Skip to main content

Mechanisms of Dynamic Peri- and Intra-columnar Interactions in Somatosensory Cortex: Stimulus-specific Contrast Enhancement by NMDA Receptor Activation

  • Chapter
Information Processing in the Somatosensory System

Abstract

The available experimental evidence convinces us that the response of somatosensory cortex to environmental stimulation can undergo substantial, moment-to-moment modification with stimulus repetition. Our view of the mechanisms which underlie this appreciable functional plasticity of the adult somatosensory cortex has been shaped by the findings obtained in a series of studies that used the 14C-2-deoxyglucose (2DG) metabolic mapping method, either alone, or in combination with other methods. Crucial to those studies was the development of experimental strategies, apparatus, and data analysis procedures allowing the generation of high-resolution, quantitative “maps” of the 2DG uptake evoked by repetitive peripheral stimulation (Juliano et al., 1981, 1983; Tommerdahl et al., 1985; Tommerdahl et al., 1987; Tommerdahl, 1989; Whitsel et al., 1989). These developments have made it possible to generate high resolution 2DG maps of somatosensory cortical activity for a variety of stimulus conditions (brushing, vibrotactile, electrocutaneous, and joint rotation). For all species (rat, cat and monkey), and for all conditions of stimulation employed to date, the 2DG maps which have been generated exhibit much in common: i.e., they all consist of strip-like patterns of responding and non-responding cortical columns. In addition, they are highly reproducible when the same stimulus is used in different subjects (Juliano and Whitsel, 1985; Whitsel et al., 1989), and maps generated using different modes of tactile stimulation applied to the same body site typically exhibit prominent differences in the orientation, number, and configuration of strips (Tommerdahl, 1989).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bloom, F.E. (1988). What is the role of general activating systems in cortical function? In Neurobiology of Neocortex (eds. P. Rakic and W. Singer), p407–421. Wiley, New York.

    Google Scholar 

  • Cordingley, G. and Somjen, G. (1978). The clearing of excess potassium from extracellular space in spinal cord and cerebral cortex. Brain Res. 151, 291–306.

    Article  CAS  PubMed  Google Scholar 

  • Costanzo, R.M. and Gardner, E.P. (1980). A quantitative analysis of responses of direction-sensitive neurons in somatosensory cortex of awake monkeys. J. Neurophysiol. 43, 1319–1341.

    CAS  PubMed  Google Scholar 

  • Diamond, M. (1989). Organization of somatic sensory cortex: The detection of discrete topographic units and evidence for their integrative function. Ph.D. Dissertation, The Univ. of North Carolina, Chapel Hill.

    Google Scholar 

  • Diamond, M., Favorov, O., Tommerdahl, M., Kelly, D. and Whitsel, B.L. (1986). The responsivity of S-I cortical neurons changes systematically with repetitive tactile stimulation. Neuroscience Abs. 12, 1431.

    Google Scholar 

  • Essick, G.K., Franzen, O. and Whitsel, B.L. (1988). Discrimination and scaling of velocity of stimulus motion across the skin. Somatosens. Motor Res. 6, 21–40.

    Article  CAS  Google Scholar 

  • Essick, G.K. and Whitsel, B.L. (1985a). Assessment of the capacity of human subjects and SI neurons to distinguish opposing directions of stimulus motion across the skin. Brain Res. Revs. 10, 187–212.

    Article  Google Scholar 

  • Essick, G.K. and Whitsel, B.L. (1985b). Factors influencing cutaneous directional sensitivity: A correlative psychophysical and neurophysiological investigation. Brain Res. Revs. 10, 213–230.

    Article  Google Scholar 

  • Favorov, O., and Diamond, M. (1990). Demonstration of discrete place-defined columns — segregates — in cat SI J. Comp. Neurol. (in Press).

    Google Scholar 

  • Favorov, O., Diamond, M. and Whitsel, B.L. (1987). Evidence for a mosaic representation of the body surface in area 3b of the somatic cortex of cat. Proc. Natl. Acad. Sci. USA 84, 6606–6610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Favorov, O. and Whitsel, B.L. (1988a). Spatial organization of the peripheral input to area 1 cell columns: I. The detection of “segregates”. Brain Res. Revs. 13, 25–42.

    Article  Google Scholar 

  • Favorov, O. and Whitsel, B.L. (1988b). Spatial organization of the peripheral input to area 1 cell columns: II. The forelimb representation achieved by a mosaic of segregates. Brain Res. Revs. 13, 43–56.

    Article  Google Scholar 

  • Foote, S. and Morrison, J. (1987). Extrathalamic modulation of cortical function. Ann. Rev. Neurosci. 10, 67–95.

    Article  CAS  PubMed  Google Scholar 

  • Gardner, E.P. and Costanzo, R.M. (1980). Neuronal mechanisms underlying direction sensitivity of somatosensory cortical neurons in awake monkeys. J. Neurophysiol. 43, 1342–1354.

    CAS  PubMed  Google Scholar 

  • Hicks, T.P., Lodge, D. and McLennan, H. (1987). Excitatory Amino Acid Transmission. p27–34. Liss, New York.

    Google Scholar 

  • Jones, E.G. (1981). Anatomy of the cerebral cortex: columnar input-output organization. In The Organization of the Cerebral Cortex (eds. F.O. Schmidt, F.G. Worden, G. Adelman, and S.G. Dennis), p199–235. MIT Press, Cambridge, MA.

    Google Scholar 

  • Juliano, S.L. and Whitsel, B.L. (1985). Metabolic labeling associated with index finger stimulation in monkey SI: Between animal variability. Brain Res. 342, 242–251.

    Article  CAS  PubMed  Google Scholar 

  • Juliano, S.L. and Whitsel, B.L. (1987), A combined 2-deoxyglucose and neurophysiological study of primate somatosensory cortex. J. Comp. Neurol. 263, 514–525.

    Article  CAS  PubMed  Google Scholar 

  • Juliano, S.L., Hand, P. and Whitsel, B.L. (1981). Patterns of increased metabolic activity in somatosensory cortex of monkeys(Macaca fascicularis) subjected to controlled cutaneous stimulation: A 2-deoxyglucose study. J. Neurophysiol. 46, 1260–1284.

    CAS  PubMed  Google Scholar 

  • Juliano, S.L., Hand, P., and Whitsel, B.L. (1983). Patterns of metabolic activity in cytoarchitectural area SII and surrounding cortical fields of the monkey. J. Neurophysiol. 50, 961–980.

    CAS  PubMed  Google Scholar 

  • Juliano, S.L., Whitsel, B.L., Tommerdahl, M. and Cheema, S.S. (1989). Determinants of patchy metabolic labeling in the somatosensory cortex of cats: A possible role for intrinsic inhibitory circuitry. J. Neurosci. 9, 1–12.

    CAS  PubMed  Google Scholar 

  • Maragos, W.F., Penney, J.B. and Young, A.B. (1988). Anatomic correlation of NMDA and 3H-TCP-labeled receptors in rat brain. J. Neuroscience 8, 493–501.

    CAS  PubMed  Google Scholar 

  • McKenna, T.M., Light, A.R. and Whitsel, B.L. (1984). Neurons with unusual response and receptive field properties in upper laminae of cat SI cortex. J. Neurophysiol. 51, 1055–1076.

    CAS  PubMed  Google Scholar 

  • Merzenich, M., Recanzone, G., Jenkins, W., Allard, T. and Nudo, R. (1988). Cortical representational plasticity. In Neurobiology of Neocortex (eds. P. Rakic and W. Singer), p41–67. Wiley, New York.

    Google Scholar 

  • Metherate, R., Tremblay, N. and Dykes, R.W. (1988a). The effects of acetylcholine on response properties of cat somatosensory cortical neurons. J. Neurophysiol. 59, 1231–1252.

    CAS  PubMed  Google Scholar 

  • Metherate, R., Tremblay, N. and Dykes, R. W. (1988b). Transient and prolonged effects of acetylcholine on responsiveness of cat somatosensory cortical neurons. J. Neurophysiol. 59, 1253–1276.

    CAS  PubMed  Google Scholar 

  • Meyer, E. and Otero, D. (1985). Pharmacological and ionic characterizations of the muscarinic receptors modulating H3acetylcholine release from rat cortical synaptosomes. J. Neurosci. 5, 1202–1207.

    CAS  PubMed  Google Scholar 

  • Mountcastle, V.B. (1978). An organizing principle for cerebral function: the unit module and the distributed system., In The Mindful Brain (eds. V.B. Mountcastle and G.M. Edelman). MIT Press, Cambridge.

    Google Scholar 

  • Mountcastle, V.B. (1984). Mechanoreceptive sensibility. In Handbook of Physiology, Section I, Vol. III, Part 2 (ed. I. Darian-Smith). American Physiological Society, Bethesda, MD.

    Google Scholar 

  • Mountcastle, V.B. (1988). Dynamic neuronal operations within the somatic sensory cortex. In Neurobiology of Neocortex (eds. P. Rakic and W. Singer), p253–267. Wiley, New York.

    Google Scholar 

  • Poolos, N., Mauk, M. and Kocsis, J. (1987). Activity-induced increases in extracellular potassium modulate presynaptic excitability in the CA1 region of the hippocampus. J. Neurophysiol. 58, 404–416.

    CAS  PubMed  Google Scholar 

  • Raiteri, M., Leardi, R. and Marchi, M. (1984). Heterogeneity of presynaptic muscarinic receptors regulating neurotransmitter release in the rat brain. J. Pharmacol. Exptl. Therapeut. 228, 209–214.

    CAS  Google Scholar 

  • Schwindt, P., Spain, W., Foehring, R., Stafstrom, C., Chubb, M. and Crill, W. (1988a). Multiple potassium conductances and their functions in neurons from cat sensorimotor cortex in vitro. J. Neurophysiol. 59, 424–449.

    CAS  PubMed  Google Scholar 

  • Schwindt, P., Spain, W., Foehring, R., Chubb, M. and Crill, W. (1988b). Slow conductances in neurons from cat sensorimotor cortex in vitro and their role in slow excitability changes. J. Neurophysiol. 59, 450–467.

    CAS  PubMed  Google Scholar 

  • Singer, W. and Lux, H. (1975). Extracellular potassium gradients and visual receptive fields in the cat striate cortex. Brain Res. 96, 378–383.

    Article  CAS  PubMed  Google Scholar 

  • Somjen, G. (1979). Extracellular potassium in the mammalian central nervous system. Ann. Rev. Physiol. 41, 159–177.

    Article  CAS  Google Scholar 

  • Thompson, A., Girdlestone, D. and West, D. (1988). Voltage-dependent currents prolong single-axon postsynaptic potentials in layer III pyramidal neurons in rat neocortical slices. J. Neurophysiol. 60, 1896–1907.

    Google Scholar 

  • Thompson, A., West, D. and Lodge, D. (1985). An N-methylaspartate receptor-mediated synapse in rat cerebral cortex: A site of action of Ketamine? Nature 313, 479–481.

    Article  Google Scholar 

  • Tommerdahl, M., Baker, R., Whitsel, B.L. and Juliano, S. (1985). A method for reconstructing patterns of somatosensory cerebral cortical activity patterns. Biomed. Sci. Instrumentation 21, 93–98.

    CAS  Google Scholar 

  • Tommerdahl, M., Whitsel, B.L., Cox, E., Diamond, M., Juliano, S. and Kelly, D.G. (1987). Analysis of the periodicities in somatosensory cortical activity patterns. Neurosci. Abst. 13, 470.

    Google Scholar 

  • Tommerdahl, M. (1989). Stimulus evoked activity patterns in somatosensory cortex: Evidence for an opponent mechanism. Ph.D. Dissertation, The Univ. of North Carolina at Chapel Hill.

    Google Scholar 

  • Wenk, H. (1989). The nucleus basalis magnocellularis Meynert (NbmM) complex — a central integrator of coded “limbic signals” linked to neocortical modular operation? A proposed (heuristic) model of function. J. Hirnforsch. 23, 127–151.

    Google Scholar 

  • Whitsel, B.L., Dreyer, D.A., Hollins, M., and Young, M. (1979). The coding of direction of tactile stimulus movement: correlative psychophysical and electrophysiological data. In Sensory Functions of the Skin of Humans (ed. D.R. Kenshalo), p79–107. Plenum Press, New York.

    Chapter  Google Scholar 

  • Whitsel, B.L., Favorov, O., Tommerdahl, M., Diamond, M., Juliano, S. and Kelly, D.G. (1989). Dynamic processes govern the somatosensory cortical response to natural stimulation. In Sensory Processing in the Mammalian Brain (ed. J.S. Lund), p84–116. Oxford Univ. Press, New York.

    Google Scholar 

  • Whitsel, B.L. and Franzéh, O.G. (1989). Dynamics of Information Processing in the Somatosensory Cortex. In Brain and Reading (eds. C. von Euler, I. Lundberg and G. Lennerstrand), p129–137. Macmillan Press, London.

    Chapter  Google Scholar 

  • Whitsel, B.L., Franzén, O., Dreyer, D.A., Hollins, M., Young, M., Essick, G.K. and Wong, C. (1986). Dependence of subjective traverse length on velocity of moving tactile stimuli. Somatosens. Motor Res. 3, 185–196.

    Article  CAS  Google Scholar 

  • Whitsel, B.L. and Juliano, S.L. (1984). Imaging the responding neuronal population with 14C-2-DG: The somatosensory cerebral cortical signature of a tactile stimulus. In Somatosensory Mechanisms (eds. C. von Euler, O. Franzén, U. Lindblom and D. Ottoson), p61–80. Macmillan Press, London.

    Chapter  Google Scholar 

  • Whitsel, B.L. and Kelly, D.G. (1988). Knowledge acquisition (“Learning”) by the somatosensory cortex. In Brain Structure. Learning and Memory. AAAS Selected Symposium 105 (eds. J.L. Davis, R.W. Newburgh and E. Wegman), p93–131. Westview Press, Boulder.

    Google Scholar 

  • Whitsel, B.L., Roppolo, J.R. and Werner, G. (1972). Cortical information processing of stimulus motion on primate skin. J. Neurophysiol. 35, 691–717.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Copyright information

© 1991 Macmillan Publishers Limited

About this chapter

Cite this chapter

Whitsel, D.L., Favorov, O.V., Kelly, D.G., Tommerdahl, M. (1991). Mechanisms of Dynamic Peri- and Intra-columnar Interactions in Somatosensory Cortex: Stimulus-specific Contrast Enhancement by NMDA Receptor Activation. In: Franzén, O., Westman, J. (eds) Information Processing in the Somatosensory System. Wenner-Gren Center International Symposium Series. Palgrave, London. https://doi.org/10.1007/978-1-349-11597-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-349-11597-6_26

  • Publisher Name: Palgrave, London

  • Print ISBN: 978-1-349-11599-0

  • Online ISBN: 978-1-349-11597-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics