Skip to main content

Dynamic but Structural Equation Modeling of Repeated Measures Data

  • Chapter

Part of the book series: Perspectives on Individual Differences ((PIDF))

Abstract

The term “dynamic” is broadly defined as a pattern of change. Many scientists have searched for dynamics by calculating df/dt: the ratio of changes or differences d in a function f relative to changes in time t.This simple dynamic equation was used in the 16th and 17th century motion experiments of Galileo, in the 17th and 18th century gravitation experiments of Newton, and in the 19th century experiments of many physicists and chemists (see Morris, 1985). I also use this dynamic equation, but here I examine multivariate psychological change data using the 20th century developments of latent variable structural equation modeling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akaike, H. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 1974, 19 (6), 716–723.

    Google Scholar 

  • Anderson, T. W. An introduction to multivariate statistical analysis. New York, Wiley, 1958.

    Google Scholar 

  • Aneshensel, C. S., and Huba, G. J. Depression, alcohol use, and smoking over one year: A four wave longitudinal causal model. Journal of Abnormal Psychology, 1983, 92 (2), 134–150.

    PubMed  Google Scholar 

  • Arbuckle, J. and Friendly, M. L. On rotating to smooth functions. Psychometrika, 1977, 42 (1), 127–140.

    Google Scholar 

  • Baltes, P. B., and Nesselroade, J. R. History and rationale of longitudinal research. In J. R. Nesselroade and P. B. Baltes (Eds.), Longitudinal research in the study of behavior and development. New York: Academic Press, 1979.

    Google Scholar 

  • Baltes, P. B., Cornelius, S. W., and Nesselroade, J. R. Cohort effects in developmental psychology. In J. R. Nesselroade and P. B. Baltes (Eds.), Longitudinal research in the study of behavior and development. New York: Academic Press, 1979.

    Google Scholar 

  • Bayley, N. Individual patterns of development. Child Development, 1956, 27, 45–74.

    PubMed  Google Scholar 

  • Blalock, H. M. (Ed.) Causal models in panel and experimental designs. Chicago: Aldine, 1985.

    Google Scholar 

  • Bloxom, B. A note on invariance in three-mode factor analysis. Psychometrika, 1968, 33 (3), 347–350.

    PubMed  Google Scholar 

  • Bloxom, B. Alternative approaches to factorial invariance. Psychometrika, 1972, 37 (4), 425–440.

    Google Scholar 

  • Bock, R. D. Multivariate statistical methods in behavioral research. New York: McGraw-Hill, 1975.

    Google Scholar 

  • Bock, R. D. Univariate and multivariate analysis of variance in time-structured data. In J. R. Nesselroade and P. Baltes (Eds.), Longitudinal research in the study of behavior and development. New York: Academic Press, 1979.

    Google Scholar 

  • Bock, R. D. and Thissen, D. Statistical problems of fitting individual growth curves. In F. E. Johnston, A. F. Roche, and C. Sussane (Eds.), Human physical growth and maturation: Methodologies and factors. New York: Plenum Press, 1980.

    Google Scholar 

  • Botwinick, J., and Arenberg, D. Disparate times spans in sequential studies of aging. Experimental Aging Research, 1976, 2, 55–61.

    PubMed  Google Scholar 

  • Box, G. E. P. Problems in the analysis of growth and wear curves. Biometrics, 1950, 6, 362–389.

    PubMed  Google Scholar 

  • Browne, M. Asymptotically distribution-free methods for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 1984, 37, 62–83.

    PubMed  Google Scholar 

  • Campbell, R. T., and Mutran, E. Analyzing panel data in studies of aging. Experimental Aging Research, 1982, 4 (1), 3–41.

    Google Scholar 

  • Cattell, R. B. “Parallel proportional profiles” and other principles for determining the choice of factors by rotation. Psychometrika, 1944, 9 (4), 267–283.

    Google Scholar 

  • Cattell, R. B. The structuring of change by P-technique and incremental R-technique. In C. W. Harris (Ed.), Problems in measuring change. Madison: University of Wisconsin Press, 1963.

    Google Scholar 

  • Cattell, R. B. (Ed.) Handbook of multivariate experimental psychology. Chicago: Rand McNally, 1966.

    Google Scholar 

  • Cattell, R. B. Comparing factor trait and state scores across ages and cultures. Journal of Gerontology, 1969, 24, 348–360.

    PubMed  Google Scholar 

  • Cattell, R. B. Real base, true zero factor analysis. Multivariate Behavioral Research Monograph, 72–1, 1972.

    Google Scholar 

  • Chang, T. C., Krishnaiah, P. R., and Lee, J. C. Approximations to the distributions of the likelihood ratio statistics for testing the hypothesis on covariance matrices and mean vectors simultaneously. In P. R. Krishnaiah (Ed.), Applications of statistics. Amsterdam: North-Holland, 1977.

    Google Scholar 

  • Cleary, P. J. Description of individual differences in autonomic reactions. Psychological Bulletin, 1974, 81, 934–944.

    Google Scholar 

  • Cliff, N. Analytic rotation to a functional relationship. Psychometrika, 1962, 27 (3), 283–295.

    Google Scholar 

  • Cook, T. D., and Campbell, D. T. Quasi-experimentation: Design and analysis issues for field settings. Chicago: Rand McNally, 1979.

    Google Scholar 

  • Corballis, M. C. Factor model for analysing change. British Journal of Mathematical and Statistical Psychology, 1973, 26, 90–97.

    Google Scholar 

  • Corballis, M. C., and Traub, R. E. Longitudinal factor analysis. Psychometrika, 1970, 35 (1), 79–99.

    Google Scholar 

  • Cronbach, L. J., and Gleser, G. C. Assessing similarity between profiles. Psychological Bulletin, 1953, 50, 456–473.

    PubMed  Google Scholar 

  • Cudeck, R., and Browne, M. W. Cross-validation of covariance structures. Multivariate Behavioral Research, 1983, 18, 147–167.

    Google Scholar 

  • Davidson, M. L. Univariate versus multivariate tests in repeated measures experiments. Psychological Bulletin, 1972, 77, 446–452.

    Google Scholar 

  • De Soete, G., and Carroll, J. D. A maximum likelihood method for fitting the wandering vector model. Psychometrika, 1983, 48, 553–566.

    Google Scholar 

  • Dwyer, J. H. Statistical models for the social and behavioral sciences. London: Oxford University Press, 1983.

    Google Scholar 

  • Estes, W. K. The problem of inference from curves bases on group data. Psychological Bulletin, 1956, 53 (2), 134–140.

    PubMed  Google Scholar 

  • Evans, G. T. Factor analytic treatment of growth data. Multivariate Behavioral Research, 1967, 2, 109–134.

    Google Scholar 

  • Fredericksen, C. H. Models for the analysis of alternative sources of growth in correlated stochastic variables. Psychometrika, 1974, 39 (2), 223–245.

    Google Scholar 

  • Gleser, L. J., and Olkin, I. Multivariate statistical inference under marginal structure. British Journal of Mathematical and Statistical Psychology, 1973, 26, 98–123.

    Google Scholar 

  • Goldberger, A. S. Structural equation models: An overview. In A. S. Goldberger and O. D. Duncan (Eds.), Structural equation models in the social sciences. New York: Seminar Press, 1973.

    Google Scholar 

  • Goldstein, H. Some graphical procedures for the preliminary processing of longitudinal data. In V. Barnett (Ed.), Interpreting multivariate data. New York: Wiley, 1981.

    Google Scholar 

  • Gollob, H. F. A statistical model which combines features of factor analytic and analysis of variance techniques. Psychometrika, 1968a, 33 (1), 73–115.

    PubMed  Google Scholar 

  • Gollob, H. F. Confounding of sources of variation in factor-analytic techniques. Psychological Bulletin, 1968b, 70, 330–344.

    Google Scholar 

  • Hakstian, A. R. Procedures for factor analytic treatment of measures obtained on different occasions. British Journal of Mathematical and Statistical Psychology, 1973, 26, 219–239.

    Google Scholar 

  • Harris, C. W. (Ed.) Problems in measuring change. Madison: University of Wisconsin, Press, 1963.

    Google Scholar 

  • Horn, J. L. Factor analysis with variables of different metric. Educational and Psychological Measurement, 1969, 29, 753–762.

    Google Scholar 

  • Horn, J. L. State, trait and change dimensions of intelligence. The British Journal of Educational Psychology, 1972, 42 (2), 159–185.

    Google Scholar 

  • Horn, J. L., and Engstrom, R. Cattell’s scree test in relation to Bartlett’s chi-square test and other observations on the number of factors problem. Multivariate Behavioral Research, 1979, 14, 283–300.

    Google Scholar 

  • Horn, J. L., and McArdle, J. J. Perspectives on mathematical/statistical model building (MASMOB) in research on aging. In L. W. Poon (Ed.), Aging in the 1980’s: Selected contemporary issues in the psychology of aging. Washington, D.C.: American Psychological Association, 1980.

    Google Scholar 

  • Horn, J. L. McArdle, J. J., and Mason, R. When is invariance not invariant: A practical scientist’s look at the ethereal concept of factor invariance. The Sourthern Psychologist, 1983, 1 (4), 179–188.

    Google Scholar 

  • Hultsch, D. F., Nesselroade, J. R., and Plemons, J. K. Learning-ability relations in adulthood. Human Development, 1976, 19, 234–247.

    PubMed  Google Scholar 

  • James, L. R., Mulaik, S. A., and Brett, J. M. Causal analysis: Assumptions, models, and data. Beverly Hills: Sage, 1982.

    Google Scholar 

  • Jensen, A. R. Bias in mental testing. New York: Free Press, 1980.

    Google Scholar 

  • Jöreskog, K. G. A general approach to conformatory factor analysis. Psychometrika, 1969, 34, 183–202.

    Google Scholar 

  • Jöreskog, K. G. Estimation and testing of simplex models. British Journal of Mathematical and Statistical Psychology, 1970, 23, 121–146.

    Google Scholar 

  • Jöreskog, K. G. Analysis of covariance structures. In A. S. Goldberger and O. D. Duncan (Eds.), Structural equation models in the social sciences. New York: Seminar Press, 1973.

    Google Scholar 

  • Jöreskog, K. G. Statistical estimation of structural models in longitudinal-developmental investigations. In J. R. Nesselroade and P. B. Baltes, (Eds.), Longitudinal research in the study of behavior and development. New York: Academic Press, 1979.

    Google Scholar 

  • Jöreskog, K. G., and Sörbom, D. Advances in factor analysis and structural equation models. Cambridge, Mass.: Abt Books, 1979.

    Google Scholar 

  • Jöreskog, K. G., and Sörbom, D. LISREL-V program Manual. Chicago: International Educational Services, 1981.

    Google Scholar 

  • Kaufman, A. S. Intelligent testing with the WISC-R. New York: Wiley, 1979.

    Google Scholar 

  • Kearsley, G. P., Buss, A. R., and Royce, J. R. Developmental change and the multidimensional cognitive system. Intelligence, 1977, 1, 257–273.

    Google Scholar 

  • Keats, J. A. Ability measures and theories of cognitive development. In H. Wainer and S. Messick (Eds.), Principals of modern psychological measurement. Hillsdale, N.J.: Erlbaum, 1983.

    Google Scholar 

  • Kessler, R. C., and Greenberg, D. F. Linear panel analysis: Models of quantitative change. New York: Academic Press, 1981.

    Google Scholar 

  • Labouvie, E. W. The study of multivariate change structures: A conceptual perspective. Multivariate Behavioral Research, 1981, 16, 23–35.

    Google Scholar 

  • Lewis, C., and van Knippenberg, C. Estimation and model comparisons for repeated measures data. Psychological Bulletin, 1984, 96 (1), 182–194.

    Google Scholar 

  • Lohmöller, J.-B. LVPLS program manual: Latent variables path analysis with partial least-squares estimation. Koln: Zentralarchiv, Universitat zu Koln, 1984.

    Google Scholar 

  • McArdle, J. J. A structural view of longitudinal repeated measures. Proceedings of the American Statistical Association Annual Meetings, San Diego, 1978.

    Google Scholar 

  • McArdle, J. J. Causal modeling applied to psychonomic systems simulation. Behavior Research Methods and Instrumentation, 1980, 12, 193–209.

    Google Scholar 

  • McArdle, J. J. Structural equation modeling of an individual system. Report to the National Institute on Alcohol Abuse and Alcoholism (NIAAA AA-05743), 1982.

    Google Scholar 

  • McArdle, J. J. Simple structure or simple dynamics? Paper presented at the annual meeting of the Psychometric Society, Santa Barbara, Calif., 1984a.

    Google Scholar 

  • McArdle, J. J. A dynamic structural equation model for the WAIS. Paper presented at the annual meeting of the Society of Multivariate Experimental Psychologists, Evanston, Ill., 1984b.

    Google Scholar 

  • McArdle, J. J. Latent growth within behavior genetic models. Behavior Genetics, 1986, 16 (1), 163–200.

    PubMed  Google Scholar 

  • McArdle, J. J. The RAMIT computer program. Paper presented at the annual meeting of the Society of Multivariate Experimental Psychologists, Atlanta, 1986b.

    Google Scholar 

  • McArdle, J. J., and Aber, M. S. Aging and abilities: A repeated-measures meta-analysis of the WAIS. 1987 (submitted for publication).

    Google Scholar 

  • McArdle, J. J., and Epstein, D. Latent growth curves within developmental structural equation models. Child Development, 1987, 58, 110–133.

    PubMed  Google Scholar 

  • McArdle, J. J., and Horn, J. L. Mega Analyses of the WAIS. Report submitted to the National Institute of Aging, 1983.

    Google Scholar 

  • McArdle, J. J., and Horn, J. L. Mega Analyses of the WAIS. Report submitted to the National Institute of Aging, 1983.

    Google Scholar 

  • McArdle, J. J., and McDonald, R. P. Some algebraic properties of the Reticular Action Model for moment structures. British Journal of Mathematical and Statistical Psychology, 1984, 37, 234–251.

    PubMed  Google Scholar 

  • McCall, R. B., Applebaum, M. I., and Hogarty, P. S. Developmental changes in mental performance. Monographs of the Society for Research in Child Development 1973, 38(3), Serial 150.

    Google Scholar 

  • McDonald, R. P. A simple comprehensive model for the analysis of covariance structures. British Journal of Mathematical and Statistical Psychology, 1978, 31, 59–72.

    Google Scholar 

  • McDonald, R. P. A simple comprehensive model for the analysis of covariance structures: Some remarks on applications. British Journal of Mathematical and Statistical Psychology, 1980, 33, 161–183.

    Google Scholar 

  • McDonald, R. P. Linear and nonlinear models in item response theory. Applied Psychological Measurement, 1983, 6, 379–396.

    Google Scholar 

  • McDonald, R. P. Factor analysis and related methods. Hillsdale, N.J.: Erlbaum, 1985.

    Google Scholar 

  • McDonald, R. P., and Krane, W. R. A Monte Carlo study of local identifiability and degrees of freedom in the asymptotic likelihood ratio test. British Journal of Mathematical and Statistical Psychology, 1979, 32, 121–132.

    Google Scholar 

  • Meredith, W. Notes on factorial invariance. Psychometrika, 1964a, 29 (2), 177–185.

    Google Scholar 

  • Meredith, W. Rotation to achieve factorial invariance. Psychometrika, 1964b, 29 (2), 187–206.

    Google Scholar 

  • Meredith, W., and Tisak, J. Canonical analysis of longitudinal and repeated measures data with stationary weights. Psychometrika, 1982, 47 (1), 47–67.

    Google Scholar 

  • Meredith, W., and Tisak, J. “Tuckerizing” curves. Paper presented at the annual meeting of the Psychometric Society, Santa Barbara, 1984 (submitted for publication).

    Google Scholar 

  • Molenaar, P. A dynamic factor model for the analysis of multivariate time series. Psychometrika, 1985, 50 (2), 181–202.

    Google Scholar 

  • Morris, R. Time’s arrows: Scientific attitudes toward time. New York: Simon & Schuster, 1985.

    Google Scholar 

  • Nesselroade, J. R. Note on the “longitudinal factor analysis” model. Psychometrika, 1972, 37 (2), 187–191.

    Google Scholar 

  • Nesselroade, J. R. Issues in studying developmental change in adults from a multivariate perspective. In J. E. Birren and K. W. Schaie (Eds.), Handbook on the psychology of aging. New York: Van NostrandReinhold, 1977.

    Google Scholar 

  • Nesselroade, J. R. Temporal selection and factor invariance in the study of development and change. Life-Span Devlopment and Behavior, 1983, 5, 59–87.

    Google Scholar 

  • Nesselroade, J. R., and Baltes, P. B. (Eds.) Longitudinal research in the study of behavior and development. New York: Academic Press, 1979.

    Google Scholar 

  • Nesselroade, J. R., and Baltes, P. B. From traditional factor analysis to structural-causal modeling in developmental research. In V. Sarris and A. Parducci (Eds.), Perspectives in psychological experimentation: Toward the year 200. Hillsdale, N.J.: Erlbaum, 1984.

    Google Scholar 

  • Nesselroade, J. R., and Bartsch, T. W. Multivariate perspectives on the construct validity of the trait-state distinction. In R. B. Cattell and R. M. Dreger (Eds.), Handbook of Modern Personality Theory. New York: Wiley, 1977.

    Google Scholar 

  • Nunnally, J. C. The analysis of profile data. Psychological Bulletin, 1962, 59, 311–319.

    PubMed  Google Scholar 

  • O’Brien, R. G., and Kaiser, M. K. MANOVA method for analyzing repeated measures designs: An extensive primer. Psychological Bulletin, 1985, 97 (2), 316–333.

    PubMed  Google Scholar 

  • Olsson, U., and Bergman, L. R. A longitudinal factor model for studying change in abilities. Multivariate Behavioral Research, 1977, 12, 221–241.

    Google Scholar 

  • Osborne, R. T., and Suddick, D. E. A longitudinal investigation of the intellectual differentiation hypothesis. The Journal of Genetic Psychology, 1972, 121, 83–89.

    Google Scholar 

  • Pissanetsky, S. Sparse matrix technology. New York: Academic Press, 1984.

    Google Scholar 

  • Pruzek, R. M., and Chen, C. Bayesian regression with structural priors: Stability and robustness properties of some new methods. Paper presented at the American Educational Research Association, Boston, 1980.

    Google Scholar 

  • Rao, C. R. Some statistical methods for the comparison of growth curves. Biometrics, 1958, 14, 1–17.

    Google Scholar 

  • Rindskopf, D. Parameterizing inequality constraints on unique variances in linear structural models. Psychometrika, 1983, 48, 73–83.

    Google Scholar 

  • Rogan, J. C., Keselman, H. J., and Mendoza, J. L. Analysis of repeated measurements. British Journal of Mathematical and Statistical Psychology, 1979, 32, 269–286.

    Google Scholar 

  • Rogosa, D. Willett, J. B. Understanding correlates of change by modeling individual differences in growth. Psychometrika, 1985, 50 (2), 203–228.

    Google Scholar 

  • Roskam, E. E. Multivariate analysis of change and growth: Critical review and perspectives. In D. N. M. De Gruijter and L. J. T. van der Kamp (Eds.), Advances in psychological and educational measurement. New York: Wiley, 1975.

    Google Scholar 

  • Rozeboom, W. W. General linear dynamic analyses (GLDA). Unpublished manuscript, University of Alberta, 1978.

    Google Scholar 

  • Satorra, A., and Saris, W. E. Power of the likelihood ratio test in covariance structure analysis. Psychometrika, 1985, 50, 83–90.

    Google Scholar 

  • Scheifley, V. M., and Schmidt, W. H. Analysis of repeated measures data: A simulation study. Multivariate Behavioral Research, 1978, 13, 347–362.

    Google Scholar 

  • Scher, A. M., Young, A. C., and Meredity, W. Factor analysis of the electrocardiogram. Circulation Research, 1960, 8, 519–526.

    PubMed  Google Scholar 

  • Sheth, J. N. Using factor analysis to estimate parameters. Journal of the American Statistical Association, 1969, 808–822.

    Google Scholar 

  • Skinner, H. A. Differentiating the contribution of elevation, scatter and shape in profile similarity. Educational and Psychological Measurement, 1978, 38 (2), 297–308.

    Google Scholar 

  • Sobel, M. E., and Bohrnstedt, G. W. Use of null models in evaluating the fit of covariance structure models. In N. B. Tuma (Ed.), Sociological methodology, 1985, San Francisco: Jossey-Bass, 1985.

    Google Scholar 

  • Sörbom, D. A general method for studying differences in factor means and factor structure between groups. British Journal of Mathematical and Statistical Psychology, 1974, 27, 229–239.

    Google Scholar 

  • Sörbom, D. Detection of correlated errors in longitudinal data. British Journal of Mathematical and Statistical Psychology, 1975, 20, 130–151.

    Google Scholar 

  • Sörbom, D. An alternative to the methodology for analysis of covariance. Psychometrika, 1978, 43 (3), 381–396.

    Google Scholar 

  • Spearman, C. General intelligence objectively determined and measured. American Journal of Psychology, 1904, 15, 201–293.

    Google Scholar 

  • Steiger, J. H., and Schoenmann, P. H. A history of factor indeterminacy. In S. Shye (Ed.), Theory construction and data analysis in the behavioral sciences. San Francisco: Jossey-Bass, 1978.

    Google Scholar 

  • Stone, M. An asymptotic equivalence of choice of model by cross-validation and Akaike’s criterion. Journal of the Royal Statistical Society (Series B), 1977, 1, 44–47.

    Google Scholar 

  • Swaminathan, H., and Algina, J. Scale freeness in factor analysis. Psychometrika, 1978, 43, 581–583.

    Google Scholar 

  • Takane, Y. Multidimensional successive categories scaling: A maximum likelihood method. Psychometrika, 1981, 46 (1), 9–28.

    Google Scholar 

  • Takane, Y. Probabilistic multidimensional models for pair comparisons that take into account systematic individual differences. Paper presented at the Psychometric Society Annual Meeting, Nashville, Tenn., 1985.

    Google Scholar 

  • Tanaka, J. S., and Huba, G. J. A fit index for covariance structure models under arbitrary GLS estimation. British Journal of Mathematical and Statistical Psychology, 1985, 38, 197–201.

    Google Scholar 

  • Terry, H., and Meredith, W. Tuckerizing curves: A latent class approach with applications to cognitive development. Paper presented at the annual meeting of the Society of Multivariate Experimental Psychologists, Berkeley, 1985.

    Google Scholar 

  • Thurstone, L. L. The absolute zero in intelligence measurement. Psychological Review, 1928, 35 (3), 175–197.

    Google Scholar 

  • Thurstone, L. L. Multiple factor analysis. Chicago: University of Chicago Press, 1947.

    Google Scholar 

  • Tisak, J., and Meredith, W. Exploratory longitudinal factor analysis in multiple populations. 1985 (submitted for publication).

    Google Scholar 

  • Tucker, L. R. Determination of parameters of a functional relation by factor analysis. Psychometrika 23(1), 19–23.

    Google Scholar 

  • Tucker, L. R. Implications of three-way matrices for measurement of change. In C. W. Harris (Ed.), Problems in measuring change. Madison: University of Wisconsin Press, 1963.

    Google Scholar 

  • Tucker, L. R. Learning theory and multivariate experiment: Illustration by determination of parameters of generalized learning curves. In R. B. Cattell (Ed.), Handbook of multivariate experimental psychology. Chicago: Rand McNally, 1966.

    Google Scholar 

  • Tucker, L. R. Comments on “confounding sources of variation in factor-analytic techniques.” Psychological Bulletin, 1968, 70, 345–354.

    Google Scholar 

  • Wechsler, D. Manual of the Wechsler Intelligence Scale for Children. New York: The Psychological Corp., 1949.

    Google Scholar 

  • Weitzman, R. A. A factor analytic method for investigating differences between groups of individual learning curves. Psychometrika, 1963, 28 (1), 69–80.

    Google Scholar 

  • Werts, C. E., Linn, R. L., and Jöreskog, K. G. A simplex model for analyzing academic growth. Educational and Psychological Measurement, 1977, 37, 745–755.

    Google Scholar 

  • Widaman, K. F. Hierarchically nested covariance structure models for multitrait—multimethod data. Applied Psychological Measurement, 1985, 9, 1–26.

    Google Scholar 

  • Wilson, R. S. Twins: Patterns of cognitive development as measured on the Wechsler Preschool and Primary Scale of Intelligence. Developmental Psychology, 1975, 11 (2), 126–134.

    Google Scholar 

  • Wohlwill, J. F. The study of behavioral development. New York: Academic Press, 1973.

    Google Scholar 

  • Wold, H. A large sample test for moving averages. Journal of the Royal Statistical Society (Series B), 1949, 2, 297–305.

    Google Scholar 

  • Worsley, K. J. On the likelihood ratio test for a shift in location of normal populations. Journal of the American Statistical Association, 1979, 74, 365–367.

    Google Scholar 

  • Wright, S. On “path analysis in genetic epidemiology: A critique.” American Journal of Human Genetics, 1983, 35, 757–768.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

McArdle, J.J. (1988). Dynamic but Structural Equation Modeling of Repeated Measures Data. In: Nesselroade, J.R., Cattell, R.B. (eds) Handbook of Multivariate Experimental Psychology. Perspectives on Individual Differences. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0893-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0893-5_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-8232-7

  • Online ISBN: 978-1-4613-0893-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics