Skip to main content

Montreal Cognitive Assessment (MoCA): Concept and Clinical Review

  • Chapter
  • First Online:
Cognitive Screening Instruments

Abstract

The Montreal Cognitive Assessment (MoCA) is a cognitive screening instrument developed to detect mild cognitive impairment (MCI). It is a simple 10 minute paper and pencil test that assesses multiple cognitive domains including memory, language, executive functions, visuospatial skills, calculation, abstraction, attention, concentration, and orientation. Its validity has been established to detect mild cognitive impairment in patients with Alzheimer’s disease and other pathologies in cognitively impaired subjects who scored in the normal range on the MMSE. MoCA’s sensitivity and specificity to detect subjects with MCI due to Alzheimer’s disease and distinguish them from healthy controls are excellent. MoCA is also sensitive to detect cognitive impairment in cerebrovascular disease and Parkinson’s disease, Huntington’s disease, brain tumors, systemic lupus erythematosus, substance use disorders, idiopathic rapid eye movement sleep behaviour disorder, obstructive sleep apnoea, risk of falling, rehabilitation outcome, and epilepsy. There are several features in MoCA’s design that likely explain its superior sensitivity for detecting MCI. The MoCA’s memory testing involves more words, fewer learning trials, and a longer delay before recall than the MMSE. Executive functions, higher-level language abilities, and complex visuospatial processing can also be mildly impaired in MCI participants of various etiologies and are assessed by the MoCA with more numerous and demanding tasks than the MMSE. MoCA was developed in a memory clinic setting and normed in a highly educated population. Norms in lesser educated, community based, multi-cultural samples will hopefully be available to help first line healthcare providers better assess subjects presenting with cognitive complaints. The MoCA is freely accessible for clinical and educational purposes (www.mocatest.org), and is available in 36 languages and dialects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53:695–9.

    PubMed  Google Scholar 

  2. Kortte KB, Horner MD, Windham WK. The trail making test, part B: cognitive flexibility or ability to maintain set? Appl Neuropsychol. 2002;9:106–9.

    PubMed  Google Scholar 

  3. Sánchez-Cubillo I, Periáñez JA, Adrover-Roig D, Rodríguez-Sánchez JM, Ríos-Lago M, Tirapu J, et al. Construct validity of the Trail Making Test: role of task-switching, working memory, inhibition/interference control, and visuomotor abilities. J Int Neuropsychol Soc. 2009;15:438–50.

    PubMed  Google Scholar 

  4. Crowe SF. The differential contribution of mental tracking, cognitive flexibility, visual search, and motor speed to performance on parts A and B of the Trail Making Test. J Clin Psychol. 1998;54:585–91.

    PubMed  CAS  Google Scholar 

  5. O’Rourke JJF, Beglinger LJ, Smith MM, Mills J, Moser DJ, Rowe KC, et al. The Trail Making Test in prodromal Huntington disease: contributions of disease progression to test performance. J Clin Exp Neuropsychol. 2011;33:567–79.

    PubMed  Google Scholar 

  6. Jacobson SC, Blanchard M, Connolly CC, Cannon M, Garavan H. An fMRI investigation of a novel analogue to the Trail-Making Test. Brain Cogn. 2011;77:60–70.

    PubMed  Google Scholar 

  7. Zakzanis KK, Mraz R, Graham SJ. An fMRI study of the Trail Making Test. Neuropsychologia. 2005;43:1878–86.

    PubMed  Google Scholar 

  8. Moll J, de Oliveira-Souza R, Moll FT, Bramati IE, Andreiuolo PA. The cerebral correlates of set-shifting: an fMRI study of the trail making test. Arq Neuropsiquiatr. 2002;60:900–5.

    PubMed  Google Scholar 

  9. Stuss DT, Bisschop SM, Alexander MP, Levine B, Katz D, Izukawa D. The Trail Making Test: a study in focal lesion patients. Psychol Assess. 2001;13:230–9.

    PubMed  CAS  Google Scholar 

  10. Gouveia PAR, Brucki SMD, Malheiros SMF, Bueno OFA. Disorders in planning and strategy application in frontal lobe lesion patients. Brain Cogn. 2007;63:240–6.

    PubMed  Google Scholar 

  11. Tamez E, Myerson J, Morris L, White DA, Baum C, Connor LT. Assessing executive abilities following acute stroke with the trail making test and digit span. Behav Neurol. 2011;24:177–85.

    PubMed  Google Scholar 

  12. Sinha P, Poggio T. Role of learning in three-dimensional form perception. Nature. 1996;384:460–3.

    PubMed  CAS  Google Scholar 

  13. Wallach H, O’Connell DN, Neisser U. The memory effect of visual perception of three-dimensional form. J Exp Psychol. 1953;45:360–8.

    PubMed  CAS  Google Scholar 

  14. Boxer AL, Kramer JH, Du A-T, Schuff N, Weiner MW, Miller BL, et al. Focal right inferotemporal atrophy in AD with disproportionate visual constructive impairment. Neurology. 2003;61:1485–91.

    PubMed  CAS  Google Scholar 

  15. Tippett WJ, Black SE. Regional cerebral blood flow correlates of visuospatial tasks in Alzheimer’s disease. J Int Neuropsychol Soc. 2008;14:1034–45.

    PubMed  Google Scholar 

  16. Possin KL, Laluz VR, Alcantar OZ, Miller BL, Kramer JH. Distinct neuroanatomical substrates and cognitive mechanisms of figure copy performance in Alzheimer’s disease and behavioral variant frontotemporal dementia. Neuropsychologia. 2011;49:43–8.

    PubMed  Google Scholar 

  17. Gaestel Y, Amieva H, Letenneur L, Dartigues J-F, Fabrigoule C. Cube drawing performances in normal ageing and Alzheimer’s disease: data from the PAQUID elderly population-based cohort. Dement Geriatr Cogn Disord. 2006;21:22–32.

    PubMed  Google Scholar 

  18. Shulman KI, Shedletsky R, Silver IL. The challenge of time: clock-drawing and cognitive function in the elderly. Int J Geriatr Psychiatry. 1986;1:135–40.

    Google Scholar 

  19. Pinto E, Peters R. Literature review of the Clock Drawing Test as a tool for cognitive screening. Dement Geriatr Cogn Disord. 2009;27:201–13.

    PubMed  Google Scholar 

  20. Ino T, Asada T, Ito J, Kimura T, Fukuyama H. Parieto-frontal networks for clock drawing revealed with fMRI. Neurosci Res. 2003;45:71–7.

    PubMed  Google Scholar 

  21. Kim H, Chey J. Effects of education, literacy, and dementia on the Clock Drawing Test performance. J Int Neuropsychol Soc. 2010;16:1138–46.

    PubMed  Google Scholar 

  22. Rouleau I, Salmon DP, Butters N, Kennedy C, McGuire K. Quantitative and qualitative analyses of clock drawings in Alzheimer’s and Huntington’s disease. Brain Cogn. 1992;18:70–87.

    PubMed  CAS  Google Scholar 

  23. Kim Y-S, Lee K-M, Choi BH, Sohn E-H, Lee AY. Relation between the clock drawing test (CDT) and structural changes of brain in dementia. Arch Gerontol Geriatr. 2009;48:218–21.

    PubMed  Google Scholar 

  24. Cahn-Weiner DA, Sullivan EV, Shear PK, Fama R, Lim KO, Yesavage JA, et al. Brain structural and cognitive correlates of clock drawing performance in Alzheimer’s disease. J Int Neuropsychol Soc. 1999;5:502–9.

    PubMed  CAS  Google Scholar 

  25. Thomann PA, Toro P, Dos Santos V, Essig M, Schröder J. Clock drawing performance and brain morphology in mild cognitive impairment and Alzheimer’s disease. Brain Cogn. 2008;67:88–93.

    PubMed  Google Scholar 

  26. Parks RW, Thiyagesh SN, Farrow TFD, Ingram L, Wilkinson K, Hunter MD, et al. Performance on the clock drawing task correlates with FMRI response to a visuospatial task in Alzheimer’s disease. Int J Neurosci. 2010;120:335–43.

    PubMed  Google Scholar 

  27. Lee DY, Seo EH, Choo IH, Kim SG, Lee JS, Lee DS, et al. Neural correlates of the Clock Drawing Test performance in Alzheimer’s disease: a FDG-PET study. Dement Geriatr Cogn Disord. 2008;26:306–13.

    PubMed  CAS  Google Scholar 

  28. Cosentino S, Jefferson A, Chute DL, Kaplan E, Libon DJ. Clock drawing errors in dementia: neuropsychological and neuroanatomical considerations. Cogn Behav Neurol. 2004;17:74–84.

    PubMed  Google Scholar 

  29. Liss B, Roeper J. Individual dopamine midbrain neurons: functional diversity and flexibility in health and disease. Brain Res Rev. 2008;58:314–21.

    PubMed  CAS  Google Scholar 

  30. Price CC, Cunningham H, Coronado N, Freedland A, Cosentino S, Penney DL, et al. Clock drawing in the Montreal Cognitive Assessment: recommendations for dementia assessment. Dement Geriatr Cogn Disord. 2011;31:179–87.

    PubMed  Google Scholar 

  31. Nitrini R, Caramelli P, Herrera Júnior E, Porto CS, Charchat-Fichman H, Carthery MT, et al. Performance of illiterate and literate nondemented elderly subjects in two tests of long-term memory. J Int Neuropsychol Soc. 2004;10:634–8.

    PubMed  Google Scholar 

  32. Brodaty H, Moore CM. The Clock Drawing Test for dementia of the Alzheimer’s type: a comparison of three scoring methods in a memory disorders clinic. Int J Geriatr Psychiatry. 1997;12:619–27.

    PubMed  CAS  Google Scholar 

  33. Hodges JR, Salmon DP, Butters N. The nature of the naming deficit in Alzheimer’s and Huntington’s disease. Brain. 1991;114:1547–58.

    PubMed  Google Scholar 

  34. Chertkow H, Bub D. Semantic memory loss in dementia of Alzheimer’s type. What do various measures measure? Brain. 1990;113:397–417.

    PubMed  Google Scholar 

  35. Bayles KA, Tomoeda CK. Confrontation naming impairment in dementia. Brain Lang. 1983;19:98–114.

    PubMed  CAS  Google Scholar 

  36. Frank EM, McDade HL, Scott WK. Naming in dementia secondary to Parkinson’s, Huntington’s, and Alzheimer’s diseases. J Commun Disord. 1996;29:183–97.

    PubMed  CAS  Google Scholar 

  37. Smith CD, Andersen AH, Kryscio RJ, Schmitt FA, Kindy MS, Blonder LX, et al. Differences in functional magnetic resonance imaging activation by category in a visual confrontation naming task. J Neuroimaging. 2001;11:165–70.

    PubMed  CAS  Google Scholar 

  38. Chouinard PA, Goodale MA. Category-specific neural processing for naming pictures of animals and naming pictures of tools: an ALE meta-analysis. Neuropsychologia. 2010;48:409–18.

    PubMed  Google Scholar 

  39. Bai H-M, Jiang T, Wang W-M, Li T-D, Liu Y, Lu Y-C. Functional MRI mapping of category-specific sites associated with naming of famous faces, animals and man-made objects. Neurosci Bull. 2011;27:307–18.

    PubMed  Google Scholar 

  40. Okada T, Tanaka S, Nakai T, Nishizawa S, Inui T, Sadato N, et al. Naming of animals and tools: a functional magnetic resonance imaging study of categorical differences in the human brain areas commonly used for naming visually presented objects. Neurosci Lett. 2000;296:33–6.

    PubMed  CAS  Google Scholar 

  41. Fung TD, Chertkow H, Murtha S, Whatmough C, Péloquin L, Whitehead V, et al. The spectrum of category effects in object and action knowledge in dementia of the Alzheimer’s type. Neuropsychology. 2001;15:371–9.

    PubMed  CAS  Google Scholar 

  42. Mainy N, Jung J, Baciu M, Kahane P, Schoendorff B, Minotti L, et al. Cortical dynamics of word recognition. Hum Brain Mapp. 2008;29:1215–30.

    PubMed  Google Scholar 

  43. Kaneko H, Yoshikawa T, Nomura K, Ito H, Yamauchi H, Ogura M, et al. Hemodynamic changes in the prefrontal cortex during digit span task: a near-infrared spectroscopy study. Neuropsychobiology. 2011;63:59–65.

    PubMed  Google Scholar 

  44. Hoshi Y, Oda I, Wada Y, Ito Y, Yutaka Y, Oda M, et al. Visuospatial imagery is a fruitful strategy for the digit span backward task: a study with near-infrared optical tomography. Brain Res Cogn Brain Res. 2000;9:339–42.

    PubMed  CAS  Google Scholar 

  45. Sun X, Zhang X, Chen X, Zhang P, Bao M, Zhang D, et al. Age-dependent brain activation during forward and backward digit recall revealed by fMRI. Neuroimage. 2005;26:36–47.

    PubMed  CAS  Google Scholar 

  46. Gerton BK, Brown TT, Meyer-Lindenberg A, Kohn P, Holt JL, Olsen RK, et al. Shared and distinct neurophysiological components of the digits forward and backward tasks as revealed by functional neuroimaging. Neuropsychologia. 2004;42:1781–7.

    PubMed  Google Scholar 

  47. Belleville S, Peretz I, Malenfant D. Examination of the working memory components in normal aging and in dementia of the Alzheimer type. Neuropsychologia. 1996;34:195–207.

    PubMed  CAS  Google Scholar 

  48. Morris RG, Baddeley AD. Primary and working memory functioning in Alzheimer-type dementia. J Clin Exp Neuropsychol. 1988;10:279–96.

    PubMed  CAS  Google Scholar 

  49. Muangpaisan W, Intalapaporn S, Assantachai P. Digit span and verbal fluency tests in patients with mild cognitive impairment and normal subjects in Thai-community. J Med Assoc Thai. 2010;93:224–30.

    PubMed  Google Scholar 

  50. Petrova M, Raycheva M, Zhelev Y, Traykov L. Executive functions deficit in Parkinson’s disease with amnestic mild cognitive impairment. Am J Alzheimers Dis Other Demen. 2010;25:455–60.

    PubMed  Google Scholar 

  51. Leung JLM, Lee GTH, Lam YH, Chan RCC, Wu JYM. The use of the Digit Span Test in screening for cognitive impairment in acute medical inpatients. Int Psychogeriatr. 2011;23:1569–74.

    PubMed  Google Scholar 

  52. Kurt P, Yener G, Oguz M. Impaired digit span can predict further cognitive decline in older people with subjective memory complaint: a preliminary result. Aging Ment Health. 2011;15:364–9.

    PubMed  Google Scholar 

  53. Cicerone KD. Clinical sensitivity of four measures of attention to mild traumatic brain injury. Clin Neuropsychol. 1997;11:266–72.

    Google Scholar 

  54. Cicerone KD, Azulay J. Diagnostic utility of attention measures in postconcussion syndrome. Clin Neuropsychol. 2002;16:280–9.

    PubMed  Google Scholar 

  55. Rémy F, Mirrashed F, Campbell B, Richter W. Mental calculation impairment in Alzheimer’s disease: a functional magnetic resonance imaging study. Neurosci Lett. 2004;358:25–8.

    PubMed  Google Scholar 

  56. Dehaene S, Spelke E, Pinel P, Stanescu R, Tsivkin S. Sources of mathematical thinking: behavioral and brain-imaging evidence. Science. 1999;284:970–4.

    PubMed  CAS  Google Scholar 

  57. Menon V, Rivera SM, White CD, Glover GH, Reiss AL. Dissociating prefrontal and parietal cortex activation during arithmetic processing. Neuroimage. 2000;12:357–65.

    PubMed  CAS  Google Scholar 

  58. Roland PE, Friberg L. Localization of cortical areas activated by thinking. J Neurophysiol. 1985;53:1219–43.

    PubMed  CAS  Google Scholar 

  59. Chase TN, Fedio P, Foster NL, Brooks R, Di Chiro G, Mansi L. Wechsler Adult Intelligence Scale performance: cortical localization by fluorodeoxyglucose F 18-positron emission tomography. Arch Neurol. 1984;41:1244–7.

    PubMed  CAS  Google Scholar 

  60. Zago L, Pesenti M, Mellet E, Crivello F, Mazoyer B, Tzourio-Mazoyer N. Neural correlates of simple and complex mental calculation. Neuroimage. 2001;13:314–27.

    PubMed  CAS  Google Scholar 

  61. Rueckert L, Lange N, Partiot A, Appollonio I, Litvan I, Le Bihan D, et al. Visualizing cortical activation during mental calculation with functional MRI. Neuroimage. 1996;3:97–103.

    PubMed  CAS  Google Scholar 

  62. Hirono N, Mori E, Ishii K, Imamura T, Shimomura T, Tanimukai S, et al. Regional metabolism: associations with dyscalculia in Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 1998;65:913–6.

    PubMed  CAS  Google Scholar 

  63. Small JA, Kemper S, Lyons K. Sentence repetition and processing resources in Alzheimer’s disease. Brain Lang. 2000;75:232–58.

    PubMed  CAS  Google Scholar 

  64. Kopelman MD. Recall of anomalous sentences in dementia and amnesia. Brain Lang. 1986;29:154–70.

    PubMed  CAS  Google Scholar 

  65. Meyers JE, Volkert K, Diep A. Sentence repetition test: updated norms and clinical utility. Appl Neuropsychol. 2000;7:154–9.

    PubMed  CAS  Google Scholar 

  66. Baldo JV, Shimamura AP, Delis DC, Kramer J, Kaplan E. Verbal and design fluency in patients with frontal lobe lesions. J Int Neuropsychol Soc. 2001;7:586–96.

    PubMed  CAS  Google Scholar 

  67. Baldo JV, Shimamura AP. Letter and category fluency in patients with frontal lobe lesions. Neuropsychology. 1998;12:259–67.

    PubMed  CAS  Google Scholar 

  68. Troyer AK, Moscovitch M, Winocur G, Alexander MP, Stuss D. Clustering and switching on verbal fluency: the effects of focal frontal- and temporal-lobe lesions. Neuropsychologia. 1998;36:499–504.

    PubMed  CAS  Google Scholar 

  69. Perret E. The left frontal lobe of man and the suppression of habitual responses in verbal categorical behaviour. Neuropsychologia. 1974;12:323–30.

    PubMed  CAS  Google Scholar 

  70. Pendleton MG, Heaton RK, Lehman RA, Hulihan D. Diagnostic utility of the Thurstone Word Fluency Test in neuropsychological evaluations. J Clin Neuropsychol. 1982;4:307–17.

    PubMed  CAS  Google Scholar 

  71. Frith CD, Friston K, Liddle PF, Frackowiak RS. Willed action and the prefrontal cortex in man: a study with PET. Proc Biol Sci. 1991;244:241–6.

    PubMed  CAS  Google Scholar 

  72. Parks RW, Loewenstein DA, Dodrill KL, Barker WW, Yoshii F, Chang JY, et al. Cerebral metabolic effects of a verbal fluency test: a PET scan study. J Clin Exp Neuropsychol. 1988;10:565–75.

    PubMed  CAS  Google Scholar 

  73. Phelps EA, Hyder F, Blamire AM, Shulman RG. FMRI of the prefrontal cortex during overt verbal fluency. Neuroreport. 1997;8:561–5.

    PubMed  CAS  Google Scholar 

  74. Alvarez JA, Emory E. Executive function and the frontal lobes: a meta-analytic review. Neuropsychol Rev. 2006;16:17–42.

    PubMed  Google Scholar 

  75. Ostrosky-Solís F, Ardila A, Rosselli M, Lopez-Arango G, Uriel-Mendoza V. Neuropsychological test performance in illiterate subjects. Arch Clin Neuropsychol. 1998;13:645–60.

    PubMed  Google Scholar 

  76. Ostrosky-Solís F, Ardila A, Rosselli M. NEUROPSI: a brief neuropsychological test battery in Spanish with norms by age and educational level. J Int Neuropsychol Soc. 1999;5:413–33.

    PubMed  Google Scholar 

  77. Rosselli M, Ardila A, Rosas P. Neuropsychological assessment in illiterates. II. Language and praxic abilities. Brain Cogn. 1990;12:281–96.

    PubMed  CAS  Google Scholar 

  78. Wong A, Xiong YY, Kwan PWL, Chan AYY, Lam WWM, Wang K, et al. The validity, reliability and clinical utility of the Hong Kong Montreal Cognitive Assessment (HK-MoCA) in patients with cerebral small vessel disease. Dement Geriatr Cogn Disord. 2009;28:81–7.

    PubMed  Google Scholar 

  79. Lee J-Y, Dong WL, Cho S-J, Na DL, Hong JJ, Kim S-K, et al. Brief screening for mild cognitive impairment in elderly outpatient clinic: validation of the Korean version of the Montreal Cognitive Assessment. J Geriatr Psychiatry Neurol. 2008;21:104–10.

    PubMed  Google Scholar 

  80. Henry JD, Crawford JR. Verbal fluency deficits in Parkinson’s disease: a meta-analysis. J Int Neuropsychol Soc. 2004;10:608–22.

    PubMed  Google Scholar 

  81. Larsson MU, Almkvist O, Luszcz MA, Wahlin T-BR. Phonemic fluency deficits in asymptomatic gene carriers for Huntington’s disease. Neuropsychology. 2008;22:596–605.

    PubMed  Google Scholar 

  82. Ho AK, Sahakian BJ, Robbins TW, Barker RA, Rosser AE, Hodges JR. Verbal fluency in Huntington’s disease: a longitudinal analysis of phonemic and semantic clustering and switching. Neuropsychologia. 2002;40:1277–84.

    PubMed  Google Scholar 

  83. Murphy KJ, Rich JB, Troyer AK. Verbal fluency patterns in amnestic mild cognitive impairment are characteristic of Alzheimer’s type dementia. J Int Neuropsychol Soc. 2006;12:570–4.

    PubMed  Google Scholar 

  84. Henry J, Crawford JR. A meta-analytic review of verbal fluency deficits in depression. J Clin Exp Neuropsychol. 2005;27:78–101.

    PubMed  Google Scholar 

  85. Woo BKP, Harwood DG, Melrose RJ, Mandelkern MA, Campa OM, Walston A, et al. Executive deficits and regional brain metabolism in Alzheimer’s disease. Int J Geriatr Psychiatry. 2010;25:1150–8.

    PubMed  Google Scholar 

  86. Slachevsky A, Villalpando JM, Sarazin M, Hahn-Barma V, Pillon B, Dubois B. Frontal assessment battery and differential diagnosis of frontotemporal dementia and Alzheimer disease. Arch Neurol. 2004;61:1104–7.

    PubMed  Google Scholar 

  87. Fabrigoule C, Rouch I, Taberly A, Letenneur L, Commenges D, Mazaux JM, et al. Cognitive process in preclinical phase of dementia. Brain. 1998;121:135–41.

    PubMed  Google Scholar 

  88. Fouquet M, Desgranges B, La Joie R, Rivière D, Mangin J-F, Landeau B, et al. Role of hippocampal CA1 atrophy in memory encoding deficits in amnestic mild cognitive impairment. Neuroimage. 2012;59:3309–15.

    PubMed  Google Scholar 

  89. Chetelat G, Desgranges B, de la Sayette V, Viader F, Berkouk K, Landeau B, et al. Dissociating atrophy and hypometabolism impact on episodic memory in mild cognitive impairment. Brain. 2003;126:1955–67.

    PubMed  Google Scholar 

  90. Cummings JL, Benson DF. Subcortical dementia. Review of an emerging concept. Arch Neurol. 1984;41:874–9.

    PubMed  CAS  Google Scholar 

  91. Lafosse JM, Reed BR, Mungas D, Sterling SB, Wahbeh H, Jagust WJ. Fluency and memory differences between ischemic vascular dementia and Alzheimer’s disease. Neuropsychology. 1997;11:514–22.

    PubMed  CAS  Google Scholar 

  92. Traykov L, Baudic S, Raoux N, Latour F, Rieu D, Smagghe A, et al. Patterns of memory impairment and perseverative behavior discriminate early Alzheimer’s disease from subcortical vascular dementia. J Neurol Sci. 2005;229–230:75–9.

    PubMed  Google Scholar 

  93. Ibarretxe-Bilbao N, Zarei M, Junque C, Marti MJ, Segura B, Vendrell P, et al. Dysfunctions of cerebral networks precede recognition memory deficits in early Parkinson’s disease. Neuroimage. 2011;57:589–97.

    PubMed  Google Scholar 

  94. Fine EM, Delis DC, Wetter SR, Jacobson MW, Hamilton JM, Peavy G, et al. Identifying the “source” of recognition memory deficits in patients with Huntington’s disease or Alzheimer’s disease: evidence from the CVLT-II. J Clin Exp Neuropsychol. 2008;30:463–70.

    PubMed  Google Scholar 

  95. Massman PJ, Delis DC, Butters N, Levin BE, Salmon DP. Are all subcortical dementias alike? Verbal learning and memory in Parkinson’s and Huntington’s disease patients. J Clin Exp Neuropsychol. 1990;12:729–44.

    PubMed  CAS  Google Scholar 

  96. Whittington CJ, Podd J, Kan MM. Recognition memory impairment in Parkinson’s disease: power and meta-analyses. Neuropsychology. 2000;14:233–46.

    PubMed  CAS  Google Scholar 

  97. Higginson CI, Wheelock VL, Carroll KE, Sigvardt KA. Recognition memory in Parkinson’s disease with and without dementia. J Clin Exp Neuropsychol. 2005;27:516–28.

    PubMed  Google Scholar 

  98. Fossati P, Deweer B, Raoux N, Allilaire JF. Deficits in memory retrieval: an argument in favor of frontal subcortical dysfunction in depression [in French]. Encéphale. 1995;21:295–305.

    PubMed  CAS  Google Scholar 

  99. Mesholam-Gately RI, Giuliano AJ, Zillmer EA, Barakat LP, Kumar A, Gur RC, et al. Verbal learning and memory in older adults with minor and major depression. Arch Clin Neuropsychol. 2012;27:196–207.

    PubMed  Google Scholar 

  100. Pasquier F, Grymonprez L, Lebert F, Van der Linden M. Memory impairment differs in frontotemporal dementia and Alzheimer’s disease. Neurocase. 2001;7:161–71.

    PubMed  CAS  Google Scholar 

  101. Wicklund AH, Johnson N, Rademaker A, Weitner BB, Weintraub S. Word list versus story memory in Alzheimer disease and frontotemporal dementia. Alzheimer Dis Assoc Disord. 2006;20:86–92.

    PubMed  Google Scholar 

  102. Kazui H. Cognitive impairment in patients with idiopathic normal pressure hydrocephalus. Brain Nerve. 2008;60:225–31.

    PubMed  Google Scholar 

  103. Peavy G, Jacobs D, Salmon DP, Butters N, Delis DC, Taylor M, et al. Verbal memory performance of patients with human immunodeficiency virus infection: evidence of subcortical dysfunction. The HNRC Group. J Clin Exp Neuropsychol. 1994;16:508–23.

    PubMed  CAS  Google Scholar 

  104. Becker JT, Caldararo R, Lopez OL, Dew MA, Dorst SK, Banks G. Qualitative features of the memory deficit associated with HIV infection and AIDS: cross-validation of a discriminant function classification scheme. J Clin Exp Neuropsychol. 1995;17:134–42.

    PubMed  CAS  Google Scholar 

  105. Leube DT, Weis S, Freymann K, Erb M, Jessen F, Heun R, et al. Neural correlates of verbal episodic memory in patients with MCI and Alzheimer’s disease – a VBM study. Int J Geriatr Psychiatry. 2008;23:1114–8.

    PubMed  Google Scholar 

  106. Kramer JH, Levin BE, Brandt J, Delis DC. Differentiation of Alzheimer’s, Huntington’s, and Parkinson’s disease patients on the basis of verbal learning characteristics. Neuropsychology. 1989;3:111–20.

    Google Scholar 

  107. Caulo M, Van Hecke J, Toma L, Ferretti A, Tartaro A, Colosimo C, et al. Functional MRI study of diencephalic amnesia in Wernicke-Korsakoff syndrome. Brain. 2005;128:1584–94.

    PubMed  CAS  Google Scholar 

  108. Scoville WB, Milner B. Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry. 1957;20:11–21.

    PubMed  CAS  Google Scholar 

  109. Milner B. Psychological defects produced by temporal lobe excision. Res Publ Assoc Res Nerv Ment Dis. 1958;36:244–57.

    PubMed  CAS  Google Scholar 

  110. Razani J, Wong JT, Dafaeeboini N, Edwards-Lee T, Lu P, Alessi C, et al. Predicting everyday functional abilities of dementia patients with the Mini-Mental State Examination. J Geriatr Psychiatry Neurol. 2009;22:62–70.

    PubMed  Google Scholar 

  111. Razani J, Kakos B, Orieta-Barbalace C, Wong JT, Casas R, Lu P, et al. Predicting caregiver burden from daily functional abilities of patients with mild dementia. J Am Geriatr Soc. 2007;55:1415–20.

    PubMed  Google Scholar 

  112. O’Keeffe E, Mukhtar O, O’Keeffe ST. Orientation to time as a guide to the presence and severity of cognitive impairment in older hospital patients. J Neurol Neurosurg Psychiatry. 2011;82:500–4.

    PubMed  Google Scholar 

  113. Guerrero-Berroa E, Luo X, Schmeidler J, Rapp MA, Dahlman K, Grossman HT, et al. The MMSE orientation for time domain is a strong predictor of subsequent cognitive decline in the elderly. Int J Geriatr Psychiatry. 2009;24:1429–37.

    PubMed  Google Scholar 

  114. Ryan JJ, Glass LA, Bartels JM, Bergner CM, Paolo AM. Predicting neuropsychological test performance on the basis of temporal orientation. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2009;16:330–7.

    PubMed  Google Scholar 

  115. Chertkow H, Nasreddine Z, Joanette Y, Drolet V, Kirk J, Massoud F, et al. Mild cognitive impairment and cognitive impairment, no dementia: part A, concept and diagnosis. Alzheimers Dement. 2007;3:266–82.

    PubMed  Google Scholar 

  116. Hachinski V, Iadecola C, Petersen RC, Breteler MM, Nyenhuis DL, Black SE, et al. National Institute of Neurological Disorders and Stroke-Canadian Stroke Network vascular cognitive impairment harmonization standards. Stroke. 2006;37:2220–41.

    PubMed  Google Scholar 

  117. Howe E. Initial screening of patients for Alzheimer’s disease and minimal cognitive impairment. Psychiatry (Edgmont). 2007;4(7):24–7.

    Google Scholar 

  118. Ismail Z, Rajji TK, Shulman KI. Brief cognitive screening instruments: an update. Int J Geriatr Psychiatry. 2010;25:111–20.

    PubMed  Google Scholar 

  119. Mitchell AJ, Malladi S. Screening and case finding tools for the detection of dementia. Part I: evidence-based meta-analysis of multidomain tests. Am J Geriatr Psychiatry. 2010;18:759–82.

    PubMed  Google Scholar 

  120. Chertkow H, Nasreddine Z, Phillips N, Johns E, Whitehead V, McHenry C, et al. The Montreal Cognitive Assessment (MoCA): Validation of alternate forms and new recommendations for education corrections. Alzheimers Dement. 2011;7 Suppl 1:S156–7 (abstract P1–143).

    Google Scholar 

  121. Zhao S, Guo C, Wang M, Chen W, Wu Y, Tang W, et al. A clinical memory battery for screening for amnestic mild cognitive impairment in an elderly Chinese population. J Clin Neurosci. 2011;18:774–9.

    PubMed  Google Scholar 

  122. Luis CA, Keegan AP, Mullan M. Cross validation of the Montreal Cognitive Assessment in community dwelling older adults residing in the Southeastern US. Int J Geriatr Psychiatry. 2009;24:197–201.

    PubMed  Google Scholar 

  123. Ng Hoi Yee K. The validity of the Montreal Cognitive Assessment (Cantonese version) as a screening tool for mild cognitive impairment in Hong Kong Chinese. The University of Hong Kong; 2008.

    Google Scholar 

  124. You JS, Chen RZ, Zhang FM, Cai YF, Li GF. The Chinese (Cantonese) Montreal Cognitive Assessment in patients with subcortical ischemic vascular dementia. Dement Geriatr Cogn Dis Extra. 2011;1:276–82.

    Google Scholar 

  125. Bernstein IH, Lacritz L, Barlow CE, Weiner MF, Defina LF. Psychometric evaluation of the Montreal Cognitive Assessment (MoCA) in three diverse samples. Clin Neuropsychol. 2011;25:119–26.

    PubMed  Google Scholar 

  126. Rossetti HC, Lacritz LH, Cullum CM, Weiner MF. Normative data for the Montreal Cognitive Assessment (MoCA) in a population-based sample. Neurology. 2011;77:1272–5.

    PubMed  Google Scholar 

  127. Fujiwara Y, Suzuki H, Yasunaga M, Sugiyama M, Ijuin M, Sakuma N, et al. Brief screening tool for mild cognitive impairment in older Japanese: validation of the Japanese version of the Montreal Cognitive Assessment. Geriatr Gerontol Int. 2010;10:225–32.

    PubMed  Google Scholar 

  128. Nasreddine ZS, Phillips NA, Chertkow H, et al. Normative data for the Montreal Cognitive Assessment (MoCA) in a population-based sample. Neurology. 2012;78:765–6.

    PubMed  Google Scholar 

  129. Smith T, Gildeh N, Holmes C. The Montreal Cognitive Assessment: validity and utility in a memory clinic setting. Can J Psychiatry. 2007;52:329–32.

    PubMed  Google Scholar 

  130. Rahman TTA, El Gaafary MM. Montreal Cognitive Assessment Arabic version: reliability and validity prevalence of mild cognitive impairment among elderly attending geriatric clubs in Cairo. Geriatr Gerontol Int. 2009;9:54–61.

    PubMed  Google Scholar 

  131. Tangwongchai S, Phanasathit M, Charernboon T, Akkayagorn L, Hemrungrojn H, Phanthumchinda K et al. The validity of Thai version of The Montreal Cognitive Assessment (MoCA-T). In: International Psychogeriatric Association conference, Montreal, Abstract, 2009.

    Google Scholar 

  132. Duro D, Simões MR, Ponciano E, Santana I. Validation studies of the Portuguese experimental version of the Montreal Cognitive Assessment (MoCA): confirmatory factor analysis. J Neurol. 2010;257:728–34.

    PubMed  Google Scholar 

  133. Selekler K, Cangoz B, Uluç S. Power of discrimination of Montreal Cognitive Assessment (MoCA) Scale in Turkish patients with mild cognitive impairment and Alzheimer’s disease. Turk J Geriatr. 2010;13:166–71.

    Google Scholar 

  134. Larner AJ. Screening utility of the Montreal Cognitive Assessment (MoCA): in place of – or as well as – the MMSE? Int Psychogeriatr. 2012;24:391–6.

    PubMed  CAS  Google Scholar 

  135. Karunaratne S, Hanwella R, Silva VD. Validation of the Sinhala version of the Montreal Cognitive Assessment in screening for dementia. Ceylon Med J. 2011;56:147–53.

    PubMed  CAS  Google Scholar 

  136. Damian AM, Jacobson SA, Hentz JG, Belden CM, Shill HA, Sabbagh MN, et al. The Montreal Cognitive Assessment and the mini-mental state examination as screening instruments for cognitive impairment: item analyses and threshold scores. Dement Geriatr Cogn Disord. 2011;31:126–31.

    PubMed  Google Scholar 

  137. Freitas S, Simões MR. Construct validity of the Montreal Cognitive Assessment (MoCA). J Int Neuropsychol Soc. 2012;18:1–9.

    Google Scholar 

  138. Martinić-Popović I, Šerić V, Demarin V. Early detection of mild cognitive impairment in patients with cerebrovascular disease. Acta Clin Croatica. 2006;45:77–85.

    Google Scholar 

  139. Martinić-Popović I, Serić V, Demarin V. Mild cognitive impairment in symptomatic and asymptomatic cerebrovascular disease. J Neurol Sci. 2007;257:185–93.

    Google Scholar 

  140. Wong A, Kwan P, Chan A, Lam W, Wang K, Nyenhuis D, et al. The validity, reliability and utility of the Cantonese Montreal Cognitive Assessment (MoCA) in Chinese patients with confluent white matter lesions. Hong Kong Med J. 2008;14 Suppl 6:7 (Abstract FP1).

    Google Scholar 

  141. Martinic-Popovic I, Lovrencic-Huzjan A, Demarin V. Assessment of subtle cognitive impairment in stroke-free patients with carotid disease. Acta Clin Croatica. 2009;48:231–40.

    Google Scholar 

  142. Martinic-Popovic I, Lovrencic-Huzjan A, Simundic A-M, Popovic A, Seric V, Demarin V. Cognitive performance in asymptomatic patients with advanced carotid disease. Cogn Behav Neurol. 2011;24:145–51.

    Google Scholar 

  143. Dong Y, Sharma VK, Chan BP-L, Venketasubramanian N, Teoh HL, Seet RCS, et al. The Montreal Cognitive Assessment (MoCA) is superior to the Mini-Mental State Examination (MMSE) for the detection of vascular cognitive impairment after acute stroke. J Neurol Sci. 2010;299:15–8.

    PubMed  Google Scholar 

  144. Pendlebury ST, Cuthbertson FC, Welch SJV, Mehta Z, Rothwell PM. Underestimation of cognitive impairment by Mini-Mental State Examination versus the Montreal Cognitive Assessment in patients with transient ischemic attack and stroke: a population-based study. Stroke. 2010;41:1290–3.

    PubMed  Google Scholar 

  145. Cumming TB, Bernhardt J, Linden T. The Montreal Cognitive Assessment: short cognitive evaluation in a large stroke trial. Stroke. 2011;42:2642–4.

    PubMed  Google Scholar 

  146. Harkness K, Demers C, Heckman GA, McKelvie RS. Screening for cognitive deficits using the Montreal cognitive assessment tool in outpatients ≥65 years of age with heart failure. Am J Cardiol. 2011;107:1203–7.

    PubMed  Google Scholar 

  147. Godefroy O, Fickl A, Roussel M, Auribault C, Bugnicourt JM, Lamy C, et al. Is the Montreal Cognitive Assessment superior to the Mini-Mental State Examination to detect poststroke cognitive impairment? A study with neuropsychological evaluation. Stroke. 2011;42:1712–6.

    PubMed  Google Scholar 

  148. McLennan SN, Mathias JL, Brennan LC, Stewart S. Validity of the Montreal Cognitive Assessment (MoCA) as a screening test for mild cognitive impairment (MCI) in a cardiovascular population. J Geriatr Psychiatry Neurol. 2011;24:33–8.

    PubMed  CAS  Google Scholar 

  149. Athilingam P, King KB, Burgin SW, Ackerman M, Cushman LA, Chen L. Montreal Cognitive Assessment and Mini-Mental Status Examination compared as cognitive screening tools in heart failure. Heart Lung. 2011;40:521–9.

    PubMed  Google Scholar 

  150. Weiner MF, Hynan LS, Rossetti H, Warren MW, Cullum CM. The relationship of Montreal Cognitive Assessment scores to Framingham coronary and stroke risk scores. Open J Psychiatry. 2011;01:49–55.

    Google Scholar 

  151. Blackburn DJ, Walters S, Harkness K. Letter by Blackburn et al regarding article, “Is the Montreal cognitive assessment superior to the mini-mental state examination to detect poststroke cognitive impairment? A study with neuropsychological evaluation”. Stroke. 2011;42:e582.

    PubMed  Google Scholar 

  152. Loncar G, Bozic B, Lepic T, Dimkovic S, Prodanovic N, Radojicic Z, et al. Relationship of reduced cerebral blood flow and heart failure severity in elderly males. Aging Male. 2011;14:59–65.

    PubMed  Google Scholar 

  153. Gruhn N, Larsen FS, Boesgaard S, Knudsen GM, Mortensen SA, Thomsen G, et al. Cerebral blood flow in patients with chronic heart failure before and after heart transplantation. Stroke. 2001;32:2530–3.

    PubMed  CAS  Google Scholar 

  154. Pullicino PM, Hart J. Cognitive impairment in congestive heart failure? Embolism vs hypoperfusion. Neurology. 2001;57:1945–6.

    PubMed  CAS  Google Scholar 

  155. Cameron J, Worrall-Carter L, Page K, Riegel B, Lo SK, Stewart S. Does cognitive impairment predict poor self-care in patients with heart failure? Eur J Heart Fail. 2010;12:508–15.

    PubMed  Google Scholar 

  156. McLennan SN, Mathias JL, Brennan LC, Russell ME, Stewart S. Cognitive impairment predicts functional capacity in dementia-free patients with cardiovascular disease. J Cardiovasc Nurs. 2010;25:390–7.

    PubMed  Google Scholar 

  157. Corbett A, Bennett H, Kos S. Cognitive dysfunction following subcortical infarction. Arch Neurol. 1994;51:999–1007.

    PubMed  CAS  Google Scholar 

  158. Corbett AJ, Bennett H, Kos S. Frontal signs following subcortical infarction. Clin Exp Neurol. 1992;29:161–71.

    PubMed  CAS  Google Scholar 

  159. Nagaratnam N, Bou-Haidar P, Leung H. Confused and disturbed behavior in the elderly following silent frontal lobe infarction. Am J Alzheimers Dis Other Demen. 2003;18:333–9.

    PubMed  Google Scholar 

  160. Xu Q, Zhou Y, Li Y-S, Cao W-W, Lin Y, Pan Y-M, et al. Diffusion tensor imaging changes correlate with cognition better than conventional MRI findings in patients with subcortical ischemic vascular disease. Dement Geriatr Cogn Disord. 2010;30:317–26.

    PubMed  Google Scholar 

  161. Baracchini C, Mazzalai F, Gruppo M, Lorenzetti R, Ermani M, Ballotta E. Carotid endarterectomy protects elderly patients from cognitive decline: a prospective study. Surgery. 2012;151:99–106.

    PubMed  Google Scholar 

  162. Marder K. Cognitive impairment and dementia in Parkinson’s disease. Mov Disord. 2010;25 Suppl 1:S110–6.

    PubMed  Google Scholar 

  163. Caviness JN, Driver-Dunckley E, Connor DJ, Sabbagh MN, Hentz JG, Noble B, et al. Defining mild cognitive impairment in Parkinson’s disease. Mov Disord. 2007;22:1272–7.

    PubMed  Google Scholar 

  164. Mamikonyan E, Moberg PJ, Siderowf A, Duda JE, Have TT, Hurtig HI, et al. Mild cognitive impairment is common in Parkinson’s disease patients with normal Mini-Mental State Examination (MMSE) scores. Parkinsonism Relat Disord. 2009;15:226–31.

    PubMed  Google Scholar 

  165. Williams-Gray CH, Foltynie T, Brayne CEG, Robbins TW, Barker RA. Evolution of cognitive dysfunction in an incident Parkinson’s disease cohort. Brain. 2007;130:1787–98.

    PubMed  CAS  Google Scholar 

  166. Cropley VL, Fujita M, Bara-Jimenez W, Brown AK, Zhang X-Y, Sangare J, et al. Pre- and post-synaptic dopamine imaging and its relation with frontostriatal cognitive function in Parkinson disease: PET studies with [11C]NNC 112 and [18F]FDOPA. Psychiatry Res. 2008;163:171–82.

    PubMed  CAS  Google Scholar 

  167. Bohnen NI, Kaufer DI, Hendrickson R, Ivanco LS, Lopresti BJ, Constantine GM, et al. Cognitive correlates of cortical cholinergic denervation in Parkinson’s disease and parkinsonian dementia. J Neurol. 2006;253:242–7.

    PubMed  CAS  Google Scholar 

  168. Aarsland D, Larsen JP, Karlsen K, Lim NG, Tandberg E. Mental symptoms in Parkinson’s disease are important contributors to caregiver distress. Int J Geriatr Psychiatry. 1999;14:866–74.

    PubMed  CAS  Google Scholar 

  169. Maidment I, Fox C, Boustani M. Cholinesterase inhibitors for Parkinson’s disease dementia (Review). Cochrane Database Syst Rev. 2006;(1):CD004747.

    Google Scholar 

  170. Gill DJ, Freshman A, Blender JA, Ravina B. The Montreal cognitive assessment as a screening tool for cognitive impairment in Parkinson’s disease. Mov Disord. 2008;23:1043–6.

    PubMed  Google Scholar 

  171. Zadikoff C, Fox SH, Tang-Wai DF, Thomsen T, de Bie RM, Wadia P, et al. A comparison of the mini mental state exam to the Montreal cognitive assessment in identifying cognitive deficits in Parkinson’s disease. Mov Disord. 2008;23:297–9.

    PubMed  Google Scholar 

  172. Nazem S, Siderowf A, Duda J, Have TT, Colcher A, Horn SS, et al. Montreal Cognitive Assessment performance in patients with Parkinson’s disease with “normal” global cognition according to Mini-Mental State Examination score. J Am Geriatr Soc. 2009;57:304–8.

    PubMed  Google Scholar 

  173. Hoops S, Nazem S, Siderowf AD, Duda JE, Xie SX, Stern MB, et al. Validity of the MoCA and MMSE in the detection of MCI and dementia in Parkinson disease. Neurology. 2009;73:1738–45.

    PubMed  CAS  Google Scholar 

  174. Dalrymple-Alford JC, MacAskill MR, Nakas CT, Livingston L, Graham C, Crucian GP, et al. The MoCA: well-suited screen for cognitive impairment in Parkinson disease. Neurology. 2010;75:1717–25.

    PubMed  CAS  Google Scholar 

  175. Luo X-G, Feng Y, Liu R, Yu H-M, Wang L, Wu Z, et al. Cognitive deterioration rates in patients with Parkinson’s disease from northeastern China. Dement Geriatr Cogn Disord. 2010;30:64–70.

    PubMed  Google Scholar 

  176. Robben SHM, Sleegers MJM, Dautzenberg PLJ, van Bergen FS, ter Bruggen J-P, Rikkert MGMO. Pilot study of a three-step diagnostic pathway for young and old patients with Parkinson’s disease dementia: screen, test and then diagnose. Int J Geriatr Psychiatry. 2010;25:258–65.

    PubMed  Google Scholar 

  177. Hanna-Pladdy B, Enslein A, Fray M, Gajewski BJ, Pahwa R, Lyons KE. Utility of the NeuroTrax computerized battery for cognitive screening in Parkinson’s disease: comparison with the MMSE and the MoCA. Int J Neurosci. 2010;120:538–43.

    PubMed  CAS  Google Scholar 

  178. Chou KL, Amick MM, Brandt J, Camicioli R, Frei K, Gitelman D, et al. A recommended scale for cognitive screening in clinical trials of Parkinson’s disease. Mov Disord. 2010;25:2501–7.

    PubMed  Google Scholar 

  179. Lemiere J, Decruyenaere M, Evers-Kiebooms G, Vandenbussche E, Dom R. Longitudinal study evaluating neuropsychological changes in so-called asymptomatic carriers of the Huntington’s disease mutation after 1 year. Acta Neurol Scand. 2002;106:131–41.

    PubMed  CAS  Google Scholar 

  180. Lemiere J, Decruyenaere M, Evers-Kiebooms G, Vandenbussche E, Dom R. Cognitive changes in patients with Huntington’s disease (HD) and asymptomatic carriers of the HD mutation a longitudinal follow-up study. J Neurol. 2004;251:935–42.

    PubMed  CAS  Google Scholar 

  181. Verny C, Allain P, Prudean A, Malinge M-C, Gohier B, Scherer C, et al. Cognitive changes in asymptomatic carriers of the Huntington disease mutation gene. Eur J Neurol. 2007;14:1344–50.

    PubMed  CAS  Google Scholar 

  182. Hahn-Barma V, Deweer B, Dürr A, Dode C, Feingold J, Pillon B, et al. Are cognitive changes the first symptoms of Huntington’s disease? A study of gene carriers. J Neurol Neurosurg Psychiatry. 1998;64:172–7.

    PubMed  CAS  Google Scholar 

  183. Bäckman L, Robins-Wahlin T-B, Lundin A, Ginovart N, Farde L. Cognitive deficits in Huntington’s disease are predicted by dopaminergic PET markers and brain volumes. Brain. 1997;120:2207–17.

    PubMed  Google Scholar 

  184. Montoya A, Price BH, Menear M, Lepage M. Brain imaging and cognitive dysfunctions in Huntington’s disease. J Psychiatry Neurosci. 2006;31:21–9.

    PubMed  Google Scholar 

  185. Mickes L, Jacobson M, Peavy G, Wixted JT, Lessig S, Goldstein JL, et al. A comparison of two brief screening measures of cognitive impairment in Huntington’s disease. Mov Disord. 2010;25:2229–33.

    PubMed  Google Scholar 

  186. Videnovic A, Bernard B, Fan W, Jaglin J, Leurgans S, Shannon KM. The Montreal Cognitive Assessment as a screening tool for cognitive dysfunction in Huntington’s disease. Mov Disord. 2010;25:401–4.

    PubMed  Google Scholar 

  187. Olson RA, Chhanabhai T, McKenzie M. Feasibility study of the Montreal Cognitive Assessment (MoCA) in patients with brain metastases. Support Care Cancer. 2008;16:1273–8.

    PubMed  Google Scholar 

  188. Olson RA, Iverson GL, Carolan H, Parkinson M, Brooks BL, McKenzie M. Prospective comparison of two cognitive screening tests: diagnostic accuracy and correlation with community integration and quality of life. J Neurooncol. 2011;105:337–44.

    PubMed  Google Scholar 

  189. Meyers CA, Smith JA, Bezjak A, Mehta MP, Liebmann J, Illidge T, et al. Neurocognitive function and progression in patients with brain metastases treated with whole-brain radiation and motexafin gadolinium: results of a randomized phase III trial. J Clin Oncol. 2004;22:157–65.

    PubMed  CAS  Google Scholar 

  190. Chang EL, Wefel JS, Maor MH, Hassenbusch SJ, Mahajan A, Lang FF, et al. A pilot study of neurocognitive function in patients with one to three new brain metastases initially treated with stereotactic radiosurgery alone. Neurosurgery. 2007;60:277–83; discussion 283–284.

    PubMed  Google Scholar 

  191. Olson R, Tyldesley S, Carolan H, Parkinson M, Chhanabhai T, McKenzie M. Prospective comparison of the prognostic utility of the Mini Mental State Examination and the Montreal Cognitive Assessment in patients with brain metastases. Support Care Cancer. 2011;19:1849–55.

    PubMed  Google Scholar 

  192. Hanly JG, Fisk JD, Sherwood G, Jones E, Jones JV, Eastwood B. Cognitive impairment in patients with systemic lupus erythematosus. J Rheumatol. 1992;19:562–7.

    PubMed  CAS  Google Scholar 

  193. Kozora E, Arciniegas DB, Filley CM, Ellison MC, West SG, Brown MS, et al. Cognition, MRS neurometabolites, and MRI volumetrics in non-neuropsychiatric systemic lupus erythematosus: preliminary data. Cogn Behav Neurol. 2005;18:159–62.

    PubMed  Google Scholar 

  194. Kozora E, Arciniegas DB, Filley CM, West SG, Brown M, Miller D, et al. Cognitive and neurologic status in patients with systemic lupus erythematosus without major neuropsychiatric syndromes. Arthritis Rheum. 2008;59:1639–46.

    PubMed  Google Scholar 

  195. Monastero R, Bettini P, Del Zotto E, Cottini E, Tincani A, Balestrieri G, et al. Prevalence and pattern of cognitive impairment in systemic lupus erythematosus patients with and without overt neuropsychiatric manifestations. J Neurol Sci. 2001;184:33–9.

    PubMed  CAS  Google Scholar 

  196. Carlomagno S, Migliaresi S, Ambrosone L, Sannino M, Sanges G, Di Iorio G. Cognitive impairment in systemic lupus erythematosus: a follow-up study. J Neurol. 2000;247:273–9.

    PubMed  CAS  Google Scholar 

  197. Carbotte RM, Denburg SD, Denburg JA. Prevalence of cognitive impairment in systemic lupus erythematosus. J Nerv Ment Dis. 1986;174:357–64.

    PubMed  CAS  Google Scholar 

  198. Kozora E, Thompson LL, West SG, Kotzin BL. Analysis of cognitive and psychological deficits in systemic lupus erythematosus patients without overt central nervous system disease. Arthritis Rheum. 1996;39:2035–45.

    PubMed  CAS  Google Scholar 

  199. Filley CM, Kozora E, Brown MS, Miller DE, West SG, Arciniegas DB, et al. White matter microstructure and cognition in non-neuropsychiatric systemic lupus erythematosus. Cogn Behav Neurol. 2009;22:38–44.

    PubMed  Google Scholar 

  200. Denburg SD, Carbotte RM, Denburg JA. Cognitive impairment in systemic lupus erythematosus: a neuropsychological study of individual and group deficits. J Clin Exp Neuropsychol. 1987;9:323–39.

    PubMed  CAS  Google Scholar 

  201. Leritz E, Brandt J, Minor M, Reis-Jensen F, Petri M. “Subcortical” cognitive impairment in patients with systemic lupus erythematosus. J Int Neuropsychol Soc. 2000;6:821–5.

    PubMed  CAS  Google Scholar 

  202. Loukkola J, Laine M, Ainiala H, Peltola J, Metsänoja R, Auvinen A, et al. Cognitive impairment in systemic lupus erythematosus and neuropsychiatric systemic lupus erythematosus: a population-based neuropsychological study. J Clin Exp Neuropsychol. 2003;25:145–51.

    PubMed  Google Scholar 

  203. Adhikari T, Piatti A, Luggen M. Cognitive dysfunction in SLE: development of a screening tool. Lupus. 2011;20:1142–6.

    PubMed  CAS  Google Scholar 

  204. Copersino ML, Fals-Stewart W, Fitzmaurice G, Schretlen DJ, Sokoloff J, Weiss RD. Rapid cognitive screening of patients with substance use disorders. Exp Clin Psychopharmacol. 2009;17:337–44.

    PubMed  Google Scholar 

  205. Thorpy MJ. International classification of sleep disorders, revised: diagnostic and coding manual. Chicago: American Academy of Sleep Medicine; 2001.

    Google Scholar 

  206. Gagnon J-F, Vendette M, Postuma RB, Desjardins C, Massicotte-Marquez J, Panisset M, et al. Mild cognitive impairment in rapid eye movement sleep behavior disorder and Parkinson’s disease. Ann Neurol. 2009;66:39–47.

    PubMed  Google Scholar 

  207. Ferini-Strambi L, Gioia MRD, Castronovo V, Oldani A, Zucconi M, Cappa SF. Neuropsychological assessment in idiopathic REM sleep behavior disorder (RBD): does the idiopathic form of RBD really exist? Neurology. 2004;62:41–5.

    PubMed  CAS  Google Scholar 

  208. Iranzo A, Molinuevo JL, Santamaría J, Serradell M, Martí MJ, Valldeoriola F, et al. Rapid-eye-movement sleep behaviour disorder as an early marker for a neurodegenerative disorder: a descriptive study. Lancet Neurol. 2006;5:572–7.

    PubMed  Google Scholar 

  209. Boeve BF, Silber MH, Ferman TJ, Lucas JA, Parisi JE. Association of REM sleep behavior disorder and neurodegenerative disease may reflect an underlying synucleinopathy. Mov Disord. 2001;16:622–30.

    PubMed  CAS  Google Scholar 

  210. Claassen DO, Josephs KA, Ahlskog JE, Silber MH, Tippmann-Peikert M, Boeve BF. REM sleep behavior disorder preceding other aspects of synucleinopathies by up to half a century. Neurology. 2010;75:494–9.

    PubMed  CAS  Google Scholar 

  211. Mori E, Shimomura T, Fujimori M, Hirono N, Imamura T, Hashimoto M, et al. Visuoperceptual impairment in dementia with Lewy bodies. Arch Neurol. 2000;57:489–93.

    PubMed  CAS  Google Scholar 

  212. Gagnon J-F, Postuma RB, Joncas S, Desjardins C, Latreille V. The Montreal Cognitive Assessment: a screening tool for mild cognitive impairment in REM sleep behavior disorder. Mov Disord. 2010;25:936–40.

    PubMed  Google Scholar 

  213. Chen R, Xiong KP, Huang JY, Lian YX, Jin F, Li ZH, et al. Neurocognitive impairment in Chinese patients with obstructive sleep apnoea hypopnoea syndrome. Respirology. 2011;16:842–8.

    PubMed  Google Scholar 

  214. Liu-Ambrose TY, Ashe MC, Graf P, Beattie BL, Khan KM. Increased risk of falling in older community-dwelling women with mild cognitive impairment. Phys Ther. 2008;88:1482–91.

    PubMed  Google Scholar 

  215. Aggarwal A, Kean E. Comparison of the Folstein Mini Mental State Examination (MMSE) to the Montreal Cognitive Assessment (MoCA) as a cognitive screening tool in an inpatient rehabilitation setting. Neurosci Med. 2010;1:39–42.

    Google Scholar 

  216. Sweet L, Van Adel M, Metcalf V, Wright L, Harley A, Leiva R, et al. The Montreal Cognitive Assessment (MoCA) in geriatric rehabilitation: psychometric properties and association with rehabilitation outcomes. Int Psychogeriatr. 2011;23:1582–91.

    PubMed  Google Scholar 

  217. Heruti RJ, Lusky A, Dankner R, Ring H, Dolgopiat M, Barell V, et al. Rehabilitation outcome of elderly patients after a first stroke: effect of cognitive status at admission on the functional outcome. Arch Phys Med Rehabil. 2002;83:742–9.

    PubMed  Google Scholar 

  218. Heruti RJ, Lusky A, Barell V, Ohry A, Adunsky A. Cognitive status at admission: does it affect the rehabilitation outcome of elderly patients with hip fracture? Arch Phys Med Rehabil. 1999;80:432–6.

    PubMed  CAS  Google Scholar 

  219. Barnes C, Conner D, Legault L, Reznickova N, Harrison-Felix C. Rehabilitation outcomes in cognitively impaired patients admitted to skilled nursing facilities from the community. Arch Phys Med Rehabil. 2004;85:1602–7.

    PubMed  Google Scholar 

  220. Toglia J, Fitzgerald KA, O’Dell MW, Mastrogiovanni AR, Lin CD. The Mini-Mental State Examination and Montreal Cognitive Assessment in persons with mild subacute stroke: relationship to functional outcome. Arch Phys Med Rehabil. 2011;92:792–8.

    PubMed  Google Scholar 

  221. Wagle J, Farner L, Flekkøy K, Bruun Wyller T, Sandvik L, Fure B, et al. Early post-stroke cognition in stroke rehabilitation patients predicts functional outcome at 13 months. Dement Geriatr Cogn Disord. 2011;31:379–87.

    PubMed  Google Scholar 

  222. Phabphal K, Kanjanasatien J. Montreal Cognitive Assessment in cryptogenic epilepsy patients with normal Mini-Mental State Examination scores. Epileptic Disord. 2011;13:375–81.

    PubMed  Google Scholar 

  223. Memoria CM, Yassuda MS, Nakano EY, Forlenza OV. Brief screening for mild cognitive impairment: validation of the Brazilian version of the Montreal cognitive assessment. Int J Geriatr Psychiatry. 2012. doi:10.1002/gps.3787 [Epub ahead of print].

  224. Thissen AJAM, van Bergen F, de Jonghe JFM, Kessels RPC, Dautzenberg PLJ. Applicability and validity of the Dutch version of the Montreal Cognitive Assessment (MoCA-d) in diagnosing MCI [in Dutch]. Tijdschr Gerontol Geriatr. 2010;41:231–40.

    PubMed  CAS  Google Scholar 

  225. Wittich W, Phillips N, Nasreddine ZS, Chertkow H. Sensitivity and specificity of the Montreal Cognitive Assessment modified for individuals who are visually impaired. J Vis Impair Blind. 2010;104:360–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziad S. Nasreddine M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Julayanont, P., Phillips, N., Chertkow, H., Nasreddine, Z.S. (2013). Montreal Cognitive Assessment (MoCA): Concept and Clinical Review. In: Larner, A. (eds) Cognitive Screening Instruments. Springer, London. https://doi.org/10.1007/978-1-4471-2452-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2452-8_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2451-1

  • Online ISBN: 978-1-4471-2452-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics