Skip to main content

Biomedical Effects of Circadian Rhythm Disturbances

  • Chapter
  • First Online:

Part of the book series: Energy Balance and Cancer ((EBAC,volume 8))

Abstract

Circadian rhythms are biological processes that recur on a daily basis and exist to appropriately organize physiology, metabolism, and behavior relative to the 24-h light/dark cycle created by the rotation of the Earth. These rhythms are controlled by a genetically encoded molecular clock active in most, if not all, cells in the body. In mammals, these cell-autonomous oscillators are regulated and synchronized by the master clock in the suprachiasmatic nucleus (SCN) of the hypothalamus through a variety of direct and indirect pathways. The circadian timekeeping system imposes integrated temporal organization to ongoing biochemical and physiological processes throughout the body, ensuring optimal functioning in the context of repeated environmental changes driven by the solar cycle. It is well known that shift workers are at greater risk for development of a large number of chronic diseases and recent experimental evidence has shown that disruption of circadian organization leads to physiological impairments and dysfunction that are relevant for disease development and pathology. In particular, circadian disturbances yield metabolic derangements capable of predisposing individuals to diabetes, obesity, gastrointestinal and cardiovascular disease, and to disease states which have been linked to increases in risk for various cancers. In addition, the molecular circadian machinery has been linked to regulators of the cell cycle and other prominent pathways involved in cancer, including DNA repair and apoptosis. An understanding of the circadian timekeeping system and recognition of its fundamental role in temporal organization of biochemical pathways and physiological processes enables a framework upon which the concept of time on a 24-h basis can be applied to translational research and brought into the realm of clinical medicine in order to improve diagnostics, therapeutics and, ultimately, patient outcomes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pittendrigh CS, Aschoff J, Bruce VG, Bunning E, Griffin DR, Hastings JW. Biological Clocks. In: Cold spring harbor symposia on quantitative biology. New York: Long Island Biological Association; 1961.

    Google Scholar 

  2. Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol. 2010;72:517–49.

    CAS  PubMed  Google Scholar 

  3. Welsh DK, Takahashi JS, Kay SA. Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol. 2010;72(1):551–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Antunes LC, Levandovski R, Dantas G, Caumo W, Hidalgo MP. Obesity and shift work: chronobiological aspects. Nutr Res Rev. 2010;23(1):155–68.

    CAS  PubMed  Google Scholar 

  5. Boggild H, Knutsson A. Shift work, risk factors and cardiovascular disease. Scand J Work Environ Health. 1999;25(2):85–99.

    CAS  PubMed  Google Scholar 

  6. Knutsson A. Health disorders of shift workers. Occup Med Oxford. 2003;53(2):103–8.

    Google Scholar 

  7. Knutsson A, Boggild H. Gastrointestinal disorders among shift workers. Scand J Work Environ Health. 2010;36(2):85–95.

    PubMed  Google Scholar 

  8. Puttonen S, Harma M, Hublin C. Shift work and cardiovascular disease – pathways from circadian stress to morbidity. Scand J Work Environ Health. 2010;36(2):96–108.

    PubMed  Google Scholar 

  9. Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I, et al. Night-shift work and risk of colorectal cancer in the nurses’ health study. J Natl Cancer Inst. 2003;95(11):825–8.

    PubMed  Google Scholar 

  10. van Drongelen A, Boot CR, Merkus SL, Smid T, van der Beek AJ. The effects of shift work on body weight change – a systematic review of longitudinal studies. Scand J Work Environ Health. 2011;37(4):263–75.

    PubMed  Google Scholar 

  11. Vyas MV, Garg AX, Iansavichus AV, Costella J, Donner A, Laugsand LE, et al. Shift work and vascular events: systematic review and meta-analysis. BMJ. 2012;345:e4800.

    PubMed Central  PubMed  Google Scholar 

  12. Wang XS, Armstrong ME, Cairns BJ, Key TJ, Travis RC. Shift work and chronic disease: the epidemiological evidence. Occup Med Oxford. 2011;61(2):78–89.

    Google Scholar 

  13. Turek FW, Dugovic C, Laposky AD. Master circadian clock, master circadian rhythm. In: Kryger MH, Roth T, Dement WC, editors. Principles and practice of sleep medicine. 4th ed. Philadelphia: Elsevier Saunders; 2005. p. 318–20.

    Google Scholar 

  14. Andretic R, Franken P, Tafti M. Genetics of sleep. Annu Rev Genet. 2008;42(1):361–88.

    CAS  PubMed  Google Scholar 

  15. Franken P, Dijk D-J. Circadian clock genes and sleep homeostasis. Eur J Neurosci. 2009;29(9):1820–9.

    CAS  PubMed  Google Scholar 

  16. O’Hara BF, Turek FW, Franken P. Genetic basis of sleep in rodents. In: Kryger MH, Roth T, Dement WC, editors. Principles and practice of sleep medicine. 5th ed. St. Louis: Elsevier Saunders; 2010. p. 161–74.

    Google Scholar 

  17. Summa KC, Turek FW. The genetics of sleep: insight from rodent models. Sleep Med Clin. 2011;6(2):141–54.

    PubMed Central  PubMed  Google Scholar 

  18. Scheer FAJL, Hilton MF, Mantzoros CS, Shea SA. Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci USA. 2009;106(11):4453–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. Annu Rev Neurosci. 2012;35:445–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Balsalobre A, Damiola F, Schibler U. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell. 1998;93(6):929–37.

    CAS  PubMed  Google Scholar 

  21. Yamazaki S, Numano R, Abe M, Hida A, Takahashi R, Ueda M, et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science. 2000;288(5466):682–5.

    CAS  PubMed  Google Scholar 

  22. Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A. 2004;101(15):5339–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Akhtar RA, Reddy AB, Maywood ES, Clayton JD, King VM, Smith AG, et al. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr Biol. 2002;12(7):540–50.

    CAS  PubMed  Google Scholar 

  24. Duffield GE, Best JD, Meurers BH, Bittner A, Loros JJ, Dunlap JC. Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells. Curr Biol. 2002;12(7):551–7.

    CAS  PubMed  Google Scholar 

  25. Hughes ME, DiTacchio L, Hayes KR, Vollmers C, Pulivarthy S, Baggs JE, et al. Harmonics of circadian gene transcription in mammals. PLoS Genet. 2009;5(4):e1000442.

    PubMed Central  PubMed  Google Scholar 

  26. Miller BH, McDearmon EL, Panda S, Hayes KR, Zhang J, Andrews JL, et al. Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc Natl Acad Sci U S A. 2007;104(9):3342–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell. 2002;109(3):307–20.

    CAS  PubMed  Google Scholar 

  28. Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH, et al. Extensive and divergent circadian gene expression in liver and heart. Nature. 2002;417(6884):78–83.

    CAS  PubMed  Google Scholar 

  29. Hogenesch JB, Ueda HR. Understanding systems-level properties: timely stories from the study of clocks. Nat Rev Genet. 2011;12(6):407–16.

    CAS  PubMed  Google Scholar 

  30. Zhang EE, Kay SA. Clocks not winding down: unravelling circadian networks. Nat Rev Mol Cell Biol. 2010;11(11):764–76.

    CAS  PubMed  Google Scholar 

  31. Zhang EE, Liu AC, Hirota T, Miraglia LJ, Welch G, Pongsawakul PY, et al. A genome-wide RNAi screen for modifiers of the circadian clock in human cells. Cell. 2009;139(1):199–210.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Rutter J, Reick M, Wu LC, McKnight SL. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science. 2001;293(5529):510–4.

    CAS  PubMed  Google Scholar 

  33. Bass J, Takahashi JS. Circadian integration of metabolism and energetics. Science. 2010;330(6009):1349–54.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Bass J. Circadian topology of metabolism. Nature. 2012;491(7424):348–56.

    CAS  PubMed  Google Scholar 

  35. O’Neill JS, Reddy AB. Circadian clocks in human red blood cells. Nature. 2011;469(7331):498–503.

    PubMed Central  PubMed  Google Scholar 

  36. O’Neill JS, van Ooijen G, Dixon LE, Troein C, Corellou F, Bouget FY, et al. Circadian rhythms persist without transcription in a eukaryote. Nature. 2011;469(7331):554–8.

    PubMed Central  PubMed  Google Scholar 

  37. Edgar RS, Green EW, Zhao Y, van Ooijen G, Olmedo M, Qin X, et al. Peroxiredoxins are conserved markers of circadian rhythms. Nature. 2012;485(7399):459–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Vitaterna MH, King DP, Chang AM, Kornhauser JM, Lowrey PL, McDonald JD, et al. Mutagenesis and mapping of a mouse gene, clock, essential for circadian behavior. Science. 1994;264(5159):719–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Antoch MP, Song EJ, Chang AM, Vitaterna MH, Zhao Y, Wilsbacher LD, et al. Functional identification of the mouse circadian clock gene by transgenic BAC rescue. Cell. 1997;89(4):655–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. King DP, Vitaterna MH, Chang AM, Dove WF, Pinto LH, Turek FW, et al. The mouse clock mutation behaves as an antimorph and maps within the W19H deletion, distal of Kit. Genetics. 1997;146(3):1049–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. King DP, Zhao Y, Sangoram AM, Wilsbacher LD, Tanaka M, Antoch MP, et al. Positional cloning of the mouse circadian clock gene. Cell. 1997;89(4):641–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, et al. Obesity and metabolic syndrome in circadian clock mutant mice. Science. 2005;308(5724):1043–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 2000;14(23):2950–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M. Entrainment of the circadian clock in the liver by feeding. Science. 2001;291(5503):490–3.

    CAS  PubMed  Google Scholar 

  45. Lamia KA, Storch KF, Weitz CJ. Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci U S A. 2008;105(39):15172–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y, et al. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab. 2007;6(5):414–21.

    CAS  PubMed  Google Scholar 

  47. Laposky AD, Bass J, Kohsaka A, Turek FW. Sleep and circadian rhythms: key components in the regulation of energy metabolism. FEBS Lett. 2008;582(1):142–51.

    CAS  PubMed  Google Scholar 

  48. Kornmann B, Schaad O, Bujard H, Takahashi JS, Schibler U. System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol. 2007;5(2):e34.

    PubMed Central  PubMed  Google Scholar 

  49. Feng D, Liu T, Sun Z, Bugge A, Mullican SE, Alenghat T, et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science. 2011;331(6022):1315–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Alenghat T, Meyers K, Mullican SE, Leitner K, Adeniji-Adele A, Avila J, et al. Nuclear receptor corepressor and histone deacetylase 3 govern circadian metabolic physiology. Nature. 2008;456(7224):997–1000.

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Feng D, Lazar MA. Clocks, metabolism, and the epigenome. Mol Cell. 2012;47(2):158–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Masri S, Zocchi L, Katada S, Mora E, Sassone-Corsi P. The circadian clock transcriptional complex: metabolic feedback intersects with epigenetic control. Ann N Y Acad Sci. 2012;1264(1):103–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Turek FW. Circadian clocks: tips from the tip of the iceberg. Nature. 2008;456(7224):881–3.

    CAS  PubMed  Google Scholar 

  54. Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell. 2008;134(2):317–28.

    CAS  PubMed  Google Scholar 

  55. Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, et al. The NAD+−dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell. 2008;134(2):329–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science. 2009;324(5927):654–7.

    CAS  PubMed  Google Scholar 

  57. Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B, et al. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science. 2009;324(5927):651–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Yang X, Downes M, Yu RT, Bookout AL, He W, Straume M, et al. Nuclear receptor expression links the circadian clock to metabolism. Cell. 2006;126(4):801–10.

    CAS  PubMed  Google Scholar 

  59. Cho H, Zhao X, Hatori M, Yu RT, Barish GD, Lam MT, et al. Regulation of circadian behaviour and metabolism by REV-ERB-alpha and REV-ERB-beta. Nature. 2012;485(7396):123–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Solt LA, Wang Y, Banerjee S, Hughes T, Kojetin DJ, Lundasen T, et al. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature. 2012;485(7396):62–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Marcheva B, Ramsey KM, Buhr ED, Kobayashi Y, Su H, Ko CH, et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature. 2010;466(7306):627–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Paschos GK, Ibrahim S, Song WL, Kunieda T, Grant G, Reyes TM, et al. Obesity in mice with adipocyte-specific deletion of clock component Arntl. Nat Med. 2012;18(12):1768–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Arble DM, Bass J, Laposky AD, Vitaterna MH, Turek FW. Circadian timing of food intake contributes to weight gain. Obesity. 2009;17:2100–2.

    PubMed Central  PubMed  Google Scholar 

  64. Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012;15(6):848–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  65. Gallant AR, Lundgren J, Drapeau V. The night-eating syndrome and obesity. Obes Rev. 2012;13(6):528–36.

    CAS  PubMed  Google Scholar 

  66. Milano W, De Rosa M, Milano L, Capasso A. Night eating syndrome: an overview. J Pharm Pharmacol. 2012;64(1):2–10.

    CAS  PubMed  Google Scholar 

  67. Morris CJ, Yang JN, Scheer FA. The impact of the circadian timing system on cardiovascular and metabolic function. Prog Brain Res. 2012;199:337–58.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Kawachi I, Colditz GA, Stampfer MJ, Willett WC, Manson JE, Speizer FE, et al. Prospective study of shift work and risk of coronary heart disease in women. Circulation. 1995;92(11):3178–82.

    CAS  PubMed  Google Scholar 

  69. Knutsson A, Akerstedt T, Jonsson BG, Orth-Gomer K. Increased risk of ischaemic heart disease in shift workers. Lancet. 1986;2(8498):89–92.

    CAS  PubMed  Google Scholar 

  70. Knutsson A, Hallquist J, Reuterwall C, Theorell T, Akerstedt T. Shiftwork and myocardial infarction: a case–control study. Occup Environ Med. 1999;56(1):46–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Suwazono Y, Dochi M, Sakata K, Okubo Y, Oishi M, Tanaka K, et al. A longitudinal study on the effect of shift work on weight gain in male Japanese workers. Obesity. 2008;16(8):1887–93.

    PubMed  Google Scholar 

  72. Penev PD, Kolker DE, Zee PC, Turek FW. Chronic circadian desynchronization decreases the survival of animals with cardiomyopathic heart disease. Am J Physiol. 1998;275(6 Pt 2):H2334–7.

    CAS  PubMed  Google Scholar 

  73. Davidson AJ, Sellix MT, Daniel J, Yamazaki S, Menaker M, Block GD. Chronic jet-lag increases mortality in aged mice. Curr Biol. 2006;16(21):R914–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Summa KC, Vitaterna MH, Turek FW. Environmental perturbation of the circadian clock disrupts pregnancy in the mouse. PLoS One. 2012;7(5):e37668.

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Castanon-Cervantes O, Wu M, Ehlen JC, Paul K, Gamble KL, Johnson RL, et al. Dysregulation of inflammatory responses by chronic circadian disruption. J Immunol. 2010;185(10):5796–805.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Martino TA, Oudit GY, Herzenberg AM, Tata N, Koletar MM, Kabir GM, et al. Circadian rhythm disorganization produces profound cardiovascular and renal disease in hamsters. Am J Physiol Regul Integr Comp Physiol. 2008;294(5):R1675–83.

    CAS  PubMed  Google Scholar 

  77. Anea CB, Zhang M, Stepp DW, Simkins GB, Reed G, Fulton DJ, et al. Vascular disease in mice with a dysfunctional circadian clock. Circulation. 2009;119(11):1510–7.

    PubMed Central  PubMed  Google Scholar 

  78. Cheng B, Anea CB, Yao L, Chen F, Patel V, Merloiu A, et al. Tissue-intrinsic dysfunction of circadian clock confers transplant arteriosclerosis. Proc Natl Acad Sci U S A. 2011;108(41):17147–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Jeyaraj D, Haldar SM, Wan X, McCauley MD, Ripperger JA, Hu K, et al. Circadian rhythms govern cardiac repolarization and arrhythmogenesis. Nature. 2012;483(7387):96–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Konturek PC, Brzozowski T, Konturek SJ. Gut clock: implication of circadian rhythms in the gastrointestinal tract. J Physiol Pharmacol. 2011;62(2):139–50.

    CAS  PubMed  Google Scholar 

  81. Malloy JN, Paulose JK, Li Y, Cassone VM. Circadian rhythms of gastrointestinal function are regulated by both central and peripheral oscillators. Am J Physiol Gastrointest Liver Physiol. 2012;303(4):G461–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Sack RL. Clinical practice: jet lag. N Engl J Med. 2010;362(5):440–7.

    CAS  PubMed  Google Scholar 

  83. Preuss F, Tang Y, Laposky AD, Arble D, Keshavarzian A, Turek FW. Adverse effects of chronic circadian desynchronization in animals in a “challenging” environment. Am J Physiol Regul Integr Comp Physiol. 2008;295(6):R2034–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Turner JR. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol. 2009;9(11):799–809.

    CAS  PubMed  Google Scholar 

  85. Keshavarzian A, Farhadi A, Forsyth CB, Rangan J, Jakate S, Shaikh M, et al. Evidence that chronic alcohol exposure promotes intestinal oxidative stress, intestinal hyperpermeability and endotoxemia prior to development of alcoholic steatohepatitis in rats. J Hepatol. 2009;50(3):538–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Creely SJ, McTernan PG, Kusminski CM, Fisher fM, Da Silva NF, Khanolkar M, et al. Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab. 2007;292(3):E740–7.

    CAS  PubMed  Google Scholar 

  87. Lassenius MI, Pietilainen KH, Kaartinen K, Pussinen PJ, Syrjanen J, Forsblom C, et al. Bacterial endotoxin activity in human serum is associated with dyslipidemia, insulin resistance, obesity, and chronic inflammation. Diabetes Care. 2011;34(8):1809–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Niebauer J, Volk HD, Kemp M, Dominguez M, Schumann RR, Rauchhaus M, et al. Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet. 1999;353(9167):1838–42.

    CAS  PubMed  Google Scholar 

  89. Forsyth CB, Shannon KM, Kordower JH, Voigt RM, Shaikh M, Jaglin JA, et al. Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS One. 2011;6(12):e28032.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Zhang R, Miller RG, Gascon R, Champion S, Katz J, Lancero M, et al. Circulating endotoxin and systemic immune activation in sporadic amyotrophic lateral sclerosis (sALS). J Neuroimmunol. 2009;206(1–2):121–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Swanson G, Forsyth CB, Tang Y, Shaikh M, Zhang L, Turek FW, et al. Role of intestinal circadian genes in alcohol-induced gut leakiness. Alcohol Clin Exp Res. 2011;35(7):1305–14.

    PubMed Central  PubMed  Google Scholar 

  92. Haus E, Halberg F, Pauly JE, Cardoso S, Kuhl JF, Sothern RB, et al. Increased tolerance of leukemic mice to arabinosyl cytosine with schedule adjusted to circadian system. Science. 1972;177(4043):80–2.

    CAS  PubMed  Google Scholar 

  93. Levi F, Schibler U. Circadian rhythms: mechanisms and therapeutic implications. Annu Rev Pharmacol Toxicol. 2007;47:593–628.

    CAS  PubMed  Google Scholar 

  94. Levi F, Okyar A, Dulong S, Innominato PF, Clairambault J. Circadian timing in cancer treatments. Annu Rev Pharmacol Toxicol. 2010;50:377–421.

    CAS  PubMed  Google Scholar 

  95. Borgs L, Beukelaers P, Vandenbosch R, Belachew S, Nguyen L, Malgrange B. Cell “circadian” cycle: new role for mammalian core clock genes. Cell Cycle. 2009;8(6):832–7.

    CAS  PubMed  Google Scholar 

  96. Sancar A, Lindsey-Boltz LA, Kang TH, Reardon JT, Lee JH, Ozturk N. Circadian clock control of the cellular response to DNA damage. FEBS Lett. 2010;584(12):2618–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Kang TH, Lindsey-Boltz LA, Reardon JT, Sancar A. Circadian control of XPA and excision repair of cisplatin-DNA damage by cryptochrome and HERC2 ubiquitin ligase. Proc Natl Acad Sci U S A. 2010;107(11):4890–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Geyfman M, Kumar V, Liu Q, Ruiz R, Gordon W, Espitia F, et al. Brain and muscle Arnt-like protein-1 (BMAL1) controls circadian cell proliferation and susceptibility to UVB-induced DNA damage in the epidermis. Proc Natl Acad Sci U S A. 2012;109(29):11758–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Lee JH, Sancar A. Regulation of apoptosis by the circadian clock through NF-kappaB signaling. Proc Natl Acad Sci U S A. 2011;108(29):12036–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Lee JH, Sancar A. Circadian clock disruption improves the efficacy of chemotherapy through p73-mediated apoptosis. Proc Natl Acad Sci U S A. 2011;108(26):10668–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Destici E, Oklejewicz M, Saito S, van der Horst GT. Mammalian cryptochromes impinge on cell cycle progression in a circadian clock-independent manner. Cell Cycle. 2011;10(21):3788–97.

    CAS  PubMed  Google Scholar 

  102. Gaddameedhi S, Reardon JT, Ye R, Ozturk N, Sancar A. Effect of circadian clock mutations on DNA damage response in mammalian cells. Cell Cycle. 2012;11(18):3481–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Wulff K, Gatti S, Wettstein JG, Foster RG. Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat Rev Neurosci. 2010;11(8):589–99.

    CAS  PubMed  Google Scholar 

  104. Fonken LK, Workman JL, Walton JC, Weil ZM, Morris JS, Haim A, et al. Light at night increases body mass by shifting the time of food intake. Proc Natl Acad Sci U S A. 2010;107:18664–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Wittmann M, Dinich J, Merrow M, Roenneberg T. Social jetlag: misalignment of biological and social time. Chronobiol Int. 2006;23(1–2):497–509.

    PubMed  Google Scholar 

  106. Roenneberg T, Allebrandt KV, Merrow M, Vetter C. Social jetlag and obesity. Curr Biol. 2012;22(10):939–43.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith C. Summa Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Summa, K.C., Turek, F.W. (2014). Biomedical Effects of Circadian Rhythm Disturbances. In: Redline, S., Berger, N. (eds) Impact of Sleep and Sleep Disturbances on Obesity and Cancer. Energy Balance and Cancer, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9527-7_4

Download citation

Publish with us

Policies and ethics