Skip to main content

Glycosphingolipid Disorders of the Brain

  • Chapter
Lipids in Health and Disease

Part of the book series: Subcellular Biochemistry ((SCBI,volume 49))

Abstract

Glycosphingolipids, comprising a ceramide lipid backbone linked to one/more saccharides, are particularly abundant on the outer leaflet of the eukaryotic plasma membrane and play a role in a wide variety of essential cellular processes. Biosynthesis and subsequently degradation of these lipids is tightly regulated via the involvement of numerous enzymes, and failure of an enzyme to participate in the metabolism results in storage of the enzyme’s substrate, giving rise to a lysosomal storage disease. The characteristics, severity and onset of the disease are dependent on the enzyme deficient and the residual activity. Most lysosomal storage disorders found thus far are caused by a defect in the catabolic activity of a hydrolase, causing progressive accumulation of its substrate, predominantly in the lysosome. Storage of gangliosides, sialic acid containing glycosphingolipids, mostly found in the central nervous system, is a hallmark of neuronopathic forms of the disease, that include GM1 and GM2 gangliosidoses, Gaucher type II and III and Niemann-Pick C. Models for these diseases have provided valuable insight into the disease pathology and potential treatment methods.

Treatment of these rare but severe disorders proves challenging due to restricted access of therapeutics through the blood-brain barrier. However, recent advances in enzyme replacement, bone marrow transplantation, gene transfer, substrate reduction and chaperon-mediated therapy provide great potential in treating these devastating disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aerts, J. M., Ottenhoff, R., Powlson, A. S., Grefhorst, A., van Eijk, M., Dubbelhuis, P. F., Aten, J., Kuipers, F., Serlie, M. J., Wennekes, T., Sethi, J. K., O'Rahilly, S., and Overkleeft, H. S., Pharmacological inhibition of glucosylceramide synthase enhances insulin sensitivity, Diabetes 56 (2007) 1341–1349.

    Article  PubMed  CAS  Google Scholar 

  • Alonzi, D. S., Neville, D. C., Lachmann, R. H., Dwek, R. A., and Butters, T. D., Glucosylated free oligosaccharides are biomarkers of endoplasmic- reticulum alpha-glucosidase inhibition, Biochem J 409 (2008) 571–580.

    Article  PubMed  CAS  Google Scholar 

  • Asano, N., Ishii, S., Kizu, H., Ikeda, K., Yasuda, K., Kato, A., Martin, O. R., and Fan, J. Q., In vitro inhibition and intracellular enhancement of lysosomal alpha-galactosidase A activity in Fabry lymphoblasts by 1-deoxygalactonojirimycin and its derivatives, Eur J Biochem 267 (2000) 4179–4186.

    Article  PubMed  CAS  Google Scholar 

  • Baudry, M., Yao, Y., Simmons, D., Liu, J., and Bi, X., Postnatal development of inflammation in a murine model of Niemann-Pick type C disease: immunohistochemical observations of microglia and astroglia, Exp Neurol 184 (2003) 887–903.

    Article  PubMed  CAS  Google Scholar 

  • Bembi, B., Marchetti, F., Guerci, V. I., Ciana, G., Addobbati, R., Grasso, D., Barone, R., Cariati, R., Fernandez-Guillen, L., Butters, T., and Pittis, M. G., Substrate reduction therapy in the infantile form of Tay-Sachs disease, Neurology 66 (2006) 278–280.

    Article  PubMed  CAS  Google Scholar 

  • Brady, R. O., Enzyme replacement for lysosomal diseases, Annu Rev Med 57 (2006) 283–296.

    Article  PubMed  CAS  Google Scholar 

  • Butters, T. D., Gaucher disease, Curr Opin Chem Biol 11 (2007a) 412–418.

    Article  CAS  Google Scholar 

  • Butters, T. D., Pharmacotherapeutic strategies using small molecules for the treatment of glycolipid lysosomal storage disorders, Expert Opin Pharmacother 8 (2007b) 427–435.

    Article  CAS  Google Scholar 

  • Butters, T. D., Dwek, R. A., and Platt, F. M., Imino sugar inhibitors for treating the lysosomal glycosphingolipidoses, Glycobiology 15 (2005) 43R–52R.

    Article  PubMed  CAS  Google Scholar 

  • Cachon-Gonzalez, M. B., Wang, S. Z., Lynch, A., Ziegler, R., Cheng, S. H., and Cox, T. M., Effective gene therapy in an authentic model of Tay-Sachs-related diseases, Proc Natl Acad Sci USA 103 (2006) 10373–10378.

    Article  PubMed  CAS  Google Scholar 

  • Chien, Y. H., Lee, N. C., Tsai, L. K., Huang, A. C., Peng, S. F., Chen, S. J., and Hwu, W. L., Treatment of Niemann-Pick disease type C in two children with miglustat: initial responses and maintenance of effects over 1 year, J Inherit Metab Dis 30 (2007) 826.

    Article  PubMed  Google Scholar 

  • Compain, P., Martin, O. R., Boucheron, C., Godin, G., Yu, L., Ikeda, K., and Asano, N., Design and synthesis of highly potent and selective pharmacological chaperones for the treatment of Gaucher's disease, Chembiochem 7 (2006) 1356–1359.

    Article  PubMed  CAS  Google Scholar 

  • Conzelmann, E., and Sandhoff, K., Partial enzyme deficiencies: residual activities and the development of neurological disorders, Dev Neurosci 6 (1983) 58–71.

    Article  PubMed  Google Scholar 

  • Cox, T., Lachmann, R., Hollak, C., Aerts, J., van Weely, S., Hrebicek, M., Platt, F., Butters, T., Dwek, R., Moyses, C., Gow, I., Elstein, D., and Zimran, A., Novel oral treatment of Gaucher's Disease with N-butyldeoxynojirimycin (OGT 918) to decrease substrate biosynthesis, Lancet 355 (2000) 1481–1485.

    Article  PubMed  CAS  Google Scholar 

  • De Duve, C., Pressman, B. C., Gianetto, R., Wattiaux, R., and Appelmans, F., Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue, Biochem J 60 (1955) 604–617.

    Google Scholar 

  • Dumonceaux, T., and Carlsen, S. A., Isogloboside biosynthesis in metastatic R3230AC cells results from a decreased GM3 synthase activity, Arch Biochem Biophys 389 (2001) 187–194.

    Article  PubMed  CAS  Google Scholar 

  • Elstein, D., Dweck, A., Attias, D., Hadas-Halpern, I., Zevin, S., Altarescu, G., Aerts, J. F., van Weely, S., and Zimran, A., Oral maintenance clinical trial with miglustat for type I Gaucher disease: switch from or combination with intravenous enzyme replacement, Blood 110 (2007) 2296–2301.

    Article  PubMed  CAS  Google Scholar 

  • Elstein, D., Hollak, C., Aerts, J. M., van Weely, S., Maas, M., Cox, T. M., Lachmann, R. H., Hrebicek, M., Platt, F. M., Butters, T. D., Dwek, R. A., and Zimran, A., Sustained therapeutic effects of oral miglustat (Zavesca, N -butyldeoxynojirimycin, OGT 918) in type I Gaucher disease, J Inherit Metab Dis 27 (2004) 757–766.

    Article  PubMed  CAS  Google Scholar 

  • Fan, J. Q., A contradictory treatment for lysosomal storage disorders: inhibitors enhance mutant enzyme activity, Trends Pharmacol Sci 24 (2003) 355–360.

    Article  PubMed  CAS  Google Scholar 

  • Futerman, A. H., Cellular pathology in Gaucher disease. In Gaucher disease (A. H. Futerman, and A. Zimran, Eds.), Taylor and Francis Group, Boca Raton, 2007, pp. 97–108

    Google Scholar 

  • Futerman, A. H., and van Meer, G., The cell biology of lysosomal storage disorders, Nat Rev Mol Cell Biol 5 (2004) 554–565.

    Article  PubMed  CAS  Google Scholar 

  • German, D. C., Liang, C. L., Song, T., Yazdani, U., Xie, C., and Dietschy, J. M., Neurodegeneration in the Niemann-Pick C mouse: glial involvement, Neuroscience 109 (2002) 437–450.

    Article  PubMed  CAS  Google Scholar 

  • Ghauharali-van der Vlugt, K., Langeveld, M., Poppema, A., Kuiper, S., Hollak, C. E., Aerts, J. M., and Groener, J. E., Prominent increase in plasma ganglioside GM3 is associated with clinical manifestations of type I Gaucher disease, Clin Chim Acta (2007) in press

    Google Scholar 

  • Gillard, B. K., Clement, R. G., and Marcus, D. M., Variations among cell lines in the synthesis of sphingolipids in de novo and recycling pathways, Glycobiology 8 (1998) 885–890.

    Article  PubMed  CAS  Google Scholar 

  • Giraldo, P., Latre, P., Alfonso, P., Acedo, A., Alonso, D., Barez, A., Corrales, A., Franco, R., Roldan, V., Serrano, S., and Pocovi, M., Short-term effect of miglustat in every day clinical use in treatment-naive or previously treated patients with type 1 Gaucher's disease, Haematologica 91 (2006) 703–706.

    PubMed  CAS  Google Scholar 

  • Gravel, R. A., Clarke, J. T. R., Kaback, M. M., Mahuran, D., Sandhoff, K., and Suzuki, K., The GM2 Gangliosidoses, 7 ed. In The Metabolic Bases of Inherited Disease (C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle, Eds.), Vol. II, McGraw-Hill, New York, 1995, pp. 2839–2879

    Google Scholar 

  • Guidotti, J., Akli, S., Castelnau-Ptakhine, L., Kahn, A., and Poenaru, L., Retrovirus-mediated enzymatic correction of Tay-Sachs defect in transduced and non-transduced cells, Hum Mol Genet 7 (1998) 831–838.

    Article  PubMed  CAS  Google Scholar 

  • Hein, L. K., Meikle, P. J., Hopwood, J. J., and Fuller, M., Secondary sphingolipid accumulation in a macrophage model of Gaucher disease, Mol Genet Metab 92 (2007) 336–345.

    Article  PubMed  CAS  Google Scholar 

  • Heitner, R., Elstein, D., Aerts, J., van Weely, S., and Zimran, A., Low-dose N-butyldeoxynojirimycin (OGT918) for type I Gaucher disease, Blood Cells Mol Dis 28 (2002) 127–133.

    Article  PubMed  Google Scholar 

  • Hepbildikler, S. T., Sandhoff, R., Kolzer, M., Proia, R. L., and Sandhoff, K., Physiological substrates for human lysosomal beta -hexosaminidase S, J Biol Chem 277 (2002) 2562–2572.

    Article  PubMed  CAS  Google Scholar 

  • Higashi, Y., Murayama, S., Pentchev, P. G., and Suzuki, K., Cerebellar degeneration in the Niemann-Pick type C mouse, Acta Neuropathol 85 (1993) 175–184.

    Article  PubMed  CAS  Google Scholar 

  • Hou, Y., Tse, R., and Mahuran, D. J., Direct determination of the substrate specificity of the alpha-active site in heterodimeric beta-hexosaminidase A, Biochemistry 35 (1996) 3963–3969.

    Article  PubMed  CAS  Google Scholar 

  • Huang, J. Q., Trasler, J. M., Igdoura, S., Michaud, J., Hanal, N., and Gravel, R. A., Apoptotic cell death in mouse models of GM2 gangliosidosis and observations on human Tay-Sachs and Sandhoff diseases, Hum Mol Genet 6 (1997) 1879–1885.

    Article  PubMed  CAS  Google Scholar 

  • Jeyakumar, M., Butters, T. D., Dwek, R. A., and Platt, F. M., Glycosphingolipid lysosomal storage diseases: therapy and pathogenesis, Neuropathol Appl Neurobiol 28 (2002) 343–357.

    Article  PubMed  CAS  Google Scholar 

  • Jeyakumar, M., Butters, T. D., CortinaBorja, M., Hunnam, V., Proia, R. L., Perry, V. H., Dwek, R. A., and Platt, F. M., Delayed symptom onset and increased life expectancy in Sandhoff disease mice treated with N-butyldeoxynojirimycin, Proc Nat Acad Sci USA 96 (1999) 6388–6393.

    Article  PubMed  CAS  Google Scholar 

  • Jeyakumar, M., Norflus, F., Tifft, C. J., CortinaBorja, M., Butters, T. D., Proia, R. L., Perry, V. H., Dwek, R. A., and Platt, F. M., Enhanced survival in Sandhoff disease mice receiving a combination of substrate deprivation therapy and bone marrow transplantation, Blood 97 (2001) 327–329.

    Article  PubMed  CAS  Google Scholar 

  • Jeyakumar, M., Thomas, R., Elliot-Smith, E., Smith, D. A., van der Spoel, A. C., d'Azzo, A., Perry, V. H., Butters, T. D., Dwek, R. A., and Platt, F. M., Central nervous system inflammation is a hallmark of pathogenesis in mouse models of GM1 and GM2 gangliosidosis, Brain 126 (2003) 974–987.

    Article  PubMed  CAS  Google Scholar 

  • Kolter, T., and Sandhoff, K., Glycosphingolipid degradation and animal models of GM2-gangliosidoses, J Inherit Metab Dis 21 (1998) 548–563.

    Article  PubMed  CAS  Google Scholar 

  • Kolter, T., and Sandhoff, K., Principles of lysosomal membrane digestion: stimulation of sphingolipid degradation by sphingolipid activator proteins and anionic lysosomal lipids, Annu Rev Cell Dev Biol 21 (2005) 81–103.

    Article  PubMed  CAS  Google Scholar 

  • Kyrkanides, S., Miller, J. H., Brouxhon, S. M., Olschowka, J. A., and Federoff, H. J., beta-hexosaminidase lentiviral vectors: transfer into the CNS via systemic administration, Brain Res Mol Brain Res 133 (2005) 286–298.

    Article  PubMed  CAS  Google Scholar 

  • Lachmann, R. H., Te Vruchte, D., Lloyd-Evans, E., Reinkensmeier, G., Sillence, D. J., Fernandez-Guillen, L., Dwek, R. A., Butters, T. D., Cox, T. M., and Platt, F. M., Treatment with miglustat reverses the lipid-trafficking defect in Niemann-Pick disease type C, Neurobiol Dis 16 (2004) 654–658.

    Article  PubMed  CAS  Google Scholar 

  • Langeveld, M., Ghauharali, K. J., Sauerwein, H. P., Ackermans, M. T., Groener, J. E., Hollak, C. E., Aerts, H. J., and Serlie, M. J., Type I Gaucher disease, a glycosphingolipid storage disorder, is associated with insulin resistance, J Clin Endocrinol Metab (2007) in press

    Google Scholar 

  • Leinekugel, P., Michel, S., Conzelmann, E., and Sandhoff, K., Quantitative correlation between the residual activity of beta-hexosaminidase A and arylsulfatase A and the severity of the resulting lysosomal storage disease, Hum Genet 88 (1992) 513–523.

    Article  PubMed  CAS  Google Scholar 

  • Liao, G., Yao, Y., Liu, J., Yu, Z., Cheung, S., Xie, A., Liang, X., and Bi, X., Cholesterol accumulation is associated with lysosomal dysfunction and autophagic stress in Npc1 –/– mouse brain, Am J Pathol 171 (2007) 962–975.

    Article  PubMed  CAS  Google Scholar 

  • Lowe, J. P., Stuckey, D. J., Awan, F. R., Jeyakumar, M., Neville, D. C., Platt, F. M., Griffin, J. L., Styles, P., Blamire, A. M., and Sibson, N. R., MRS reveals additional hexose N-acetyl resonances in the brain of a mouse model for Sandhoff disease, NMR Biomed 18 (2005) 517–526.

    Article  PubMed  CAS  Google Scholar 

  • Matsuda, J., Suzuki, O., Oshima, A., Yamamoto, Y., Noguchi, A., Takimoto, K., Itoh, M., Matsuzaki, Y., Yasuda, Y., Ogawa, S., Sakata, Y., Nanba, E., Higaki, K., Ogawa, Y., Tominaga, L., Ohno, K., Iwasaki, H., Watanabe, H., Brady, R. O., and Suzuki, Y., Chemical chaperone therapy for brain pathology in G(M1)-gangliosidosis, Proc Natl Acad Sci U S A 100 (2003) 15912–15917.

    Article  PubMed  CAS  Google Scholar 

  • Meikle, P. J., Hopwood, J. J., Clague, A. E., and Carey, W. F., Prevalence of lysosomal storage disorders, J Am Med Assoc 281 (1999) 249–254.

    Article  CAS  Google Scholar 

  • Nixon, R. A., Wegiel, J., Kumar, A., Yu, W. H., Peterhoff, C., Cataldo, A., and Cuervo, A. M., Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study, J Neuropathol Exp Neurol 64 (2005) 113–122.

    PubMed  Google Scholar 

  • Norflus, F., Tifft, C. J., McDonald, M. P., Goldstein, G., Crawley, J. N., Hoffmann, A., Sandhoff, K., Suzuki, K., and Proia, R. L., Bone marrow transplantation prolongs life span and ameliorates neurologic manifestations in Sandhoff disease mice, J Clin Invest 101 (1998) 1881–1888.

    Article  PubMed  CAS  Google Scholar 

  • Pastores, G. M., and Sathe, S., A chaperone-mediated approach to enzyme enhancement as a therapeutic option for the lysosomal storage disorders, Drugs R D 7 (2006) 339–348.

    Article  PubMed  CAS  Google Scholar 

  • Pastores, G. M., Barnett, N. L., and Kolodny, E. H., An open-label, noncomparative study of miglustat in type I Gaucher disease: efficacy and tolerability over 24 months of treatment, Clin Ther 27 (2005) 1215–1227.

    Article  PubMed  CAS  Google Scholar 

  • Pastores, G. M., Elstein, D., Hrebicek, M., and Zimran, A., Effect of miglustat on bone disease in adults with type 1 Gaucher disease: a pooled analysis of three multinational, open-label studies, Clin Ther 29 (2007) 1645–1654.

    Article  PubMed  CAS  Google Scholar 

  • Patterson, M. C., Vecchio, D., Prady, H., Abel, L., and Wraith, J. E., Miglustat for treatment of Niemann-Pick C disease: a randomised controlled study, Lancet Neurol 6 (2007) 765–772.

    Article  PubMed  CAS  Google Scholar 

  • Petersen, G. M., Rotter, J. I., Cantor, R. M., Field, L. L., Greenwald, S., Lim, J. S., Roy, C., Schoenfeld, V., Lowden, J. A., and Kaback, M. M., The Tay-Sachs disease gene in North American Jewish populations: geographic variations and origin, Am J Hum Genet 35 (1983) 1258–1269.

    PubMed  CAS  Google Scholar 

  • Phaneuf, D., Wakamatsu, N., Huang, J. Q., Borowski, A., Peterson, A. C., Fortunato, S. R., Ritter, G., Igdoura, S. A., Morales, C. R., Benoit, G., Akerman, B. R., Leclerc, D., Hanai, N., Marth, J. D., Trasler, J. M., and Gravel, R. A., Dramatically different phenotypes in mouse models of human Tay-Sachs and Sandhoff diseases, Hum Mol Genet 5 (1996) 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Platt, F. M., Neises, G. R., Dwek, R. A., and Butters, T. D., N-Butyldeoxynojirimycin Is a Novel Inhibitor of Glycolipid Biosynthesis, J Biol Chem 269 (1994) 8362–8365.

    PubMed  CAS  Google Scholar 

  • Platt, F. M., Neises, G. R., Reinkensmeier, G., Townsend, M. J., Perry, V. H., Proia, R. L., Winchester, B., Dwek, R. A., and Butters, T. D., Prevention of lysosomal storage in Tay-Sachs mice treated with N-butyldeoxynojirimycin, Science 276 (1997) 428–431.

    Article  PubMed  CAS  Google Scholar 

  • Proia, R. L., Glycosphingolipid functions: insights from engineered mouse models, Phil Trans R Soc Lond B 358 (2003) 879–883.

    Article  CAS  Google Scholar 

  • Proia, R. L., Gangliosides help stabilize the brain, Nat Genet 36 (2004) 1147–1148.

    Article  PubMed  CAS  Google Scholar 

  • Reczek, D., Schwake, M., Schroder, J., Hughes, H., Blanz, J., Jin, X., Brondyk, W., Van Patten, S., Edmunds, T., and Saftig, P., LIMP-2 is a receptor for lysosomal mannose-6-phosphate-independent targeting of beta-glucocerebrosidase, Cell 131 (2007) 770–783.

    Article  PubMed  CAS  Google Scholar 

  • Ron, I., and Horowitz, M., ER retention and degradation as the molecular basis underlying Gaucher disease heterogeneity, Hum Mol Genet 14 (2005) 2387–2398.

    Article  PubMed  CAS  Google Scholar 

  • Sandhoff, R., Geyer, R., Jennemann, R., Paret, C., Kiss, E., Yamashita, T., Gorgas, K., Sijmonsma, T. P., Iwamori, M., Finaz, C., Proia, R. L., Wiegandt, H., and Grone, H. J., Novel class of glycosphingolipids involved in male fertility, J Biol Chem 280 (2005) 27310–27318.

    Article  PubMed  CAS  Google Scholar 

  • Sango, K., Yamanaka, S., Hoffmann, A., Okuda, Y., Grinberg, A., Westphal, H., McDonald, M. P., Crawley, J. N., Sandhoff, K., Suzuki, K., and Proia, R. L., Mouse models of Tay-Sachs and Sandhoff diseases differ in neurologic phenotype and ganglioside metabolism, Nat Genet 11 (1995) 170–176.

    Article  PubMed  CAS  Google Scholar 

  • Sango, K., McDonald, M. P., Crawley, J. N., Mack, M. L., Tifft, C. J., Skop, E., Starr, C. M., Hoffmann, A., Sandhoff, K., Suzuki, K., and Proia, R. L., Mice lacking both subunits of lysosomal beta-hexosaminidase display gangliosidosis and mucopolysaccharidosis, Nat Genet 14 (1996) 348–352.

    Article  PubMed  CAS  Google Scholar 

  • Sano, R., Tessitore, A., Ingrassia, A., and d'Azzo, A., Chemokine-induced recruitment of genetically modified bone marrow cells into the CNS of GM1-gangliosidosis mice corrects neuronal pathology, Blood 106 (2005a) 2259–2268.

    Article  CAS  Google Scholar 

  • Sano, R., Trindade, V. M., Tessitore, A., d'Azzo, A., Vieira, M. B., Giugliani, R., and Coelho, J. C., G(M1)-ganglioside degradation and biosynthesis in human and murine G(M1)-gangliosidosis, Clin Chim Acta 354 (2005b) 131–139.

    Article  CAS  Google Scholar 

  • Sawkar, A. R., Adamski-Werner, S. L., Cheng, W. C., Wong, C. H., Beutler, E., Zimmer, K. P., and Kelly, J. W., Gaucher disease-associated glucocerebrosidases show mutation-dependent chemical chaperoning profiles, Chem Biol 12 (2005) 1235–1244.

    Article  PubMed  CAS  Google Scholar 

  • Schueler, U. H., Kolter, T., Kaneski, C. R., Zirzow, G. C., Sandhoff, K., and Brady, R. O., Correlation between enzyme activity and substrate storage in a cell culture model system for Gaucher disease, J Inherit Metab Dis 27 (2004) 649–658.

    Article  PubMed  CAS  Google Scholar 

  • Shu, L., Murphy, H. S., Cooling, L., and Shayman, J. A., An in vitro model of Fabry disease, J Am Soc Nephrol 16 (2005) 2636–2645.

    Article  PubMed  CAS  Google Scholar 

  • Simpson, M. A., Cross, H., Proukakis, C., Priestman, D. A., Neville, D. C., Reinkensmeier, G., Wang, H., Wiznitzer, M., Gurtz, K., Verganelaki, A., Pryde, A., Patton, M. A., Dwek, R. A., Butters, T. D., Platt, F. M., and Crosby, A. H., Infantile-onset symptomatic epilepsy syndrome caused by a homozygous loss-of-function mutation of GM3 synthase, Nat Genet 36 (2004) 1225–1229.

    Article  PubMed  CAS  Google Scholar 

  • Steet, R. A., Chung, S., Wustman, B., Powe, A., Do, H., and Kornfeld, S. A., The iminosugar isofagomine increases the activity of N370S mutant acid beta-glucosidase in Gaucher fibroblasts by several mechanisms, Proc Natl Acad Sci U S A 103 (2006) 13813–13818.

    Article  PubMed  CAS  Google Scholar 

  • Sun, X., Marks, D. L., Park, W. D., Wheatley, C. L., Puri, V., O'Brien, J. F., Kraft, D. L., Lundquist, P. A., Patterson, M. C., Pagano, R. E., and Snow, K., Niemann-Pick C variant detection by altered sphingolipid trafficking and correlation with mutations within a specific domain of NPC1, Am J Hum Genet 68 (2001) 1361–1372.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, Y., beta-Galactosidase deficiency: An approach to chaperone therapy, J Inherit Metab Dis 29 (2006) 471–476.

    Article  PubMed  CAS  Google Scholar 

  • Takikita, S., Fukuda, T., Mohri, I., Yagi, T., and Suzuki, K., Perturbed myelination process of premyelinating oligodendrocyte in Niemann-Pick type C mouse, J Neuropathol Exp Neurol 63 (2004) 660–673.

    PubMed  Google Scholar 

  • Tessitore, A., del, P. M. M., Sano, R., Ma, Y., Mann, L., Ingrassia, A., Laywell, E. D., Steindler, D. A., Hendershot, L. M., and d'Azzo, A., GM1-ganglioside-mediated activation of the unfolded protein response causes neuronal death in a neurodegenerative gangliosidosis, Mol Cell 15 (2004) 753–766.

    Article  PubMed  CAS  Google Scholar 

  • Tominaga, L., Ogawa, Y., Taniguchi, M., Ohno, K., Matsuda, J., Oshima, A., Suzuki, Y., and Nanba, E., Galactonojirimycin derivatives restore mutant human beta-galactosidase activities expressed in fibroblasts from enzyme-deficient knockout mouse, Brain Develop 23 (2001) 284–287.

    Article  CAS  Google Scholar 

  • Tropak, M. B., Reid, S. P., Guiral, M., Withers, S. G., and Mahuran, D., Pharmacological enhancement of beta-hexosaminidase activity in fibroblasts from adult Tay-Sachs and Sandhoff Patients, J Biol Chem 279 (2004) 13478–13487.

    Article  PubMed  CAS  Google Scholar 

  • Tropak, M. B., Blanchard, J. E., Withers, S. G., Brown, E. D., and Mahuran, D., High-throughput screening for human lysosomal beta-N-Acetyl hexosaminidase inhibitors acting as pharmacological chaperones, Chem Biol 14 (2007) 153–164.

    Article  PubMed  CAS  Google Scholar 

  • Tsuji, D., Kuroki, A., Ishibashi, Y., Itakura, T., Kuwahara, J., Yamanaka, S., and Itoh, K., Specific induction of macrophage inflammatory protein 1-alpha in glial cells of Sandhoff disease model mice associated with accumulation of N-acetylhexosaminyl glycoconjugates, J Neurochem 92 (2005) 1497–1507.

    Article  PubMed  CAS  Google Scholar 

  • Turley, S. D., Burns, D. K., and Dietschy, J. M., Preferential utilization of newly synthesized cholesterol for brain growth in neonatal lambs, Am J Physiol 274 (1998) E1099–1105.

    PubMed  CAS  Google Scholar 

  • Tutor, J. C., Biochemical characterization of the GM2 gangliosidosis B1 variant, Braz J Med Biol Res 37 (2004) 777–783.

    Article  PubMed  CAS  Google Scholar 

  • Tylki-Szymanska, A., Czartoryska, B., Vanier, M. T., Poorthuis, B. J., Groener, J. A., Lugowska, A., Millat, G., Vaccaro, A. M., and Jurkiewicz, E., Non-neuronopathic Gaucher disease due to saposin C deficiency, Clin Genet 72 (2007) 538–542.

    Article  PubMed  CAS  Google Scholar 

  • van Breemen, M. J., de Fost, M., Voerman, J. S., Laman, J. D., Boot, R. G., Maas, M., Hollak, C. E., Aerts, J. M., and Rezaee, F., Increased plasma macrophage inflammatory protein (MIP)-1alpha and MIP-1beta levels in type 1 Gaucher disease, Biochim Biophys Acta 1772 (2007) 788–796.

    PubMed  Google Scholar 

  • van Meer, G., and Lisman, Q., Sphingolipid transport: rafts and translocators, J Biol Chem 277 (2002) 25855–25858.

    Article  PubMed  CAS  Google Scholar 

  • Vogler, C., Levy, B., Grubb, J. H., Galvin, N., Tan, Y., Kakkis, E., Pavloff, N., and Sly, W. S., Overcoming the blood-brain barrier with high-dose enzyme replacement therapy in murine mucopolysaccharidosis VII, Proc Natl Acad Sci U S A 102 (2005) 14777–14782.

    Article  PubMed  CAS  Google Scholar 

  • Wada, R., Tifft, C. J., and Proia, R. L., Microglial activation precedes acute neurodegeneration in Sandhoff disease and is suppressed by bone marrow transplantation, Proc Natl Acad Sci U S A 97 (2000) 10954–10959.

    Article  PubMed  CAS  Google Scholar 

  • Walkley, S. U., Secondary accumulation of gangliosides in lysosomal storage disorders, Semin Cell Dev Biol 15 (2004) 433–444.

    Article  PubMed  CAS  Google Scholar 

  • Warner, T. G., deKremer, R. D., Sjoberg, E. R., and Mock, A. K., Characterization and analysis of branched-chain N-acetylglucosaminyl oligosaccharides accumulating in Sandhoff disease tissue. Evidence that biantennary bisected oligosaccharide side chains of glycoproteins are abundant substrates for lysosomes, J Biol Chem 260 (1985) 6194–6199.

    PubMed  CAS  Google Scholar 

  • Werth, N., Schuette, C. G., Wilkening, G., Lemm, T., and Sandhoff, K., Degradation of membrane-bound ganglioside GM2 by beta -hexosaminidase A. Stimulation by GM2 activator protein and lysosomal lipids, J Biol Chem 276 (2001) 12685–12690.

    Article  PubMed  CAS  Google Scholar 

  • Winchester, B., Lysosomal metabolism of glycoproteins, Glycobiology 15 (2005) 1R–15R.

    Article  PubMed  CAS  Google Scholar 

  • Winsor, E. J., and Welch, J. P., Genetic and demographic aspects of Nova Scotia Niemann-Pick disease (type D), Am J Hum Genet 30 (1978) 530–538.

    PubMed  CAS  Google Scholar 

  • Wolfe, L. S., Senior, R. G., and Ng-Ying-Kin, N. M., The structures of oligosaccharides accumulating in the liver of G-M1-gangliosidosis, type I, J Biol Chem 249 (1974) 1828–1838.

    PubMed  CAS  Google Scholar 

  • Wu, Y. P., and Proia, R. L., Deletion of macrophage-inflammatory protein 1 alpha retards neurodegeneration in Sandhoff disease mice, Proc Natl Acad Sci USA 101 (2004) 8425–8430.

    Article  PubMed  CAS  Google Scholar 

  • Yam, G. H., Zuber, C., and Roth, J., A synthetic chaperone corrects the trafficking defect and disease phenotype in a protein misfolding disorder, FASEB J 19 (2005) 12–18.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, T., Wada, R., Sasaki, T., Deng, C. X., Bierfreund, U., Sandhoff, K., and Proia, R. L., A vital role for glycosphingolipid synthesis during development and differentiation, Proc Natl Acad Sci USA 96 (1999) 9142–9147.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, T., Wu, Y. P., Sandhoff, R., Werth, N., Mizukami, H., Ellis, J. M., Dupree, J. L., Geyer, R., Sandhoff, K., and Proia, R. L., Interruption of ganglioside synthesis produces central nervous system degeneration and altered axon-glial interactions, Proc Natl Acad Sci USA 102 (2005) 2725–2730.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, T., Hashiramoto, A., Haluzik, M., Mizukami, H., Beck, S., Norton, A., Kono, M., Tsuji, S., Daniotti, J. L., Werth, N., Sandhoff, R., Sandhoff, K., and Proia, R. L., Enhanced insulin sensitivity in mice lacking ganglioside GM3, Proc Natl Acad Sci USA 100 (2003) 3445–3449.

    Article  PubMed  CAS  Google Scholar 

  • Yu, Z., Sawkar, A. R., Whalen, L. J., Wong, C. H., and Kelly, J. W., Isofagomine- and 2,5-anhydro-2,5-imino-D-glucitol-based glucocerebrosidase pharmacological chaperones for Gaucher disease intervention, J Med Chem 50 (2007) 94–100.

    Article  PubMed  CAS  Google Scholar 

  • Zeller, C. B., and Marchase, R. B., Gangliosides as modulators of cell function, Am J Physiol 262 (1992) C1341–1355.

    PubMed  CAS  Google Scholar 

  • Zhang, M., Sun, M., Dwyer, N. K., Comly, M. E., Patel, S. C., Sundaram, R., Hanover, J. A., and Blanchette-Mackie, E. J., Differential trafficking of the Niemann-Pick C1 and 2 proteins highlights distinct roles in late endocytic lipid trafficking, Acta Paediatr Suppl 92 (2003) 63–73.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, X., Sheth, K. A., Li, S., Chang, H. H., and Fan, J. Q., Rational design and synthesis of highly potent beta-glucocerebrosidase inhibitors, Angew Chem Int Ed Engl 44 (2005) 7450–7453.

    Article  PubMed  CAS  Google Scholar 

  • Zimran, A., Gaucher's Disease,Bailliere's Clinical Haematology. International Practice and Research, 10, Bailliere Tindall, London, 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Boomkamp, S.D., Butters, T.D. (2008). Glycosphingolipid Disorders of the Brain. In: Quinn, P.J., Wang, X. (eds) Lipids in Health and Disease. Subcellular Biochemistry, vol 49. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-8831-5_17

Download citation

Publish with us

Policies and ethics