Skip to main content

Externalizing Mental Models with Mindtools

  • Chapter

Mental models are complex and multi-faceted, so they cannot Be adequately represented using any single form of assessment. After reviewing traditional methods for manifesting and representing mental models, we describe how Mindtools can be used by learners to externalize their mental models using different tools that represent different kinds of knowledge.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anzai, Y., & Yokoyama, T. (1984). Internal models in physics problem solving. Cognition and Instruction, 1(4), 397-450.

    Article  Google Scholar 

  • Azzarello, J., & Wood, D. E. (2006). Assessing dynamic mental models. Nurse Educator, 31(1), 10-14.

    Article  Google Scholar 

  • Butcher, K. R. (2006). Learning from text with diagrams: Promoting mental model development and inference generation. Journal of Educational Psychology, 98(1), 182-197.

    Article  Google Scholar 

  • Carley, K., & Palmquist, M. (1992). Extracting, representing, and analyzing mental models. Social Forces, 70 (3), 601-636.

    Article  Google Scholar 

  • Chi, M. T. H. (2006). Laboratory methods for assessing experts’ and novices’ knowledge. In K. A. Ericsson, N. Charness, P. J. Feltovich, & R. R. Hoffman (Eds.), The Cambridge handbook of expertise and expert performance (pp. 167-184). Cambridge, MA: Cambridge University Press.

    Google Scholar 

  • Chi, M. T. H., Feltovich, P., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121-152.

    Article  Google Scholar 

  • Ericsson, K. A., & Simon, H. A. (1984). Protocol analysis. Cambridge, MA: MIT Press.

    Google Scholar 

  • Frederiksen, J. R., White, B.Y. & Gutwill, J. (1999). Dynamic mental models in learning science: The importance of constructing derivational linkages among models. Journal of Research in Science Teaching, 36 (7), 806-836.

    Article  Google Scholar 

  • Gentner, D., & Stevens, A. L. (Eds.). (1983). Mental models. Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Gentner, D., & Gentner, D. R. (1983). Flowing waters or teeming crowds: Mental models of electricity. In D. Gentner & A. L. Stevens (Eds.), Mental models (pp. 99-129). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Goldsmith, T. E., Johnson, P. J., & Acton, W. H. (1991). Assessing structural knowledge. Journal of Educational Psychology, 83 (1), 88-96.

    Article  Google Scholar 

  • Gomez, R. L., Hadfield, O. D., & Housner, L. D. (1996). Conceptual maps and simulated teaching episodes as indicators of competence in teaching elementary mathematics. Journal of Educational Psychology, 88 (3), 572-585.

    Article  Google Scholar 

  • Gott, S. P., Bennett, W., & Gillet, A. (1986). Models of technical competence for intelligent tutoring systems. Journal of Computer Based Instruction, 13 (2), 43-46.

    Google Scholar 

  • Hardiman, P. T., Dufresne, R., & Mestre, J. P. (1989). The relationship between problem categorization and problem solving among experts and novices. Memory and Cognition, 17(5), 627- 638.

    Google Scholar 

  • Hong, E., & O‘Neil, H. F. Jr. (1992). Instructional strategies to help learners build relevant mental models in inferential statistics. Journal of Educational Psychology, 84 (2), 150-159.

    Article  Google Scholar 

  • Johnson-Laird, P. N. (1983). Mental models. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Jonassen, D. H. (1987). Verifying a method for assessing cognitive structure using pattern notes. Journal of Research and Development in Education, 20 (3), 1-14.

    Google Scholar 

  • Jonassen, D. H. (2000). Computers as mindtools for schools: Engaging critical thinking. Columbus, OH: Prentice-Hall.

    Google Scholar 

  • Jonassen, D. H. (2006). On the role of concepts in learning and instructional design. Educational Technology Research and Development, 54 (2), 177-196.

    Article  Google Scholar 

  • Jonassen, D. H., Beissner, K., & Yacci, M. (1993). Structural knowledge: Techniques for assessing, conveying, and acquiring structural knowledge. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Jonassen, D. H., & Henning, P. (1999). Mental models: Knowledge in the head and knowledge in the world. Educational Technology, 39 (3), 37-42.

    Google Scholar 

  • Jonassen, D. H., & Hernandez-Serrano, J. (2002). Case-based reasoning and instructional design: Using stories to support problem solving. Educational Technology: Research and Development, 50 (2), 65-77.

    Article  Google Scholar 

  • Kraiger, K., Ford, J. K., & Salas, E. (1993). Application of cognitive, skill-based, and affective theories of learning outcomes to new methods of training evaluation. Journal of applied psychology, 78 (2) 311-328.

    Article  Google Scholar 

  • Kruskal, J. B. (1964). Nonmetric multidimensional scaling: A numerical method. Psychometrika, 29, 115-129.

    Article  Google Scholar 

  • Lehrer, R., & Schauble, L. (2003). Origins and evolution of model-based reasoning in mathematics and science. In R. Lesh & H.M. Doerr (Eds.), Beyond constructivism: Models and modeling perspectives on mathematics problem solving, teaching, and learning (pp. 59-70). Mahwah, NJ: Lawrence Erlbaum. McCloskey, M., Caramazza, A., & Green, B. (1980). Curvilinear motion in the absence of external forces: Naïve beliefs about the motion of objects. Science, 210, 1139-1141.

    Google Scholar 

  • Morrison, M., & Morgan, M. S. (1999). Models as mediating instruments. In M. S. Morgan & M. Morrison (Eds.), Models as mediators: Perspectives on natural and social science (pp. 10- 37). Cambridge: Cambridge University Press.

    Google Scholar 

  • Nersessian, N. J. (1999). Model-based reasoning in conceptual change. In L. Magnani, N. J. Nersessian, & P. Thagard (Eds.), Models are used to represent reality. New York: Kluwer Academic/Plenum Publishers.

    Google Scholar 

  • Newell, A., & Simon, H. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Norman, D. A. (1983). Some observations on mental models. In D. Gentner & A. L. Stevens (Eds.), Mental models (pp. 7-14). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Preece, P. F. W. (1976). Mapping cognitive structure: A comparison of methods. Journal of Educational Psychology, 68, 1-8.

    Article  Google Scholar 

  • Roddick, C. S. (1995). How students use their knowledge of calculus in an engineering mechanics course. ERIC Document Reproduction Service No. ED 389 546.

    Google Scholar 

  • Rouse, W. B., & Morris, N. M. (1986). On looking into the black box: Prospects and limits in the search for mental models. Psychological Bulletin, 100(3), 349-363.

    Article  Google Scholar 

  • Rowe, A. L., & Cooke, N. J. (1995). Measuring mental models: Choosing the right tools for the job. Human Resource Development Quarterly, 6(3), 243-255.

    Article  Google Scholar 

  • Royer, J. M., Cisero, C. A., & Carlo, M. S. (1993). Techniques and procedures for assessing cognitive skills. Review of Educational Research, 63(2), 201-243.

    Google Scholar 

  • Sabers, D. S., Cushing, K. S., & Berliner, D. C. (1991). Differences among teachers in a task characterized by simultaneity, multidimensionality, and immediacy. American Educational Research Journal, 28, 63-88.

    Google Scholar 

  • Schoenfeld, A. H., & Herrmann, D. J. (1982). Problem perception and knowledge structure in expert and novice mathematical problem solvers. Journal of Experimental Psychology: Learning, Memory, and Cognition, 8(5), 484-494.

    Article  Google Scholar 

  • Schvaneveldt, R. W. (Ed.). (1990). Pathfinder associative networks: Studies in knowledge organization. Norwood, NJ: Ablex.

    Google Scholar 

  • Schank, R. C. (1990). Tell me a story: Narrative and intelligence. Evanston, IL: Northwestern University Press.

    Google Scholar 

  • Silver, E. A. (1979). Student perception of relatedness among mathematics verbal problems. Journal for Research in Mathematics Education, 10(3), 195-210.

    Article  Google Scholar 

  • Simon, D. P., & Simon, H. A. (1978). Individual differences in solving physics problems. In R. Siegler (Ed.), Children,s thinking: What develops? (pp. 325-348). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Southerland, S. A., Smith, M. U., & Cummins, C. L. (2000). “What do you mean by that?”: Using structured interviews to assess science understanding. In J. J. Mintzes, J. H. Wandersee, & J. D. Novak (Eds.), Assessing science understanding: A human constructivist view (pp. 72- 95). San Diego, CA: Academic Press.

    Google Scholar 

  • Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive Psychology, 24, 535-585.

    Article  Google Scholar 

  • Vosniadou, S., & Brewer, W. F. (1994). Mental models of the day/night cycle. Cognitive Science, 18, 123-183.

    Article  Google Scholar 

  • Whitfield, D., & Jackson, A. (1982). The air traffic controller s “picture” as an example of a mental model. In G. Johannsen & J. E. Rijnsdorp (Eds.), Analysis, design, and evaluation of manmachine systems (pp. 45-52). London: Pergamon Press.

    Google Scholar 

  • Wilson, J. M. (1994). Network representations of knowledge about chemical equilibrium: Variations with achievement. Journal of Research in Science Teaching, 31(10), 1133-1147.

    Article  Google Scholar 

  • Wilson, J. R., & Rutherford, A. (1989). Mental models: Theory and application in human factors. Human Factors, 31(6), 617-634.

    Google Scholar 

  • Wittgenstein, L. (1922). Tractatus logico-philosophicus. London: Routledge.

    Google Scholar 

  • Wu, H. K., Krajcik, J. S., & Soloway, E. (2001). Promoting understanding of chemical representations: Students’ use of a visualization tool in the classroom. Journal of Research in Science Teaching, 38 (7), 821-842.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Jonassen, D., Cho, Y.H. (2008). Externalizing Mental Models with Mindtools. In: Ifenthaler, D., Pirnay-Dummer, P., Spector, J.M. (eds) Understanding Models for Learning and Instruction. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-76898-4_7

Download citation

Publish with us

Policies and ethics