. J., & Fisher, P. A. (2012). Understanding the relation of low income to HPA-axis functioning in preschool children: Cumulative family risk and parenting as pathways to disruptions in cortisol. Child Psychiatry & Human Development, 43(6), 924–942. doi:10.1007/s10578-012-0304-3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole R. Bush Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bush, N.R., Boyce, W.T. (2014). The Contributions of Early Experience to Biological Development and Sensitivity to Context. In: Lewis, M., Rudolph, K. (eds) Handbook of Developmental Psychopathology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-9608-3_15

Download citation

Publish with us

Policies and ethics