Skip to main content

Experience-Dependent Plasticity and Auditory Cortex

  • Chapter
  • First Online:
Neural Correlates of Auditory Cognition

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 45))

Abstract

Throughout their lifetimes, individuals are constantly engaged by acoustic environments that leave lasting impressions, such as the sound of a familiar voice or the rhythm of a catchy tune. A fundamental question in auditory neuroscience concerns how and where such acoustic knowledge is acquired and stored in the brain. Such declarative forms of memory, including episodic memories from personal experience, are usually believed to rely on hippocampal and amygdalar processing, but a growing literature has also implicated plasticity within auditory cortex as one of the key contributors to establishing long-term auditory memories. Indeed, the fact that electrophysiological activity within auditory cortex can change as a result of auditory experience has been known since Galambos et al. (1956) first demonstrated pronounced effects on the sound-evoked electroencephalogram after sound–shock pairing. Research since then has attempted to uncover the precise rules and roles for such plasticity in both auditory learning and memory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahissar, E., Abeles, M., Ahissar, M., Haidarliu, S., & Vaadia, E. (1998). Hebbian-like functional plasticity in the auditory cortex of the behaving monkey. Neuropharmacology, 37(4–5), 633–655.

    PubMed  CAS  Google Scholar 

  • Almqvist, P. M., Ă…kesson, E., Wahlberg, L. U., Pschera, H., Seiger, Ă…., & Sundström, E. (1996). First trimester development of the human nigrostriatal dopamine system. Experimental Neurology, 139, 227–237.

    PubMed  CAS  Google Scholar 

  • Aramakis, V. B., & Metherate, R. (1998). Nicotine selectively enhances NMDA receptor-mediated synaptic transmission during postnatal development in sensory neocortex. Journal of Neuroscience, 18(20), 8485–8495.

    PubMed  CAS  Google Scholar 

  • Aston-Jones, G., Chiang, C., & Alexinsky, T. (1991). Discharge of noradrenergic locus coeruleus neurons in behaving rats and monkeys suggests a role in vigilance. Progress in Brain Research, 88, 501–520.

    PubMed  CAS  Google Scholar 

  • Bakin, J. S., & Weinberger, N. M. (1990). Classical conditioning induces CS-specific receptive field plasticity in the auditory cortex of the guinea pig. Brain Research, 536(1–2), 271–286.

    PubMed  CAS  Google Scholar 

  • Bakin, J. S., & Weinberger, N. M. (1996). Induction of a physiological memory in the cerebral cortex by stimulation of the nucleus basalis. Proceedings of the National Academy of Sciences of the USA, 93(20), 11219–11224.

    PubMed  CAS  Google Scholar 

  • Bakin, J. S., South, D. A., & Weinberger, N. M. (1996). Induction of receptive field plasticity in the auditory cortex of the guinea pig during instrumental avoidance conditioning. Behavioral Neuroscience, 110(5), 905–913.

    PubMed  CAS  Google Scholar 

  • Bao, S., Chan, V. T., & Merzenich, M. M. (2001). Cortical remodeling induced by activity of ventral tegmental dopamine neurons. Nature, 412(6842), 79–83.

    PubMed  CAS  Google Scholar 

  • Baranyi, A., & Feher, O. (1981). Synaptic facilitation requires paired activation of convergent pathways in the neocortex. Nature, 290(5805), 413–415.

    PubMed  CAS  Google Scholar 

  • Bear, M. F., & Daniels, J. D. (1983). The plastic response to monocular deprivation persists in kitten visual cortex after chronic depletion of norepinephrine. Journal of Neuroscience, 3(2), 407–416.

    PubMed  CAS  Google Scholar 

  • Bear, M. F., & Singer, W. (1986). Modulation of visual cortical plasticity by acetylcholine and noradrenaline. Nature, 320(6058), 172–176.

    PubMed  CAS  Google Scholar 

  • Berlau, K. M., & Weinberger, N. M. (2008). Learning strategy determines auditory cortical plasticity. Neurobiology of Learning and Memory, 89(2), 153–166.

    PubMed  Google Scholar 

  • Bickerdike, M. J., Wright, I. K., & Marsden, C. A. (1993). Social isolation attenuates rat forebrain 5-HT release induced by KCI stimulation and exposure to a novel environment. Behavioural Pharmacology, 4(3), 231–236.

    PubMed  CAS  Google Scholar 

  • Bieszczad, K. M., & Weinberger, N. M. (2010a). Learning strategy trumps motivational level in determining learning-induced auditory cortical plasticity. Neurobiology of Learning and Memory, 93(2), 229–239.

    PubMed  Google Scholar 

  • Bieszczad, K. M., & Weinberger, N. M. (2010b). Remodeling the cortex in memory: Increased use of a learning strategy increases the representational area of relevant acoustic cues. Neurobiology of Learning and Memory, 94(2), 127–144.

    PubMed  Google Scholar 

  • Bollinger, J. J. (2006). Adult auditory cortical plasticity modulated by locus coeruleus activity. Doctoral dissertation, University of California, San Francisco, San Francisco.

    Google Scholar 

  • Bora, S. H., Liu, Z., Kecojevic, A., Merchenthaler, I., & Koliatsos, V. E. (2005). Direct, complex effects of estrogens on basal forebrain cholinergic neurons. Experimental Neurology, 194(2), 506–522.

    PubMed  CAS  Google Scholar 

  • Boutelle, M. G., Zetterstrom, T., Pei, Q., Svensson, L., & Fillenz, M. (1990). In vivo neurochemical effects of tail pinch. Journal of Neuroscience Methods, 34(1–3), 151–157.

    PubMed  CAS  Google Scholar 

  • Bramham, C. R., Alme, M. N., Bittins, M., Kuipers, S. D., Nair, R. R., Pai, B., et al. (2010). The Arc of synaptic memory. Experimental Brain Research, 200(2), 125–140.

    Google Scholar 

  • Brown, M., Irvine, D. R., & Park, V. N. (2004). Perceptual learning on an auditory frequency discrimination task by cats: Association with changes in primary auditory cortex. Cerebral Cortex, 14(9), 952–965.

    PubMed  Google Scholar 

  • Brown, M. C., & Liu, T. S. (1995). Fos-like immunoreactivity in central auditory neurons of the mouse. Journal of Comparative Neurology, 357(1), 85–97.

    PubMed  CAS  Google Scholar 

  • Brunelli, M., Castellucci, V., & Kandel, E. R. (1976). Synaptic facilitation and behavioral sensitization in Aplysia: Possible role of serotonin and cyclic AMP. Science, 194(4270), 1178–1181.

    PubMed  CAS  Google Scholar 

  • Carpenter-Hyland, E. P., Bunting, K., Blake, D. T., & Vazdarjanova, A. (2010a). Arc anti-sense in primary auditory cortex blocks perceptual learning. Abstract presented at the Society for Neuroscience, San Diego, CA, November 13–17. Abstract 406.15.

    Google Scholar 

  • Carpenter-Hyland, E. P., Plummer, T. K., Vazdarjanova, A., & Blake, D. T. (2010b). Arc expression and neuroplasticity in primary auditory cortex during initial learning are inversely related to neural activity. Proceedings of the National Academy of Sciences, 107(33), 14828–14832.

    CAS  Google Scholar 

  • Carretta, D., Herve-Minvielle, A., Bajo, V. M., Villa, A. E., & Rouiller, E. M. (1999). c-Fos expression in the auditory pathways related to the significance of acoustic signals in rats performing a sensory-motor task. Brain Research, 841(1–2), 170–183.

    PubMed  CAS  Google Scholar 

  • Chang, E. F., & Merzenich, M. M. (2003). Environmental noise retards auditory cortical development. Science, 300(5618), 498–502.

    PubMed  CAS  Google Scholar 

  • Charitidi, K., & Canlon, B. (2010). Estrogen receptors in the central auditory system of male and female mice. Neuroscience, 165(3), 923–933.

    PubMed  CAS  Google Scholar 

  • Chavez, C. M., McGaugh, J. L., & Weinberger, N. M. (2009). The basolateral amygdala modulates specific sensory memory representations in the cerebral cortex. Neurobiology of Learning and Memory, 91(4), 382–392.

    PubMed  Google Scholar 

  • Chowdhury, S., Shepherd, J. D., Okuno, H., Lyford, G., Petralia, R. S., Plath, N., et al. (2006). Arc/Arg3.1 interacts with the endocytic machinery to regulate AMPA receptor trafficking. Neuron, 52(3), 445–459.

    PubMed  CAS  Google Scholar 

  • Condon, C. D., & Weinberger, N. M. (1991). Habituation produces frequency-specific plasticity of receptive fields in the auditory cortex. Behavioral Neuroscience, 105(3), 416–430.

    PubMed  CAS  Google Scholar 

  • D’Amato, R. J., Blue, M. E., Largent, B. L., Lynch, D. R., Ledbetter, D. J., Molliver, M. E., & Snyder, S. H. (1987). Ontogeny of the serotonergic projection to rat neocortex: Transient expression of a dense innervation to primary sensory areas. Proceedings of the National Academy of Sciences of the USA, 84(12), 4322–4326.

    PubMed  Google Scholar 

  • de Villers-Sidani, E., Chang, E. F., Bao, S., & Merzenich, M. M. (2007). Critical period window for spectral tuning defined in the primary auditory cortex (A1) in the rat. Journal of Neuroscience, 27(1), 180–189.

    PubMed  CAS  Google Scholar 

  • Diamond, D. M., & Weinberger, N. M. (1984). Physiological plasticity of single neurons in auditory cortex of the cat during acquisition of the pupillary conditioned response: II. Secondary field (AII). Behavioral Neuroscience, 98(2), 189–210.

    PubMed  CAS  Google Scholar 

  • Diamond, D. M., & Weinberger, N. M. (1986). Classical conditioning rapidly induces specific changes in frequency receptive fields of single neurons in secondary and ventral ectosylvian auditory cortical fields. Brain Research, 372(2), 357–360.

    PubMed  CAS  Google Scholar 

  • Dorrn, A. L., Yuan, K., Barker, A. J., Schreiner, C. E., & Froemke, R. C. (2010). Developmental sensory experience balances cortical excitation and inhibition. Nature, 465(7300), 932–936.

    PubMed  CAS  Google Scholar 

  • Dynes, J. L., & Steward, O. (2007). Dynamics of bidirectional transport of Arc mRNA in neuronal dendrites. Journal of Comparative Neurology, 500(3), 433–447.

    PubMed  CAS  Google Scholar 

  • Edeline, J. M., & Weinberger, N. M. (1993). Receptive field plasticity in the auditory cortex during frequency discrimination training: Selective retuning independent of task difficulty. Behavioral Neuroscience, 107(1), 82–103.

    PubMed  CAS  Google Scholar 

  • Edeline, J. M., Pham, P., & Weinberger, N. M. (1993). Rapid development of learning-induced receptive field plasticity in the auditory cortex. Behavioral Neuroscience, 107(4), 539–551.

    PubMed  CAS  Google Scholar 

  • Edeline, J. M., Manunta, Y., & Hennevin, E. (2011). Induction of selective plasticity in the frequency tuning of auditory cortex and auditory thalamus neurons by locus coeruleus stimulation. Hearing Research, 274(1–2), 75–84.

    PubMed  Google Scholar 

  • Eggermont, J. J., & Roberts, L. E. (2004). The neuroscience of tinnitus. Trends in the Neurosciences, 27(11), 676–682.

    CAS  Google Scholar 

  • Ehret, G., & Fischer, R. (1991). Neuronal activity and tonotopy in the auditory system visualized by c-Fos gene expression. Brain Research, 567(2), 350–354.

    PubMed  CAS  Google Scholar 

  • Engineer, N. D., Riley, J. R., Seale, J. D., Vrana, W. A., Shetake, J. A., Sudanagunta, S. P., et al. (2011). Reversing pathological neural activity using targeted plasticity. Nature, 470(7332), 101–104.

    PubMed  Google Scholar 

  • España, R. A., & Berridge, C. W. (2006). Organization of noradrenergic efferents to arousal-related basal forebrain structures. Journal of Comparative Neurology, 496(5), 668–683.

    PubMed  Google Scholar 

  • Fichtel, I., & Ehret, G. (1999). Perception and recognition discriminated in the mouse auditory cortex by c-Fos labeling. NeuroReport, 10(11), 2341–2345.

    PubMed  CAS  Google Scholar 

  • Foote, S. L., Aston-Jones, G., & Bloom, F. E. (1980). Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proceedings of the National Academy of Sciences of the USA, 77(5), 3033–3037.

    PubMed  CAS  Google Scholar 

  • Freedman, D. G., King, J. A., & Elliot, O. (1961). Critical period in the social development of dogs. Science, 133(3457), 1016–1017.

    PubMed  CAS  Google Scholar 

  • Fregnac, Y., Shulz, D., Thorpe, S., & Bienenstock, E. (1988). A cellular analogue of visual cortical plasticity. Nature, 333(6171), 367–370.

    PubMed  CAS  Google Scholar 

  • Galambos, R., Sheatz, G., & Vernier, V. G. (1956). Electrophysiological correlates of a conditioned response in cats. Science, 123(3192), 376–377.

    PubMed  CAS  Google Scholar 

  • Galindo-Leon, E. E., Lin, F. G., & Liu, R. C. (2009). Inhibitory plasticity in a lateral band improves cortical detection of natural vocalizations. Neuron, 62(5), 705–716.

    PubMed  CAS  Google Scholar 

  • Gao, E., & Suga, N. (2000). Experience-dependent plasticity in the auditory cortex and the inferior colliculus of bats: Role of the corticofugal system. Proceedings of the National Academy of Sciences of the USA, 97(14), 8081–8086.

    PubMed  CAS  Google Scholar 

  • Garg, M. (1969). The effect of nicotine on two different types of learning. Psychopharmacologia, 15(5), 408–414.

    PubMed  CAS  Google Scholar 

  • Geissler, D. B., & Ehret, G. (2004). Auditory perception vs. recognition: Representation of complex communication sounds in the mouse auditory cortical fields. European Journal of Neuroscience, 19(4), 1027–1040.

    PubMed  Google Scholar 

  • Gibbs, R. B., & Aggarwal, P. (1998). Estrogen and basal forebrain cholinergic neurons: Implications for brain aging and Alzheimer’s disease-related cognitive decline. Hormones and Behavior, 34(2), 98–111.

    PubMed  CAS  Google Scholar 

  • González, J. C., Albinana, E., Baldelli, P., Garcia, A. G., & Hernandez-Guijo, J. M. (2011). Presynaptic muscarinic receptor subtypes involved in the enhancement of spontaneous GABAergic postsynaptic currents in hippocampal neurons. European Journal of Neuroscience, 33(1), 69–81.

    PubMed  Google Scholar 

  • Guzowski, J. F., Lyford, G. L., Stevenson, G. D., Houston, F. P., McGaugh, J. L., Worley, P. F., & Barnes, C. A. (2000). Inhibition of activity-dependent Arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory. Journal of Neuroscience, 20(11), 3993–4001.

    PubMed  CAS  Google Scholar 

  • Hagan, J. J., Jansen, J. H., & Broekkamp, C. L. (1987). Blockade of spatial learning by the M1 muscarinic antagonist pirenzepine. Psychopharmacology, 93(4), 470–476.

    PubMed  CAS  Google Scholar 

  • Han, Y. K., Kover, H., Insanally, M. N., Semerdjian, J. H., & Bao, S. (2007). Early experience impairs perceptual discrimination. Nature Neuroscience, 10(9), 1191–1197.

    PubMed  CAS  Google Scholar 

  • Haring, J. H., & Wang, R. Y. (1986). The identification of some sources of afferent input to the rat nucleus basalis magnocellularis by retrograde transport of horseradish peroxidase. Brain Research, 366(1–2), 152–158.

    PubMed  CAS  Google Scholar 

  • Harlow, H. F., Dodsworth, R. O., & Harlow, M. K. (1965). Total social isolation in monkeys. Proceedings of the National Academy of Sciences of the USA, 54(1), 90–97.

    PubMed  CAS  Google Scholar 

  • Harper, M. S., & Wallace, M. N. (1995). Changes in density of brainstem afferents in ferret primary auditory cortex (AI) during postnatal development. Journal of Anatomy, 186 (Pt 2), 373–382.

    PubMed  Google Scholar 

  • Hasselmo, M. E., & Bower, J. M. (1992). Cholinergic suppression specific to intrinsic not afferent fiber synapses in rat piriform (olfactory) cortex. Journal of Neurophysiology, 67(5), 1222–1229.

    PubMed  CAS  Google Scholar 

  • Hasselmo, M. E., & Bower, J. M. (1993). Acetylcholine and memory. Trends in the Neurosciences, 16(6), 218–222.

    CAS  Google Scholar 

  • Hasselmo, M. E., Anderson, B. P., & Bower, J. M. (1992). Cholinergic modulation of cortical associative memory function. Journal of Neurophysiology, 67(5), 1230–1246.

    PubMed  CAS  Google Scholar 

  • Herregodts, P., Velkeniers, B., Ebinger, G., Michotte, Y., Vanhaelst, L., & Hooghe-Peters, E. (1990). Development of monoaminergic neurotransmitters in fetal and postnatal rat brain: Analysis by HPLC with electrochemical detection. Journal of Neurochemistry, 55, 774–779.

    PubMed  CAS  Google Scholar 

  • Hu, H., Real, E., Takamiya, K., Kang, M. G., Ledoux, J., Huganir, R. L., & Malinow, R. (2007). Emotion enhances learning via norepinephrine regulation of AMPA-receptor trafficking. Cell, 131(1), 160–173.

    PubMed  CAS  Google Scholar 

  • Hubel, D. H., & Wiesel, T. N. (1970). The period of susceptibility to the physiological effects of unilateral eye closure in kittens. Journal of Physiology, 206(2), 419–436.

    PubMed  CAS  Google Scholar 

  • Hui, G. K., Wong, K. L., Chavez, C. M., Leon, M. I., Robin, K. M., & Weinberger, N. M. (2009). Conditioned tone control of brain reward behavior produces highly specific representational gain in the primary auditory cortex. Neurobiology of Learning and Memory, 92(1), 27–34.

    PubMed  Google Scholar 

  • Hurley, L.M. & Hall, I.C. (2011). Context-dependent modulation of auditory processing by serotonin. Hearing Research, 279(1–2), 74–84.

    PubMed  CAS  Google Scholar 

  • Hurley, L. M., & Pollak, G. D. (2001). Serotonin effects on frequency tuning of inferior colliculus neurons. Journal of Neurophysiology, 85(2), 828–842.

    PubMed  CAS  Google Scholar 

  • Insanally, M. N., Kover, H., Kim, H., & Bao, S. (2009). Feature-dependent sensitive periods in the development of complex sound representation. Journal of Neuroscience, 29(17), 5456–5462.

    PubMed  CAS  Google Scholar 

  • Ivanova, T., Matthews, A., Gross, C., Mappus, R. C., Gollnick, C., Swanson, A., et al. (2011). Arc/Arg3.1 mRNA expression reveals a sub-cellular trace of prior sound exposure in adult primary auditory cortex. Neuroscience, 181, 117–126.

    PubMed  CAS  Google Scholar 

  • Jacobs, B. L., & Azmitia, E. C. (1992). Structure and function of the brain serotonin system. Physiological Reviews, 72(1), 165–229.

    PubMed  CAS  Google Scholar 

  • Jarvis, E. D., Mello, C. V., & Nottebohm, F. (1995). Associative learning and stimulus novelty influence the song-induced expression of an immediate early gene in the canary forebrain. Learning and Memory, 2(2), 62–80.

    PubMed  CAS  Google Scholar 

  • Ji, W., & Suga, N. (2003). Development of reorganization of the auditory cortex caused by fear conditioning: Effect of atropine. Journal of Neurophysiology, 90(3), 1904–1909.

    PubMed  Google Scholar 

  • Ji, W., & Suga, N. (2007). Serotonergic modulation of plasticity of the auditory cortex elicited by fear conditioning. Journal of Neuroscience, 27(18), 4910–4918.

    PubMed  CAS  Google Scholar 

  • Ji, W., Gao, E., & Suga, N. (2001). Effects of acetylcholine and atropine on plasticity of central auditory neurons caused by conditioning in bats. Journal of Neurophysiology, 86(1), 211–225.

    PubMed  CAS  Google Scholar 

  • Kamke, M. R., Brown, M., & Irvine, D. R. (2005). Basal forebrain cholinergic input is not essential for lesion-induced plasticity in mature auditory cortex. Neuron, 48(4), 675–686.

    PubMed  CAS  Google Scholar 

  • Kasamatsu, T., & Pettigrew, J. D. (1976). Depletion of brain catecholamines: Failure of ocular dominance shift after monocular occlusion in kittens. Science, 194(4261), 206–209.

    PubMed  CAS  Google Scholar 

  • Kilgard, M. P., & Merzenich, M. M. (1998a). Plasticity of temporal information processing in the primary auditory cortex. Nature Neuroscience, 1(8), 727–731.

    PubMed  CAS  Google Scholar 

  • Kilgard, M. P., & Merzenich, M. M. (1998b). Cortical map reorganization enabled by nucleus basalis activity. Science, 279(5357), 1714–1718.

    PubMed  CAS  Google Scholar 

  • Kilgard, M. P., Pandya, P. K., Vazquez, J. L., Rathbun, D. L., Engineer, N. D., & Moucha, R. (2001). Spectral features control temporal plasticity in auditory cortex. Audiology and Neurotology, 6(4), 196–202.

    PubMed  CAS  Google Scholar 

  • Kilgard, M. P., Vazquez, J. L., Engineer, N. D., & Pandya, P. K. (2007). Experience dependent plasticity alters cortical synchronization. Hearing Research, 229(1–2), 171–179.

    PubMed  CAS  Google Scholar 

  • Kim, H., & Bao, S. (2009). Selective increase in representations of sounds repeated at an ethological rate. Journal of Neuroscience, 29(16), 5163–5169.

    PubMed  CAS  Google Scholar 

  • Kinsley, C. H., Madonia, L., Gifford, G. W., Tureski, K., Griffin, G. R., Lowry, C., et al. (1999). Motherhood improves learning and memory. Nature, 402(6758), 137–138.

    PubMed  CAS  Google Scholar 

  • Kinsley, C. H., Trainer, R., Stafisso-Sandoz, G., Quadros, P., Marcus, L. K., Hearon, C., et al. (2006). Motherhood and the hormones of pregnancy modify concentrations of hippocampal neuronal dendritic spines. Hormones and Behavior, 49(2), 131–142.

    PubMed  CAS  Google Scholar 

  • Kirkwood, A., Rozas, C., Kirkwood, J., Perez, F., & Bear, M. F. (1999). Modulation of long-term synaptic depression in visual cortex by acetylcholine and norepinephrine. Journal of Neuroscience, 19(5), 1599–1609.

    PubMed  CAS  Google Scholar 

  • Kisley, M. A., & Gerstein, G. L. (2001). Daily variation and appetitive conditioning-induced plasticity of auditory cortex receptive fields. European Journal of Neuroscience, 13(10), 1993–2003.

    PubMed  CAS  Google Scholar 

  • Knudsen, E. I. (2004). Sensitive periods in the development of the brain and behavior. Journal of Cognitive Neuroscience, 16(8), 1412–1425.

    PubMed  Google Scholar 

  • Korzan, W. J., Summers, T. R., & Summers, C. H. (2000). Monoaminergic activities of limbic regions are elevated during aggression: Influence of sympathetic social signaling. Brain Research, 870(1–2), 170–178.

    PubMed  CAS  Google Scholar 

  • Kraus, M., Schicknick, H., Wetzel, W., Ohl, F., Staak, S., & Tischmeyer, W. (2002). Memory consolidation for the discrimination of frequency-modulated tones in mongolian gerbils is sensitive to protein-synthesis inhibitors applied to the auditory cortex. Learning and Memory, 9(5), 293–303.

    PubMed  Google Scholar 

  • Kuhl, P. K. (2004). Early language acquisition: Cracking the speech code. Nature Reviews Neuroscience, 5(11), 831–843.

    PubMed  CAS  Google Scholar 

  • Lambert, K. G., Berry, A. E., Griffins, G., Amory-Meyers, E., Madonia-Lomas, L., Love, G., & Kinsley, C. H. (2005). Pup exposure differentially enhances foraging ability in primiparous and nulliparous rats. Physiology and Behavior, 84(5), 799–806.

    PubMed  CAS  Google Scholar 

  • Link, W., Konietzko, U., Kauselmann, G., Krug, M., Schwanke, B., Frey, U., & Kuhl, D. (1995). Somatodendritic expression of an immediate early gene is regulated by synaptic activity. Proceedings of the National Academy of Sciences of the USA, 92(12), 5734–5738.

    PubMed  CAS  Google Scholar 

  • Liu, R. C., & Schreiner, C. E. (2007). Auditory cortical detection and discrimination correlates with communicative significance. PLoS Biology, 5(7), e173.

    PubMed  Google Scholar 

  • Liu, R. C., Linden, J. F., & Schreiner, C. E. (2006). Improved cortical entrainment to infant communication calls in mothers compared with virgin mice. European Journal of Neuroscience, 23(11), 3087–3097.

    PubMed  Google Scholar 

  • Lyford, G. L., Yamagata, K., Kaufmann, W. E., Barnes, C. A., Sanders, L. K., Copeland, N. G., et al. (1995). Arc, a growth factor and activity-regulated gene, encodes a novel cytoskeleton-associated protein that is enriched in neuronal dendrites. Neuron, 14(2), 433–445.

    PubMed  CAS  Google Scholar 

  • Mahlke, C., & Wallhäusser-Franke, E. (2004). Evidence for tinnitus-related plasticity in the auditory and limbic system, demonstrated by Arg3.1 and c-Fos immunocytochemistry. Hearing Research, 195(1–2), 17–34.

    PubMed  CAS  Google Scholar 

  • Maney, D. L., Cho, E., & Goode, C. T. (2006). Estrogen-dependent selectivity of genomic responses to birdsong. European Journal of Neuroscience, 23(6), 1523–1529.

    PubMed  Google Scholar 

  • Mangan, G. L. (1983). The effects of cigarette smoking on verbal learning and retention. Journal of General Psychology, 108, 203–210.

    PubMed  CAS  Google Scholar 

  • Manunta, Y., & Edeline, J. M. (2004). Noradrenergic induction of selective plasticity in the frequency tuning of auditory cortex neurons. Journal of Neurophysiology, 92(3), 1445–1463.

    PubMed  CAS  Google Scholar 

  • McGaugh, J. L. (1966). Time-dependent processes in memory storage. Science, 153(742), 1351–1358.

    PubMed  CAS  Google Scholar 

  • Mello, C., Nottebohm, F., & Clayton, D. (1995). Repeated exposure to one song leads to a rapid and persistent decline in an immediate early gene’s response to that song in zebra finch telencephalon. Journal of Neuroscience, 15(10), 6919–6925.

    PubMed  CAS  Google Scholar 

  • Messaoudi, E., Kanhema, T., Soule, J., Tiron, A., Dagyte, G., da Silva, B., & Bramham, C. R. (2007). Sustained Arc/Arg3.1 synthesis controls long-term potentiation consolidation through regulation of local actin polymerization in the dentate gyrus in vivo. Journal of Neuroscience, 27(39), 10445–10455.

    PubMed  CAS  Google Scholar 

  • Metherate, R. (2004). Nicotinic acetylcholine receptors in sensory cortex. Learning and Memory, 11(1), 50–59.

    PubMed  Google Scholar 

  • Metherate, R., & Hsieh, C. Y. (2004). Synaptic mechanisms and cholinergic regulation in auditory cortex. Progress in Brain Research, 145, 143–156.

    PubMed  CAS  Google Scholar 

  • Miasnikov, A. A., Chen, J. C., & Weinberger, N. M. (2006). Rapid induction of specific associative behavioral memory by stimulation of the nucleus basalis in the rat. Neurobiology of Learning and Memory, 86(1), 47–65.

    PubMed  CAS  Google Scholar 

  • Miasnikov, A. A., Chen, J. C., & Weinberger, N. M. (2011). Consolidation and long-term retention of an implanted behavioral memory. Neurobiology of Learning and Memory, 95(3), 286–295.

    PubMed  Google Scholar 

  • Miranda, J. A., & Liu, R. C. (2009). Dissecting natural sensory plasticity: Hormones and experience in a maternal context. Hearing Research, 252(1–2), 21–28.

    PubMed  CAS  Google Scholar 

  • Moga, D. E., Calhoun, M. E., Chowdhury, A., Worley, P., Morrison, J. H., & Shapiro, M. L. (2004). Activity-regulated cytoskeletal-associated protein is localized to recently activated excitatory synapses. Neuroscience, 125(1), 7–11.

    PubMed  CAS  Google Scholar 

  • Moucha, R., Pandya, P. K., Engineer, N. D., Rathbun, D. L., & Kilgard, M. P. (2005). Background sounds contribute to spectrotemporal plasticity in primary auditory cortex. Experimental Brain Research, 162(4), 417–427.

    Google Scholar 

  • Naeff, B., Schlumpf, M., & Lichtensteiger, W. (1992). Pre- and postnatal development of high-affinity [3H]nicotine binding sites in rat brain regions: An autoradiographic study. Developmental Brain Research, 68, 163–174.

    PubMed  CAS  Google Scholar 

  • Nair, V. D., & Mishra, R. K. (1995). Ontogenic development of dopamine D4 receptor in rat brain. Developmental Brain Research, 90(1–2), 180–183.

    PubMed  CAS  Google Scholar 

  • Nakamura, S., Kimura, F., & Sakaguchi, T. (1987). Postnatal development of electrical activity in the locus ceruleus. Journal of Neurophysiology, 58(3), 510–524.

    PubMed  CAS  Google Scholar 

  • Nakamura, S., Sakaguchi, T., Kimura, F., & Aoki, F. (1988). The role of alpha 1-adrenoceptor-mediated collateral excitation in the regulation of the electrical activity of locus coeruleus neurons. Neuroscience, 27(3), 921–929.

    PubMed  CAS  Google Scholar 

  • Noreña, A. J., Gourevitch, B., Aizawa, N., & Eggermont, J. J. (2006). Spectrally enhanced acoustic environment disrupts frequency representation in cat auditory cortex. Nature Neuroscience, 9(7), 932–939.

    PubMed  Google Scholar 

  • Ohl, F. W., & Scheich, H. (1996). Differential frequency conditioning enhances spectral contrast sensitivity of units in auditory cortex (field Al) of the alert Mongolian gerbil. European Journal of Neuroscience, 8(5), 1001–1017.

    PubMed  CAS  Google Scholar 

  • Olson, L., & Sieger, A. (1972). Early prenatal ontogeny of central monoamine neurons in the rat: Fluorescence histochemical observations. Anatomy and Embryology, 137, 301–316.

    CAS  Google Scholar 

  • Packard, M. G. (1998). Posttraining estrogen and memory modulation. Hormones and Behavior, 34(2), 126–139.

    PubMed  CAS  Google Scholar 

  • Peebles, C. L., Yoo, J., Thwin, M. T., Palop, J. J., Noebels, J. L., & Finkbeiner, S. (2010). Arc regulates spine morphology and maintains network stability in vivo. Proceedings of the National Academy of Sciences of the USA, 107(42), 18173–18178.

    PubMed  CAS  Google Scholar 

  • Percaccio, C. R., Engineer, N. D., Pruette, A. L., Pandya, P. K., Moucha, R., Rathbun, D. L., & Kilgard, M. P. (2005). Environmental enrichment increases paired-pulse depression in rat auditory cortex. Journal of Neurophysiology, 94(5), 3590–3600.

    PubMed  Google Scholar 

  • Percaccio, C. R., Pruette, A. L., Mistry, S. T., Chen, Y. H., & Kilgard, M. P. (2007). Sensory experience determines enrichment-induced plasticity in rat auditory cortex. Brain Research, 1174, 76–91.

    PubMed  CAS  Google Scholar 

  • Pettigrew, J. D., & Kasamatsu, T. (1978). Local perfusion of noradrenaline maintains visual cortical plasticity. Nature, 271(5647), 761–763.

    PubMed  CAS  Google Scholar 

  • Picciotto, M. R., Zoli, M., Lena, C., Bessis, A., Lallemand, Y., Le Novere, N., et al. (1995). Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain. Nature, 374(6517), 65–67.

    PubMed  CAS  Google Scholar 

  • Pienkowski, M., & Eggermont, J. J. (2009). Long-term, partially-reversible reorganization of frequency tuning in mature cat primary auditory cortex can be induced by passive exposure to moderate-level sounds. Hearing Research, 257(1–2), 24–40.

    PubMed  Google Scholar 

  • Pienkowski, M., & Eggermont, J. J. (2010a). Passive exposure of adult cats to moderate-level tone pip ensembles differentially decreases AI and AII responsiveness in the exposure frequency range. Hearing Research, 268(1–2), 151–162.

    PubMed  Google Scholar 

  • Pienkowski, M., & Eggermont, J. J. (2010b). Intermittent exposure with moderate-level sound impairs central auditory function of mature animals without concomitant hearing loss. Hearing Research, 261(1–2), 30–35.

    PubMed  Google Scholar 

  • Pilley, J. W., & Reid, A. K. (2011). Border collie comprehends object names as verbal referents. Behavioural Processes, 86(2), 184–195.

    PubMed  Google Scholar 

  • Plath, N., Ohana, O., Dammermann, B., Errington, M. L., Schmitz, D., Gross, C., et al. (2006). Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories. Neuron, 52(3), 437–444.

    PubMed  CAS  Google Scholar 

  • Polley, D. B., Heiser, M. A., Blake, D. T., Schreiner, C. E., & Merzenich, M. M. (2004). Associative learning shapes the neural code for stimulus magnitude in primary auditory cortex. Proceedings of the National Academy of Sciences of the USA, 101(46), 16351–16356.

    PubMed  CAS  Google Scholar 

  • Polley, D. B., Steinberg, E. E., & Merzenich, M. M. (2006). Perceptual learning directs auditory cortical map reorganization through top-down influences. Journal of Neuroscience, 26(18), 4970–4982.

    PubMed  CAS  Google Scholar 

  • Popescu, M. V., & Polley, D. B. (2010). Monaural deprivation disrupts development of binaural selectivity in auditory midbrain and cortex. Neuron, 65(5), 718–731.

    PubMed  CAS  Google Scholar 

  • Puckett, A. C., Pandya, P. K., Moucha, R., Dai, W., & Kilgard, M. P. (2007). Plasticity in the rat posterior auditory field following nucleus basalis stimulation. Journal of Neurophysiology, 98(1), 253–265.

    PubMed  Google Scholar 

  • Radwanska, K., Nikolaev, E., & Kaczmarek, L. (2010). Central noradrenergic lesion induced by DSP-4 impairs the acquisition of avoidance reactions and prevents molecular changes in the amygdala. Neurobiology of Learning and Memory, 94(3), 303–311.

    PubMed  CAS  Google Scholar 

  • Ramsey, L. C., Sinha, S. R., & Hurley, L. M. (2010). 5-HT1A and 5-HT1B receptors differentially modulate rate and timing of auditory responses in the mouse inferior colliculus. European Journal of Neuroscience, 32(3), 368–379.

    PubMed  Google Scholar 

  • Razak, K. A., Richardson, M. D., & Fuzessery, Z. M. (2008). Experience is required for the maintenance and refinement of FM sweep selectivity in the developing auditory cortex. Proceedings of the National Academy of Sciences of the USA, 105(11), 4465–4470.

    PubMed  CAS  Google Scholar 

  • Recanzone, G. H., Schreiner, C. E., & Merzenich, M. M. (1993). Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. Journal of Neuroscience, 13(1), 87–103.

    PubMed  CAS  Google Scholar 

  • Reed, A., Riley, J., Carraway, R., Carrasco, A., Perez, C., Jakkamsetti, V., & Kilgard, M. P. (2011). Cortical map plasticity improves learning but is not necessary for improved performance. Neuron, 70(1), 121–131.

    PubMed  CAS  Google Scholar 

  • Remage-Healey, L., Coleman, M. J., Oyama, R. K., & Schlinger, B. A. (2010). Brain estrogens rapidly strengthen auditory encoding and guide song preference in a songbird. Proceedings of the National Academy of Sciences of the USA, 107(8), 3852–3857.

    PubMed  CAS  Google Scholar 

  • Rouiller, E. M., Wan, X. S. T., Moret, V., & Liang, F. (1992). Mapping of c-Fos expression elicited by pure tones stimulation in the auditory pathways of the rat, with emphasis on the cochlear nucleus. Neuroscience Letters, 144(1–2), 19–24.

    PubMed  CAS  Google Scholar 

  • Rutkowski, R. G., & Weinberger, N. M. (2005). Encoding of learned importance of sound by magnitude of representational area in primary auditory cortex. Proceedings of the National Academy of Sciences of the USA, 102(38), 13664–13669.

    PubMed  CAS  Google Scholar 

  • Scheich, H., & Zuschratter, W. (1995). Mapping of stimulus features and meaning in gerbil auditory cortex with 2-deoxyglucose and c-Fos antibodies. Behavioural Brain Research, 66(1–2), 195–205.

    PubMed  CAS  Google Scholar 

  • Sen, K., Theunissen, F. E., & Doupe, A. J. (2001). Feature analysis of natural sounds in the songbird auditory forebrain. Journal of Neurophysiology, 86(3), 1445–1458.

    PubMed  CAS  Google Scholar 

  • Shaw, C., Needler, M. C., Wilkinson, M., Aoki, C., & Cynader, M. (1985). Modification of neurotransmitter receptor sensitivity in cat visual cortex during the critical period. Brain Research, 22(1), 67–73.

    CAS  Google Scholar 

  • Sherwin, B. B. (2003). Estrogen and cognitive functioning in women. Endocrine Reviews, 24(2), 133–151.

    PubMed  CAS  Google Scholar 

  • Siegelbaum, S. A., Camardo, J. S., & Kandel, E. R. (1982). Serotonin and cyclic AMP close single K+ channels in Aplysia sensory neurones. Nature, 299(5882), 413–417.

    PubMed  CAS  Google Scholar 

  • Sundström, E., Kölare, S., Souverbic, F., Samuelsson, E. B., Pschera, H., Lunell, N. O., & Seiger, Ă…. (1993). Neurochemical differentiation of human bulbospinal monoaminergic neurons during the first trimester. Developmental Brain Research, 75, 1–12.

    PubMed  Google Scholar 

  • Taffe, M. A., Weed, M. R., Gutierrez, T., Davis, S. A., & Gold, L. H. (2002). Differential muscarinic and NMDA contributions to visuo-spatial paired-associate learning in rhesus monkeys. Psychopharmacology, 160(3), 253–262.

    PubMed  CAS  Google Scholar 

  • Tremere, L. A., Jeong, J. K., & Pinaud, R. (2009). Estradiol shapes auditory processing in the adult brain by regulating inhibitory transmission and plasticity-associated gene expression. Journal of Neuroscience, 29(18), 5949–5963.

    PubMed  CAS  Google Scholar 

  • Valles, A., Boender, A. J., Gijsbers, S., Haast, R. A., Martens, G. J., & de Weerd, P. (2011). Genomewide analysis of rat barrel cortex reveals time- and layer-specific mRNA expression changes related to experience-dependent plasticity. Journal of Neuroscience, 31(16), 6140–6158.

    PubMed  CAS  Google Scholar 

  • van Praag, H., Kempermann, G., & Gage, F. H. (2000). Neural consequences of environmental enrichment. Nature Reviews Neuroscience, 1(3), 191–198.

    PubMed  CAS  Google Scholar 

  • van Wassenhove, V., & Nagarajan, S. S. (2007). Auditory cortical plasticity in learning to discriminate modulation rate. Journal of Neuroscience, 27(10), 2663–2672.

    PubMed  CAS  Google Scholar 

  • Watanabe, T., Taguchi, Y., Shiosaka, S., Tanaka, J., Kubota, H., Terano, Y., et al. (1984). Distribution of the histamingergic neuron system in the central nervous system of rats: A fluorescent immunohistochemical analysis with histidine decarboxylase as a marker. Brain Research, 295, 13–25.

    PubMed  CAS  Google Scholar 

  • Weinberger, N. M. (2004). Specific long-term memory traces in primary auditory cortex. Nature Reviews Neuroscience, 5(4), 279–290.

    PubMed  CAS  Google Scholar 

  • Weinberger, N. M., Hopkins, W., & Diamond, D. M. (1984). Physiological plasticity of single neurons in auditory cortex of the cat during acquisition of the pupillary conditioned response: I. Primary field (AI). Behavioral Neuroscience, 98(2), 171–188.

    PubMed  CAS  Google Scholar 

  • Weinberger, N. M., Javid, R., & Lepan, B. (1993). Long-term retention of learning-induced receptive-field plasticity in the auditory cortex. Proceedings of the National Academy of Sciences of the USA, 90(6), 2394–2398.

    PubMed  CAS  Google Scholar 

  • Weinberger, N. M., Miasnikov, A. A., & Chen, J. C. (2006). The level of cholinergic nucleus basalis activation controls the specificity of auditory associative memory. Neurobiology of Learning and Memory, 86(3), 270–285.

    PubMed  CAS  Google Scholar 

  • Woolley, C. S., & McEwen, B. S. (1993). Roles of estradiol and progesterone in regulation of hippocampal dendritic spine density during the estrous cycle in the rat. Journal of Comparative Neurology, 336(2), 293–306.

    PubMed  CAS  Google Scholar 

  • Yokosuka, M., Okamura, H., & Hayashi, S. (1995). Transient expression of estrogen receptor-immunoreactivity (ER-IR) in the layer V of the developing rat cerebral cortex. Developmental Brain Research, 84(1), 99–108.

    PubMed  CAS  Google Scholar 

  • Zhang, L. I., Bao, S., & Merzenich, M. M. (2001). Persistent and specific influences of early acoustic environments on primary auditory cortex. Nature Neuroscience, 4(11), 1123–1130.

    PubMed  CAS  Google Scholar 

  • Zhang, L. I., Bao, S., & Merzenich, M. M. (2002). Disruption of primary auditory cortex by synchronous auditory inputs during a critical period. Proceedings of the National Academy of Sciences of the USA, 99(4), 2309–2314.

    PubMed  CAS  Google Scholar 

  • Zhou, X., & Merzenich, M. M. (2007). Intensive training in adults refines A1 representations degraded in an early postnatal critical period. Proceedings of the National Academy of Sciences of the USA, 104(40), 15935–15940.

    PubMed  CAS  Google Scholar 

  • Zhou, X., & Merzenich, M. M. (2008). Enduring effects of early structured noise exposure on temporal modulation in the primary auditory cortex. Proceedings of the National Academy of Sciences of the USA, 105(11), 4423–4428.

    PubMed  CAS  Google Scholar 

  • Zhou, X., Nagarajan, N., Mossop, B. J., & Merzenich, M. M. (2008). Influences of un-modulated acoustic inputs on functional maturation and critical-period plasticity of the primary auditory cortex. Neuroscience, 154(1), 390–396.

    PubMed  CAS  Google Scholar 

  • Zhou, X., Panizzutti, R., de Villers-Sidani, E., Madeira, C., & Merzenich, M. M. (2011). Natural restoration of critical period plasticity in the juvenile and adult primary auditory cortex. Journal of Neuroscience, 31(15), 5625–5634.

    PubMed  CAS  Google Scholar 

  • Zuschratter, W., Gass, P., Herdegen, T., & Scheich, H. (1995). Comparison of frequency-specific c-Fos expression and fluoro-2-deoxyglucose uptake in auditory cortex of gerbils (Meriones unguiculatus). European Journal of Neuroscience, 7(7), 1614–1626.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn N. Shepard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shepard, K.N., Kilgard, M.P., Liu, R.C. (2013). Experience-Dependent Plasticity and Auditory Cortex. In: Cohen, Y., Popper, A., Fay, R. (eds) Neural Correlates of Auditory Cognition. Springer Handbook of Auditory Research, vol 45. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-2350-8_10

Download citation

Publish with us

Policies and ethics