Skip to main content

A Theory of Tonal Hierarchies in Music

  • Chapter
  • First Online:
Music Perception

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 36))

Abstract

One of the most pervasive structural principles found in music historically and cross-culturally is a hierarchy of tones. Certain tones serve as reference pitches; they are stable, repeated frequently, are emphasized rhythmically, and appear at structurally important positions in musical phrases. The details of the hierarchies differ across styles and cultures. Variation occurs in the particular intervals formed by pitches in the musical scale and the hierarchical levels assigned to pitches within the scale. This variability suggests that an explanation for how these hierarchies are formed cannot be derived from invariant acoustic facts, such as the harmonic structure (overtones) of complex tones. Rather, the evidence increasingly suggests that these hierarchies are products of cognition and, moreover, that they rely on fundamental psychological principles shared by other domains of perception and cognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarden B (2003) Dynamic melodic expectancy. Unpublished doctoral dissertation, School of Music, Ohio State University.

    Google Scholar 

  • Auhagen W, Vos PG (2000) Experimental methods in tonality induction research: a review. Music Percept 17:417–436.

    Article  Google Scholar 

  • Ayotte J, Peretz I, Hyde K (2002) Congenital amusia: a group study of adults afflicted with a music-specific disorder. Brain 125:238–251.

    Article  PubMed  Google Scholar 

  • Besson M, Faïta F (1995) An event-related potential (ERP) study of musical expectancy: comparison of musicians with nonmusicians. J Exp Psychol Hum Percept Perform 21:1278–1296.

    Article  Google Scholar 

  • Besson M, Faïta F, Peretz I, Bonnel AM, Requin J (1998) Singing in the brain: independence of lyrics and tunes. Psychol Sci 9:494–498.

    Article  Google Scholar 

  • Bharucha JJ (1984) Event hierarchies, tonal hierarchies and assimilation: a reply to Deutsch and Dowling. J Exp Psychol Gen 113:421–425.

    Article  Google Scholar 

  • Bharucha JJ, Krumhansl CL (1983) The representation of harmonic structure in music: hierarchies of stability as a function of context. Cognition 13:63–102.

    Article  PubMed  CAS  Google Scholar 

  • Bigand E, Poulin-Charronnat B (2006) Are we “experienced listeners”? A review of the musical capacities that do not depend on formal musical training. Cognition 100:100–130.

    Article  PubMed  CAS  Google Scholar 

  • Bigand E, Parncutt R, Lerdahl F (1996) Perception of musical tension in short chord sequences: the influence of harmonic function, sensory dissonance, horizontal motion and musical training. Percept Psychophys 58:125–141.

    Article  Google Scholar 

  • Boltz M (1989a) Perceiving the end: effects of tonal relationships on melodic completions. J Exp Psychol Hum Percept Perform 15:749–761.

    Article  PubMed  CAS  Google Scholar 

  • Boltz M (1989b) Rhythm and “good endings”: effects of temporal structure on tonality judgments. Percept Psychophys 46: 9–17.

    Article  PubMed  CAS  Google Scholar 

  • Brown H, Butler B, Jones MR (1994) Musical and temporal influences on key discovery. Music Percept 11:371–407.

    Article  Google Scholar 

  • Castellano MA, Bharucha JJ, Krumhansl CL (1984) Tonal hierarchies in the music of North India. J Exp Psychol Gen 113:394–412.

    Article  PubMed  CAS  Google Scholar 

  • Cohen AJ (1991) Tonality and perception: musical scales primed by excerpts from the Well-tempered Clavier of JS Bach. Psychol Res/Psychol Forsch 53:305–314.

    Article  CAS  Google Scholar 

  • Cohen AJ (2000) Development of tonality induction: plasticity, exposure, and training. Music Percept 17:437–459.

    Article  Google Scholar 

  • Cuddy LL (1997) Tonal relations. In: Deliège I, Sloboda J (eds), Perception and Cognition of Music. Hove, Sussex: Taylor & Francis, pp. 329–352.

    Google Scholar 

  • Cuddy LL (2000) Perception and representation of musical structure. Paper presented at the XXVII International Congress of Psychology, Stockholm, July 23–28.

    Google Scholar 

  • Cuddy LL, Badertscher, B (1987) Recovery of the tonal hierarchy: some comparisons across age and levels of musical experience. Percept Psychophys 41:609–620.

    Article  PubMed  CAS  Google Scholar 

  • Cuddy LL, Duffin JM (2005) Music, memory, and Alzheimer’s disease: is music recognition spared in dementia and how can it be assessed? Med Hypotheses 64:229–235.

    Article  PubMed  Google Scholar 

  • Cuddy LL, Lunney CA (1995) Expectancies generated by melodic intervals: perceptual judgments of melodic continuity. Percept Psychophys 57:451–462.

    Article  PubMed  CAS  Google Scholar 

  • Cuddy LL, Smith NA (2000) Perception of tonal pitch space and tonal tension. In: Greer D (ed), Musicology and Sister Disciplines: Past Present Future. Oxford: Oxford University Press, pp. 47–59.

    Google Scholar 

  • Cuddy LL, Cohen AJ, Mewhort DJK (1981) Perception of structure in short melodic sequences. J Exp Psychol Hum Percept Perform 7:869–883.

    Article  PubMed  CAS  Google Scholar 

  • Cuddy LL, Balkwill L-L, Peretz I, Holden RR (2005) Musical difficulties are rare: a study of “tone deafness” among university students. Ann NY Acad Sci 1060:311–324.

    Article  PubMed  Google Scholar 

  • Dalla Bella S, Peretz I (1999) Music agnosias: selective impairments of music recognition after brain damage. J New Music Res 28:209–216.

    Article  Google Scholar 

  • DeVoto M (1986) Tonality. In: Randel DM (ed), The New Harvard Dictionary of Music. Cambridge, MA: Belknap, pp. 862–863.

    Google Scholar 

  • Dowling WJ (1978) Scale and contour: two components of a theory of memory for melodies. Psychol Rev 85:341–354.

    Article  Google Scholar 

  • Dowling WJ (1999) The development of music perception and cognition. In: Deutsch D (ed), The Psychology of Music (2nd ed.) San Diego: Academic Press, pp. 603–626.

    Chapter  Google Scholar 

  • Drayna D, Manichaikul A, de Lange M, Snieder H, Spector T (2001) Genetic correlates of musical pitch recognition in humans. Science 291:1969–1972.

    Article  PubMed  CAS  Google Scholar 

  • Fornazzari L, Castle T, Nadkarni S, Ambrose M, Miranda D, Apanasiewicz N, et al. (2006) Preservation of episodic musical memory in a pianist with Alzheimer disease. Neurology 66: 610–611.

    Article  PubMed  CAS  Google Scholar 

  • Frankland BW, Cohen AJ (1990) Expectancy profiles generated by major scales: group differences in ratings and reaction time. Psychomusicology 9:173–192.

    Article  Google Scholar 

  • Garner WR, Hake HW, Eriksen CW (1956) Operationism and the concept of perception. Psychol Rev 63:149–159.

    Article  PubMed  CAS  Google Scholar 

  • Handel S (1989) Listening: An Introduction to the Perception of Auditory Events. Cambridge, MA: MIT Press.

    Google Scholar 

  • Hughes M (1977) A quantitative analysis. In: Yeston M (ed), Readings in Schenker Analysis and Other Approaches. New Haven: Yale University Press, pp. 144–164.

    Google Scholar 

  • Huron D (1993) Chordal-tone doubling and the enhancement of key perception. Psychomusicology 12:154–171.

    Article  Google Scholar 

  • Huron D (2006) Sweet Anticipation: Music and the Psychology of Expectation. Cambridge, MA: MIT Press.

    Google Scholar 

  • Huron D, Parncutt R (1993) An improved model of tonality perception incorporating pitch salience and echoic memory. Psychomusicology 12:154–171.

    Article  Google Scholar 

  • Hyde K, Peretz I (2004) Brains that are out of tune but in time. Psychol Sci 15:356–360.

    Article  PubMed  Google Scholar 

  • Janata P, Reisberg D (1988) Response-time measures as a means of exploring tonal hierarchies. Music Percept 6:161–172.

    Article  Google Scholar 

  • Järvinen T (1995) Tonal hierarchies in jazz improvisation. Music Percept 12:415–437.

    Article  Google Scholar 

  • Jordan DS, Shepard RN (1987) Tonal schemas: evidence obtained by probing distorted musical scales. Percept Psychophys 41:489–504.

    Article  PubMed  CAS  Google Scholar 

  • Kessler EJ, Hansen C, Shepard RN (1984) Tonal schemata in the perception of music in Bali and in the West. Music Percept 2:131–165.

    Article  Google Scholar 

  • Knopoff L, Hutchinson W (1983) Entropy as a measure of style: the influence of sample length. J Music Theory 27:75–97.

    Article  Google Scholar 

  • Krumhansl CL (1979) The psychological representation of musical pitch in a tonal context. Cogn Psychol 11:346–374.

    Article  Google Scholar 

  • Krumhansl CL (1985) Perceiving tonal structure in music. Am Sci 73: 371–378.

    Google Scholar 

  • Krumhansl CL (1987) Tonal and harmonic hierarchies. In: Sundberg J (ed), Harmony and Tonality. Stockholm: Royal Swedish Academy, pp. 13–32.

    Google Scholar 

  • Krumhansl CL (1990a) Cognitive Foundations of Musical Pitch. New York: Oxford University Press.

    Google Scholar 

  • Krumhansl CL (1990b) Tonal hierarchies and rare intervals in music cognition. Music Percept 7:309–324.

    Article  Google Scholar 

  • Krumhansl CL (1991) Melodic structure: theoretical and empirical descriptions. In: Sundberg J (ed), Music, Language, Speech and Brain. London: Macmillan.

    Google Scholar 

  • Krumhansl CL (1995a) Effects of musical context on similarity and expectancy. Systematische Musikwissenschaft (Systematic Musicology) 3:211–250.

    Google Scholar 

  • Krumhansl CL (1995b) Music psychology and music theory: Problems and prospects. Music Theory Spectrum 17:53–80.

    Article  Google Scholar 

  • Krumhansl CL (1996) A perceptual analysis of Mozart’s piano sonata K. 282: segmentation tension and musical ideas. Music Percept 13:401–432.

    Article  Google Scholar 

  • Krumhansl CL (2002) Music: a link between cognition and emotion. Curr Dir Psychol Sci 11:45–50.

    Article  Google Scholar 

  • Krumhansl CL, Agres KA (2008) Musical expectancy: the influence of musical structure on emotional response. Brain Behav Sci 31:584–585.

    Article  Google Scholar 

  • Krumhansl CL, Keil FC (1982) Acquisition of the hierarchy of tonal functions in music. Mem Cogn 10:243–251.

    Article  CAS  Google Scholar 

  • Krumhansl CL, Kessler EJ (1982) Tracing the dynamic changes in perceived tonal organization in a spatial representation of musical keys. Psychol Rev 89:334–368.

    Article  PubMed  CAS  Google Scholar 

  • Krumhansl CL, Schmuckler MA (1986) The Petroushka chord: a perceptual investigation. Music Percept 4:153–184.

    Article  Google Scholar 

  • Krumhansl CL, Shepard RN (1979) Quantification of the hierarchy of tonal functions within a diatonic context. J Exp Psychol Hum Percept Perform 5:579–594.

    Article  PubMed  CAS  Google Scholar 

  • Krumhansl CL, Toiviainen P (2001) Tonal cognition. Ann NY Acad Sci 930:77–91.

    Article  PubMed  CAS  Google Scholar 

  • Krumhansl CL, Sandell GJ, Sergeant DC (1987) The perception of tone hierarchies and mirror forms in twelve-tone serial music. Music Percept 5:31–78.

    Article  Google Scholar 

  • Krumhansl CL, Louhivuori J, Toiviainen P, Järvinen T, Eerola T (1999) Melodic expectation in Finnish spiritual folk hymns: convergence of statistical behavioral and computational approaches. Music Percept 17:151–195.

    Article  Google Scholar 

  • Krumhansl CL, Toivanen P, Eerola T, Toiviainen P, Järvinen T, Louhivuori J (2000) Cross-cultural music cognition: cognitive methodology applied to North Sami yoiks. Cognition 76:13–58.

    Article  PubMed  CAS  Google Scholar 

  • Lamont A, Cross I (1994) Children’s cognitive representations of musical pitch. Music Percept 12:27–55.

    Article  Google Scholar 

  • Lantz ME, Cuddy LL (1998) Total and relative duration as cues to surface structure in music. Can Acoust 26:56–57.

    Google Scholar 

  • Lantz ME, Kilgour A, Nicholson KG, Cuddy LL (2003) Judgments of musical emotion following right hemisphere damage. Brain Cogn 51:190–191.

    Google Scholar 

  • Leman M (2000) An auditory model of the role of short-term memory in probe-tone ratings. Music Percept 17:481–509.

    Article  Google Scholar 

  • Lerdahl F (1988) Tonal pitch space. Music Percept 5:315–349.

    Article  Google Scholar 

  • Lerdahl F (1996) Calculating tonal tension. Music Percept 13:319–363.

    Article  Google Scholar 

  • Lerdahl F (2001) Tonal Pitch Space. New York: Oxford University Press.

    Google Scholar 

  • Lerdahl F (2009) Genesis and architecture of the GTTM project. Music Percept 26:187–194.

    Article  Google Scholar 

  • Lerdahl F, Krumhansl CL (2007) Modeling tonal tension. Music Percept 24:329–366.

    Article  Google Scholar 

  • Liégeois-Chauvel C, Peretz I, Babaï M, Laguitton V, Chauvel P (1998) Contribution to different cortical areas in the temporal lobes to music processing. Brain 121:1853–1867.

    Article  PubMed  Google Scholar 

  • Longuet-Higgins HC, Steedman MJ (1971) On interpreting Bach. Mach Intell 6:221–241.

    Google Scholar 

  • Marin OSM, Perry DW (1999) Neurological aspects of music perception and performance. In: Deutsch D (ed), The Psychology of Music (2nd ed.) San Diego: Academic Press, pp. 653–724.

    Google Scholar 

  • Marmel F, Tillmann B (2009) Tonal priming beyond tonics. Music Percept 26:211–221.

    Article  Google Scholar 

  • Meyer LB (1956) Emotion and Meaning in Music. Chicago: University of Chicago Press.

    Google Scholar 

  • Miyazaki K (1989) Absolute pitch identification: effects of timbre and pitch region. Music Percept 7:1–14.

    Article  CAS  Google Scholar 

  • Narmour E (1990) The Analysis and Cognition of Basic Melodic Structures: The Implication-Realization Model. Chicago: University of Chicago Press.

    Google Scholar 

  • Oram N, Cuddy LL (1995) Responsiveness of Western adults to pitch-distributional information in melodic sequences. Psychol Res 57:103–118.

    PubMed  CAS  Google Scholar 

  • Palmer C, Krumhansl CL (1987a) Independent temporal and pitch structures in perception of musical phrases. J Exp Psychol Hum Percept Perform 13:116–126.

    Article  PubMed  CAS  Google Scholar 

  • Palmer C, Krumhansl CL (1987b) Pitch and temporal contributions to musical phrase perception: effects of harmony, performance timing and familiarity. Percept Psychophys 41:505–518.

    Article  PubMed  CAS  Google Scholar 

  • Parncutt R (1988) Revision of Terhardt’s psychoacoustical model of the root(s) of a musical chord. Music Percept 6:65–94.

    Article  Google Scholar 

  • Parncutt R (1989) Harmony: A Psychoacoustical Approach. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Parncutt R (1994) Template-matching models of musical pitch and rhythm perception. J New Music Res 23:145–167.

    Article  Google Scholar 

  • Patel AD (2008) Music, Language, and the Brain. Oxford: Oxford University Press.

    Google Scholar 

  • Peretz I (1993a) Auditory agnosia: a functional analysis. In: McAdams S, Bigand E (eds), Thinking in Sound: The Cognitive Psychology of Human Audition. Oxford: Oxford University Press, pp 199–230.

    Chapter  Google Scholar 

  • Peretz I (1993b) Auditory atonalia for melodies. Cogn Neuropsychol 10:21–56.

    Article  Google Scholar 

  • Peretz I (1996) Can we lose memory for music? A case of music agnosia in a nonmusician. J Cogn Neurosci 8:481–496.

    Article  Google Scholar 

  • Peretz I (2008). Musical disorders: from behavior to genes. Curr Dir Psychol Sci 17:329–333.

    Article  Google Scholar 

  • Peretz I, Kolinsky R, Tramo M, Labrecque R, Hublet C, Demeurisse G, Belleville S (1994) Functional dissociations following bilateral lesions of auditory cortex. Brain 117:1283–1301.

    Article  PubMed  Google Scholar 

  • Peretz I, Belleville S, Fontaine S (1997) Dissociations entre musique et langage après atteinte cérébrale: un nouveau cas d’amusie sans aphasie. Can J Exp Psychol 51:354–368.

    Article  PubMed  CAS  Google Scholar 

  • Peretz I, Gosselin N, Tillmann B, Cuddy LL, Gagnon B, Trimmer CG, Paquette S, Bouchard B (2008) On-line identification of congenital amusia. Music Percept 25:331–343.

    Article  Google Scholar 

  • Perlman M, Krumhansl CL (1996) An experimental study of internalized interval standards of Javanese and Western musicians. Music Percept 14:95–116.

    Article  Google Scholar 

  • Piston W (1987) Harmony (revised and expanded by M DeVoto). New York: WW Norton.

    Google Scholar 

  • Rosch E (1975) Cognitive reference points. Cogn Psychol 7:532–47.

    Article  Google Scholar 

  • Rosch E (1978) Principles of categorization. In: Rosch E, Lloyd BB (eds), Cognition and Categorization. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Rosch E (1979) On the internal structure of perceptual and semantic categories. In: Moore TE (ed), Cognitive Development and the Acquisition of Language. New York: Academic Press.

    Google Scholar 

  • Rosch E, Mervis CB (1975) Family resemblances: studies in the internal structure of categories. Cogn Psychol 7:573–605.

    Article  Google Scholar 

  • Rowe R (2000) Key induction in the context of interactive performance. Music Percept 17:511–530.

    Article  Google Scholar 

  • Saffran JR, Griepentrog GJ (2001) Absolute pitch in infant auditory learning: evidence for developmental reorganization. Dev Psychol 37:74–85.

    Article  PubMed  CAS  Google Scholar 

  • Saffran JR, Aslin RN, Newport EL (1996a) Statistical learning by 8-month-old infants. Science 274:1926–1928.

    Article  PubMed  CAS  Google Scholar 

  • Saffran JR, Newport EL, Aslin RN (1996b) Word segmentation: the role of distributional cues. J Mem Lang 35:606–621.

    Article  Google Scholar 

  • Saffran JR, Newport EL, Aslin RN, Tunick RA, Barrueco S (1997) Incidental language learning: listening (and learning) out of the corner of your ear. Psychol Res 8:101–105.

    Google Scholar 

  • Saffran JR, Johnson EK, Aslin RN, Newport EL (1999) Statistical learning of tone sequences by human infants and adults. Cognition 70:27–52.

    Article  PubMed  CAS  Google Scholar 

  • Schmuckler MA (1989) Expectation in music: investigation of melodic and harmonic processes. Music Percept 14:295–318.

    Google Scholar 

  • Shepard RN (1964) Circularity in judgments of relative pitch. J Acoust Soc Am 36:2346–2353.

    Article  Google Scholar 

  • Shuter-Dyson R (1999) Musical ability. In: Deutsch D (ed), The Psychology of Music (2nd ed) San Diego: Academic Press, pp. 627–652.

    Google Scholar 

  • Smith NA, Cuddy LL (2003) Perceptions of musical dimensions in Beethoven’s Waldstein Sonata: an application of tonal pitch space theory. Musicae Scientiae 7:7–34.

    Google Scholar 

  • Smith NA, Schmuckler MA (2004) The perception of tonal structure through the differentiation and organization of pitches. J Exp Psychol Hum Percept Perform 30:268–286.

    Article  PubMed  Google Scholar 

  • Speer JR, Meeks PU (1985) School children’s perception of pitch in music. Psychomusicology 5:49–56.

    Article  Google Scholar 

  • Steinke WR, Cuddy LL, Peretz I (1994) Dissociation of music and cognitive abstraction abilities in normal and neurologically impaired subjects. In: Proceedings of the 3rd International Conference on Music Perception and Cognition, Liège, Belgium pp. 425–426.

    Google Scholar 

  • Steinke WR, Cuddy LL, Holden RR (1997) Dissociation of musical tonality and pitch memory from nonmusical cognitive abilities. Can J Exp Psychol 51:316–334.

    Article  PubMed  CAS  Google Scholar 

  • Steinke WR, Cuddy LL, Jakobson LS (2001) Dissociations among functional subsystems governing melody recognition after right hemisphere damage. Cogn Neuropsychol 18:411–437.

    PubMed  CAS  Google Scholar 

  • Temperley D (1999) What’s key for key? The Krumhansl-Schmuckler key-finding algorithm reconsidered. Music Percept 17:65–100.

    Article  Google Scholar 

  • Temperley D (2001) The Cognition of Basic Musical Structures. New York: Oxford University Press.

    Google Scholar 

  • Temperley D (2007) Music and Probability. Cambridge, MA: M.IT Press.

    Google Scholar 

  • Temperley D, Marvin EW (2008) Pitch-class distribution and the identification of key. Music Percept 25:193–212.

    Article  Google Scholar 

  • Terhardt E (1979) Calculating virtual pitch. Hear Res 1:155–182.

    Article  PubMed  CAS  Google Scholar 

  • Terhardt E, Stoll G, Seewann M (1982a) Pitch of complex signals according to virtual-pitch ­theory. Test examples and predictions. J Acoust Soc Am 71:671–678.

    Article  Google Scholar 

  • Terhardt E, Stoll G, Seewann M (1982b) Algorithm for extraction of pitch and pitch salience from complex tonal signals. J Acoust Soc Am 71:679–388.

    Article  Google Scholar 

  • Thompson WF (2008) Music, Thought, and Feeling: Understanding the Psychology of Music. New York: Oxford University Press.

    Google Scholar 

  • Thompson WF, Cuddy LL (1997) Music performance and the perception of key. J Exp Psychol Hum Percept Perform 23:116–135.

    Article  PubMed  CAS  Google Scholar 

  • Thompson WF, Mor S (1992) A perceptual investigation of polytonality. Psychol Res 54:60–71.

    Article  PubMed  CAS  Google Scholar 

  • Thompson WF, Cuddy LL, Plaus C (1997) Expectancies generated by melodic intervals: evaluation of principles of melodic implication in a melody completion task. Percept Psychophys 59:1069–1076.

    Article  PubMed  CAS  Google Scholar 

  • Tillmann B, Bharucha JJ, Bigand E (2000) Implicit learning of tonality: a self-organizing approach. Psychol Rev 107:885–913.

    Article  PubMed  CAS  Google Scholar 

  • Toiviainen P, Krumhansl CL (2003) Measuring and modeling real-time responses to music: tonality induction. Perception 32:741–766.

    Article  PubMed  Google Scholar 

  • Trainor LJ, Trehub SE (1994) Key membership and implied harmony in Western tonal music: developmental perspectives. Percept Psychophys 56:125–132.

    Article  PubMed  CAS  Google Scholar 

  • Trehub SE (2000) Human processing predispositions and musical universals. In: Wallin NL, Merker B, Brown S (eds), The Origins of Music. Cambridge, MA: MIT Press.

    Google Scholar 

  • Trehub SE, Trainor LJ (1993) Listening strategies in infancy: the roots of music and language development. In: McAdams S, Bigand E (eds), Thinking in Sound: The Cognitive Psychology of Human Audition. Oxford: Oxford University Press, pp 278–327.

    Chapter  Google Scholar 

  • Trehub SE, Schellenberg EG, Hill DS (1997) The origins of music perception and cognition: a developmental perspective. In: Deliège I, Sloboda J (eds), Perception and Cognition of Music. Hove, Sussex: Taylor & Francis, pp. 103–128.

    Google Scholar 

  • Vanstone AD, Cuddy LL (2010) Musical memory in Alzheimer disease. Aging, Neuropsychol Cogn 17:108–128.

    Article  Google Scholar 

  • Vos PG, Leman M. (2000) Guest editorial: tonality induction. Music Percept 17:401–544.

    Article  Google Scholar 

  • Whitfield IC, Evans EF (1965) Responses of auditory cortical neurons to stimuli of changing frequency. J Physiol 28:655–672.

    CAS  Google Scholar 

  • Yonelinas AP, Hockley WE, Murdock BB (1992) Tests of the list-strength effect in recognition memory. J Exp Psychol Learn Mem Cogn 18:345–355.

    Article  Google Scholar 

  • Youngblood JE (1958) Style as information. J Music Theory 2:24–35.

    Article  Google Scholar 

  • Zenatti A (1993) Children’s musical cognition and taste. In Tighe TJ, Dowling WJ (eds), Psychology of Music: The Understanding of Melody and Rhythm. Hillsdale, NJ: Lawrence Erlbaum, pp. 177–196.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carol L. Krumhansl or Lola L. Cuddy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer New York

About this chapter

Cite this chapter

Krumhansl, C.L., Cuddy, L.L. (2010). A Theory of Tonal Hierarchies in Music. In: Riess Jones, M., Fay, R., Popper, A. (eds) Music Perception. Springer Handbook of Auditory Research, vol 36. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6114-3_3

Download citation

Publish with us

Policies and ethics