Skip to main content

Stress, Arousal, and Sleep

  • Chapter
  • First Online:

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 25))

Abstract

Stress is considered to be an important cause of disrupted sleep and insomnia. However, controlled and experimental studies in rodents indicate that effects of stress on sleep–wake regulation are complex and may strongly depend on the nature of the stressor. While most stressors are associated with at least a brief period of arousal and wakefulness, the subsequent amount and architecture of recovery sleep can vary dramatically across conditions even though classical markers of acute stress such as corticosterone are virtually the same. Sleep after stress appears to be highly influenced by situational variables including whether the stressor was controllable and/or predictable, whether the individual had the possibility to learn and adapt, and by the relative resilience and vulnerability of the individual experiencing stress. There are multiple brain regions and neurochemical systems linking stress and sleep, and the specific balance and interactions between these systems may ultimately determine the alterations in sleep–wake architecture. Factors that appear to play an important role in stress-induced wakefulness and sleep changes include various monominergic neurotransmitters, hypocretins, corticotropin releasing factor, and prolactin. In addition to the brain regions directly involved in stress responses such as the hypothalamus, the locus coeruleus, and the amygdala, differential effects of stressor controllability on behavior and sleep may be mediated by the medial prefrontal cortex. These various brain regions interact and influence each other and in turn affect the activity of sleep–wake controlling centers in the brain. Also, these regions likely play significant roles in memory processes and participate in the way stressful memories may affect arousal and sleep. Finally, stress-induced changes in sleep-architecture may affect sleep-related neuronal plasticity processes and thereby contribute to cognitive dysfunction and psychiatric disorders.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adrien J, Dugovic C, Martin P (1991) Sleep-wakefulness patterns in the helpless rat. Physiol Behav 49:257–262

    CAS  PubMed  Google Scholar 

  • Akirav I, Maroun M (2007). The role of the medial prefrontal cortex-amygdala circuit in stress effects on the extinction of fear. Neural Plast 2007: 30873

    Google Scholar 

  • Aloisi AM, Bianchi M, Lupo C, Sacerdote P, Farabollini F (1999) Neuroendocrine and behavioral effects of CRH blockade and stress in male rats. Physiol Behav 66(3):523–528

    CAS  PubMed  Google Scholar 

  • Amaral D, Price J, Pitkanen A, Carmichael S (1992) Anatomical organization of the primate amydaloid complex. In: Aggleton J (ed) The Amygdala: neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss, Inc, New York, pp 1–66

    Google Scholar 

  • Amat J, Matus-Amat P, Watkins LR, Maier SF (1998a) Escapable and inescapable stress differentially alter extracellular levels of 5-HT in the basolateral amygdala of the rat. Brain Res 812(1–2):113–120

    CAS  PubMed  Google Scholar 

  • Amat J, Matus-Amat P, Watkins LR, Maier SF (1998b) Escapable and inescapable stress differentially and selectively alter extracellular levels of 5-HT in the ventral hippocampus and dorsal periaqueductal gray of the rat. Brain Res 797(1):12–22

    CAS  PubMed  Google Scholar 

  • Armon G, Shirom A, Shapira I, Melamed S (2008) On the nature of burnout–insomnia relationships: a prospective study of employed adults. J Psychosom Res 65(1):5–12

    PubMed  Google Scholar 

  • Badia P, Harsh J, Abbott B (1979) Choosing between predictable and unpredictable shock conditions: data and theory. Psychol Bull 86(5):1107–1131

    Google Scholar 

  • Basso AM, Spina M, Rivier J, Vale W, Koob GF (1999) Corticotropin-releasing factor antagonist attenuates the “anxiogenic-like” effect in the defensive burying paradigm but not in the elevated plus-maze following chronic cocaine in rats. Psychopharmacology 145(1):21–30

    CAS  PubMed  Google Scholar 

  • Benca RM, Obermeyer WH, Shelton SE, Droster J, Kalin NH (2000) Effects of amygdala lesions on sleep in rhesus monkeys. Brain Res 879(1–2):130–138

    CAS  PubMed  Google Scholar 

  • Benington JH, Frank MG (2003) Cellular and molecular connections between sleep and synaptic plasticity. Prog Neurobiol 69(2):71–101

    CAS  PubMed  Google Scholar 

  • Bennur S, Shankaranarayana Rao BS, Pawlak R, Strickland S, McEwen BS, Chattarji S (2007) Stress-induced spine loss in the medial amygdala is mediated by tissue-plasminogen activator. Neuroscience 144(1):8–16

    CAS  PubMed  Google Scholar 

  • Best J, Diniz Behn C, Poe GR, Booth V (2007) Neuronal models for sleep–wake regulation and synaptic reorganization in the sleeping hippocampus. J Biol Rhythms 22(3):220–232

    PubMed  Google Scholar 

  • Blanchard RJ, Blanchard DC (1969) Crouching as an index of fear. J Comp Physiol Psychol 67(3):370–375

    CAS  PubMed  Google Scholar 

  • Bland ST, Hargrave D, Pepin JL, Amat J, Watkins LR, Maier SF (2003a) Stressor controllability modulates stress-induced dopamine and serotonin efflux and morphine-induced serotonin efflux in the medial prefrontal cortex. Neuropsychopharmacology 28:1589–1596

    Google Scholar 

  • Bland ST, Twining C, Watkins LR, Maier SF (2003b) Stressor controllability modulates stress-induced serotonin but not dopamine efflux in the nucleus accumbens shell. Synapse 49(3):206–208

    CAS  PubMed  Google Scholar 

  • Bodosi B, Obal F Jr, Gardi J, Komlodi J, Fang J, Krueger JM (2000) An ether stressor increases REM sleep in rats: possible role of prolactin. Am J Physiol Regul Integr Comp Physiol 279(5):R1590–R1598

    CAS  PubMed  Google Scholar 

  • Bohus B, Koolhaas J, Luiten P, Korte S, Roozendaal B, Wiersma A (1996) The neurobiology of the central nucleus of the amygdala in relation to neuroendocrine outflow. Prog Brain Res 107:447–460

    CAS  PubMed  Google Scholar 

  • Bouton ME (2004) Context and behavioral processes in extinction. Learn Mem 11(5):485–494

    PubMed  Google Scholar 

  • Boutrel B, Monaca C, Hen R, Hamon M, Adrien J (2002) Involvement of 5-HT1A receptors in homeostatic and stress-induced adaptive regulations of paradoxical sleep: studies in 5-HT1A knock-out mice. J Neurosci 22(11):4686–4692

    CAS  PubMed  Google Scholar 

  • Bryant RA, Creamer M, O’Donnell M, Silove D, McFarlane AC (2010) Sleep disturbance immediately prior to trauma predicts subsequent psychiatric disorder. Sleep 33(1):69–74

    PubMed Central  PubMed  Google Scholar 

  • Calvo J, Simón-Arceo K, Fernández-Mas R (1996) Prolonged enhancement of REM sleep produced by carbachol microinjection into the amygdala. NeuroRep 7:577–580

    CAS  Google Scholar 

  • Cartwright RD, Wood E (1991) Adjustment disorders of sleep: the sleep effects of a major stressful event and its resolution. Psychiatry Res 39(3):199–209

    CAS  PubMed  Google Scholar 

  • Chang FC, Opp MR (1998) Blockade of corticotropin-releasing hormone receptors reduces spontaneous waking in the rat. Am J Physiol 275(3 Pt 2):R793–R802

    CAS  PubMed  Google Scholar 

  • Chang FC, Opp MR (2002) Role of corticotropin-releasing hormone in stressor-induced alterations of sleep in rat. Am J Physiol Regul Integr Comp Physiol 283(2):R400–R407

    CAS  PubMed  Google Scholar 

  • Chang PP, Ford DE, Mead LA, Cooper-Patrick L, Klag MJ (1997) Insomnia in young men and subsequent depression. The Johns Hopkins precursors study. Am J Epidemiol 146(2):105–114

    CAS  PubMed  Google Scholar 

  • Charuvastra A, Cloitre M (2009) Safe enough to sleep: sleep disruptions associated with trauma, posttraumatic stress, and anxiety in children and adolescents. Child Adolesc Psychiatr Clin N Am 18(4):877–891

    PubMed  Google Scholar 

  • Cheeta S, Ruigt G, van Proosdij J, Willner P (1997) Changes in sleep architecture following chronic mild stress. Biol Psychiatry 41(4):419–427

    CAS  PubMed  Google Scholar 

  • Christoffel DJ, Golden SA, Russo SJ (2011) Structural and synaptic plasticity in stress-related disorders. Rev Neurosci 22(5):535–549

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chrousos GP (1998) Stressors, stress, and neuroendocrine integration of the adaptive response. Ann N Y Acad Sci 851:311–335

    CAS  PubMed  Google Scholar 

  • Chrousos GP (2009) Stress and disorders of the stress system. Nature Rev Endocrinol 5(7):374–381

    CAS  Google Scholar 

  • Cohen H, Zohar J, Matar M (2003) The relevance of differential response to trauma in an animal model of posttraumatic stress disorder. Biol Psychiatry 53(6):463–473

    PubMed  Google Scholar 

  • Cook SC, Wellman CL (2004) Chronic stress alters dendritic morphology in rat medial prefrontal cortex. J Neurobiol 60(2):236–248

    PubMed  Google Scholar 

  • Crick F, Mitchison G (1983) The function of dream sleep. Nature 304(5922):111–114

    CAS  PubMed  Google Scholar 

  • Datta S (2000) Avoidance task training potentiates phasic pontine-wave density in the rat: a mechanism for sleep-dependent plasticity. J Neurosci 20(22):8607–8613

    CAS  PubMed  Google Scholar 

  • Davis M, Whalen PJ (2001) The amygdala: vigilance and emotion. Mol Psychiatry 6(1):13–34

    CAS  PubMed  Google Scholar 

  • de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS 2nd, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA 95(1):322–327

    PubMed Central  PubMed  Google Scholar 

  • Deak T, Nguyen KT, Ehrlich AL, Watkins LR, Spencer RL, Maier SF, Licinio J, Wong ML, Chrousos GP, Webster E, Gold PW (1999) The impact of the nonpeptide corticotropin-releasing hormone antagonist antalarmin on behavioral and endocrine responses to stress. Endocrinology 140(1):79–86

    CAS  PubMed  Google Scholar 

  • Dong E, Wellman LL, Yang L, Sanford LD (2012) Group II metabotropic glutamate receptors in the basal amygdala regulate rapid eye movement sleep. Brain Res 1452:85–95

    Google Scholar 

  • Dringenberg HC, Vanderwolf CH (1996) Cholinergic activation of the electrocorticogram: an amygdaloid activating system. Exp Brain Res 108(2):285–296

    CAS  PubMed  Google Scholar 

  • Dunn AJ, Swiergiel AH, Palamarchouk V (2004) Brain circuits involved in corticotropin-releasing factor-norepinephrine interactions during stress. Ann N Y Acad Sci 1018:25–34

    CAS  PubMed  Google Scholar 

  • Duvarci S, Popa D, Pare D (2011) Central amygdala activity during fear conditioning. J Neurosci 31(1):289–294

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ehlers CL, Reed TK, Henriksen SJ (1986) Effects of corticotropin-releasing factor and growth hormone-releasing factor on sleep and activity in rats. Neuroendocrinology 42(6):467–474

    CAS  PubMed  Google Scholar 

  • Espana RA, Scammell TE (2011) Sleep neurobiology from a clinical perspective. Sleep 34(7):845–858

    PubMed Central  PubMed  Google Scholar 

  • Feng P, Hu Y, Vurbic D, Guo Y (2012) Maternal stress induces adult reduced REM sleep and melatonin level. Dev Neurobiol 72(5):677–687

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fleckenstein AE, Lookingland KJ, Moore KE (1994) Histaminergic neurons mediate restraint stress-induced increases in the activity of noradrenergic neurons projecting to the hypothalamus. Brain Res 653(1–2):273–277

    CAS  PubMed  Google Scholar 

  • Forray MI, Gysling K (2004) Role of noradrenergic projections to the bed nucleus of the stria terminalis in the regulation of the hypothalamic-pituitary-adrenal axis. Brain Res Rev 47(1–3):145–160

    CAS  PubMed  Google Scholar 

  • Foy MR, Stanton ME, Levine S, Thompson RF (1987) Behavioral stress impairs long-term potentiation in rodent hippocampus. Behav Neural Biol 48(1):138–149

    CAS  PubMed  Google Scholar 

  • French D, Palestine D, Leeb C (1972) Preference for a warning in an unavoidable shock situation: replication and extension. Psychol Rep 30:72–74

    Google Scholar 

  • Fu J, Li P, Ouyang X, Gu C, Song Z, Gao J, Han L, Feng S, Tian S, Hu B (2007) Rapid eye movement sleep deprivation selectively impairs recall of fear extinction in hippocampus-independent tasks in rats. Neuroscience 144(4):1186–1192

    CAS  PubMed  Google Scholar 

  • Gadinger MC, Fischer JE, Schneider S, Fischer GC, Frank G, Kromm W (2009) Female executives are particularly prone to the sleep-disturbing effect of isolated high-strain jobs: a cross-sectional study in German-speaking executives. J Sleep Res 18(2):229–237

    PubMed  Google Scholar 

  • Gliner JA (1972) Predictable versus unpredictable shock: preference behavior and stomach ulceration. Physiol Behav 9(5):693–698

    CAS  PubMed  Google Scholar 

  • Gonzalez MM, Valatx JL (1997) Effect of intracerebroventricular administration of alpha-helical CRH (9–41) on the sleep/waking cycle in rats under normal conditions or after subjection to an acute stressful stimulus. J Sleep Res 6(3):164–170

    CAS  PubMed  Google Scholar 

  • Gonzalez MM, Valatx JL (1998) Involvement of stress in the sleep rebound mechanism induced by sleep deprivation in the rat: use of alpha-helical CRH (9–41). Behav Pharmacol 9(8):655–662

    CAS  PubMed  Google Scholar 

  • Gonzalez MM, Debilly G, Valatx JL, Jouvet M (1995) Sleep increase after immobilization stress: role of the noradrenergic locus coeruleus system in the rat. Neurosci Lett 202(1–2):5–8

    CAS  PubMed  Google Scholar 

  • Gronli J, Murison R, Bjorvatn B, Sorensen E, Portas CM, Ursin R (2004) Chronic mild stress affects sucrose intake and sleep in rats. Behav Brain Res 150(1–2):139–147

    CAS  PubMed  Google Scholar 

  • Hammack SE, Richey KJ, Schmid MJ, LoPresti ML, Watkins LR, Maier SF (2002) The role of corticotropin-releasing hormone in the dorsal raphe nucleus in mediating the behavioral consequences of uncontrollable stress. J Neurosci 22(3):1020–1026

    CAS  PubMed  Google Scholar 

  • Hammack SE, Pepin JL, DesMarteau JS, Watkins LR, Maier SF (2003a) Low doses of corticotropin-releasing hormone injected into the dorsal raphe nucleus block the behavioral consequences of uncontrollable stress. Behav Brain Res 147(1–2):55–64

    CAS  PubMed  Google Scholar 

  • Hammack SE, Schmid MJ, LoPresti ML, Der-Avakian A, Pellymounter MA, Foster AC, Watkins LR, Maier SF (2003b) Corticotropin releasing hormone type 2 receptors in the dorsal raphe nucleus mediate the behavioral consequences of uncontrollable stress. J Neurosci 23(3):1019–1025

    CAS  PubMed  Google Scholar 

  • Havekes R, Vecsey CG, Abel T (2012) The impact of sleep deprivation on neuronal and glial signaling pathways important for memory and synaptic plasticity. Cell Signal 24(6):1251–1260

    PubMed Central  CAS  PubMed  Google Scholar 

  • Heilig M, Koob G, Ekman R, Britton K (1994) Corticotropin-releasing factor and neuropeptide Y: role in emotional integration. Trends Neurosci 17:80–85

    CAS  PubMed  Google Scholar 

  • Heinrichs SC, Menzaghi F, Merlo Pich E, Britton KT, Koob GF (1995) The role of CRF in behavioral aspects of stress. Ann N Y Acad Sci 771:92–104

    CAS  PubMed  Google Scholar 

  • Herman JP, Cullinan WE (1997) Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci 20(2):78–84

    CAS  PubMed  Google Scholar 

  • Herman JP, Mueller NK, Figueiredo H (2004) Role of GABA and glutamate circuitry in hypothalamo-pituitary-adrenocortical stress integration. Ann N Y Acad Sci 1018:35–45

    CAS  PubMed  Google Scholar 

  • Inagaki S, Kawai Y, Matsuzaki T, Shiosaka S, Tohyama M (1983) Precise terminal fields of the descending somatostatinergic neuron system from the amygdaloid complex of the rat. J Hirnforsch 24(3):345–356

    CAS  PubMed  Google Scholar 

  • Irmis F, Lâat J, Radil-Weiss T (1971) Individual differences in hippocampal EEG during rhombencephalic sleep and arousal. Physiol Behav 7(1):117–119

    CAS  PubMed  Google Scholar 

  • Irmis F, Lâat J, Radil-Weiss T (1974) Individual (constitutional) differences in sleep patterns in rats. Behav Res Therapy 12:245–249

    CAS  Google Scholar 

  • Jaszberenyi M, Bujdoso E, Pataki I, Telegdy G (2000) Effects of orexins on the hypothalamic-pituitary-adrenal system. J Neuroendocrinol 12(12):1174–1178

    CAS  PubMed  Google Scholar 

  • Jha SK, Brennan FX, Pawlyk AC, Ross RJ, Morrison AR (2005) REM sleep: a sensitive index of fear conditioning in rats. Eur J Neurosci 21(4):1077–1080

    PubMed  Google Scholar 

  • Johnson EO, Kamilaris TC, Chrousos GP, Gold PW (1992) Mechanisms of stress: a dynamic overview of hormonal and behavioral homeostasis. Neurosci Biobehav Rev 16(2):115–130

    CAS  PubMed  Google Scholar 

  • Jones BE (2005) From waking to sleeping: neuronal and chemical substrates. Trends Pharmacol Sci 26(11):578–586

    CAS  PubMed  Google Scholar 

  • Kant GJ, Pastel RH, Bauman RA, Meininger GR, Maughan KR, Robinson TN 3rd, Wright WL, Covington PS (1995) Effects of chronic stress on sleep in rats. Physiol Behav 57(2):359–365

    CAS  PubMed  Google Scholar 

  • Kerns JG, Cohen JD, MacDonald AW 3rd, Cho RY, Stenger VA, Carter CS (2004) Anterior cingulate conflict monitoring and adjustments in control. Science 303(5660):1023–1026

    CAS  PubMed  Google Scholar 

  • Kilduff TS, Peyron C (2000) The hypocretin/orexin ligand-receptor system: implications for sleep and sleep disorders. Trends Neurosci 23(8):359–365

    CAS  PubMed  Google Scholar 

  • Kimura M, Muller-Preuss P, Lu A, Wiesner E, Flachskamm C, Wurst W, Holsboer F, Deussing JM (2010) Conditional corticotropin-releasing hormone overexpression in the mouse forebrain enhances rapid eye movement sleep. Mol Psychiatry 15(2):154–165

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kishimoto T, Radulovic J, Radulovic M, Lin CR, Schrick C, Hooshmand F, Hermanson O, Rosenfeld MG, Spiess J (2000) Deletion of CRHR2 reveals an anxiolytic role for corticotropin-releasing hormone receptor-2. Nat Genet 24(4):415–419

    CAS  PubMed  Google Scholar 

  • Kjaer A, Knigge U, Madsen EL, Soe-Jensen P, Bach FW, Warberg J (1993) Insulin/hypoglycemia-induced adrenocorticotropin and beta-endorphin release: involvement of hypothalamic histaminergic neurons. Endocrinology 132(5):2213–2220

    CAS  PubMed  Google Scholar 

  • Knigge U, Warberg J (1991) The role of histamine in the neuroendocrine regulation of pituitary hormone secretion. Acta Endocrinol 124(6):609–619

    CAS  PubMed  Google Scholar 

  • Koob GF (1999) Corticotropin-releasing factor, norepinephrine, and stress. Biol Psychiatry 46(9):1167–1180

    CAS  PubMed  Google Scholar 

  • Koob G, Bloom F (1985) Corticotropin-releasing factor and behavior. Fed Proc 44:259–263

    CAS  PubMed  Google Scholar 

  • Koolhaas JM, Bartolomucci A, Buwalda B, de Boer SF, Flugge G, Korte SM, Meerlo P, Murison R, Olivier B, Palanza P, Richter-Levin G, Sgoifo A, Steimer T, Stiedl O, van Dijk G, Wohr M, Fuchs E (2011) Stress revisited: a critical evaluation of the stress concept. Neurosci Biobehav Rev 35(5):1291–1301

    CAS  PubMed  Google Scholar 

  • Koren D, Arnon I, Lavie P, Klein E (2002) Sleep complaints as early predictors of posttraumatic stress disorder: a 1-year prospective study of injured survivors of motor vehicle accidents. Am J Psychiatry 159:855–857

    PubMed  Google Scholar 

  • Kornum BR, Faraco J, Mignot E (2011) Narcolepsy with hypocretin/orexin deficiency, infections and autoimmunity of the brain. Curr Opin Neurobiol 21(6):897–903

    CAS  PubMed  Google Scholar 

  • Krettek JE, Price JL (1978) Amygdaloid projections to subcortical structures within the basal forebrain and brainstem in the rat and cat. J Comp Neurol 178(2):225–254

    CAS  PubMed  Google Scholar 

  • Kuru M, Ueta Y, Serino R, Nakazato M, Yamamoto Y, Shibuya I, Yamashita H (2000) Centrally administered orexin/hypocretin activates HPA axis in rats. NeuroReport 11(9):1977–1980

    CAS  PubMed  Google Scholar 

  • Lavie P (2001) Sleep disturbances in the wake of traumatic events. N Engl J Med 345:1825–1832

    CAS  PubMed  Google Scholar 

  • LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    CAS  PubMed  Google Scholar 

  • Lehmann J, Feldon J (2000) Long-term biobehavioral effects of maternal separation in the rat: consistent or confusing? Rev Neurosci 11(4):383–408

    CAS  PubMed  Google Scholar 

  • Lenox RH, Kant GJ, Sessions GR, Pennington LL, Mougey EH, Meyerhoff JL (1980) Specific hormonal and neurochemical responses to different stressors. Neuroendocrinology 30(5):300–308

    CAS  PubMed  Google Scholar 

  • Levine S (2005) Developmental determinants of sensitivity and resistance to stress. Psychoneuroendocrinology 30(10):939–946

    PubMed  Google Scholar 

  • Liston C, Miller MM, Goldwater DS, Radley JJ, Rocher AB, Hof PR, Morrison JH, McEwen BS (2006) Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J Neurosci 26(30):7870–7874

    CAS  PubMed  Google Scholar 

  • Liu X, Tang X, Sanford LD (2003) Fear-conditioned suppression of REM sleep: relationship to Fos expression patterns in limbic and brainstem regions in BALB/cJ mice. Brain Res 991(1–2):1–17

    CAS  PubMed  Google Scholar 

  • Liu X, Yang L, Wellman LL, Tang X, Sanford LD (2009) GABAergic antagonism of the central nucleus of the amygdala attenuates reductions in rapid eye movement sleep after inescapable footshock stress. Sleep 32(7):888–896

    PubMed Central  PubMed  Google Scholar 

  • Liu X, Wellman LL, Yang L, Ambrozewicz MA, Tang X, Sanford LD (2011) Antagonizing corticotropin-releasing factor in the central nucleus of the amygdala attenuates fear-induced reductions in sleep but not freezing. Sleep 34(11):1539–1549

    PubMed Central  PubMed  Google Scholar 

  • Luppi PH (2010) Neurochemical aspects of sleep regulation with specific focus on slow-wave sleep. World J Biol Psychiatry 11(Suppl 1):4–8

    PubMed  Google Scholar 

  • Machado RB, Tufik S, Suchecki D (2008) Chronic stress during paradoxical sleep deprivation increases paradoxical sleep rebound: association with prolactin plasma levels and brain serotonin content. Psychoneuroendocrinology 33(9):1211–1224

    CAS  PubMed  Google Scholar 

  • Machado RB, Tufik S, Suchecki D (2010) Modulation of Sleep Homeostasis by Corticotropin Releasing Hormone in REM Sleep-Deprived Rats. Int J Endocrinol 2010:326151

    PubMed Central  PubMed  Google Scholar 

  • Machida M, Yang L, Wellman LL, Sanford LD (2013) Effects of stressor predictability on escape learning and sleep in mice. Sleep 36:421–430

    Google Scholar 

  • Magarinos AM, McEwen BS (1995a) Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: comparison of stressors. Neuroscience 69(1):83–88

    CAS  PubMed  Google Scholar 

  • Magarinos AM, McEwen BS (1995b) Stress-induced atrophy of apical dendrites of hippocampal CA3c neurons: involvement of glucocorticoid secretion and excitatory amino acid receptors. Neuroscience 69(1):89–98

    CAS  PubMed  Google Scholar 

  • Magarinos AM, Verdugo JM, McEwen BS (1997) Chronic stress alters synaptic terminal structure in hippocampus. Proc Natl Acad Sci USA 94(25):14002–14008

    PubMed Central  CAS  PubMed  Google Scholar 

  • Maier SF, Amat J, Baratta MV, Paul E, Watkins LR (2006) Behavioral control, the medial prefrontal cortex, and resilience. Dialogues Clin Neurosci 8(4):397–406

    PubMed Central  PubMed  Google Scholar 

  • Marrosu F, Gessa GL, Giagheddu M, Fratta W (1990) Corticotropin-releasing factor (CRF) increases paradoxical sleep (PS) rebound in PS-deprived rats. Brain Res 515(1–2):315–318

    CAS  PubMed  Google Scholar 

  • McEwen BS (2007) Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 87(3):873–904

    PubMed  Google Scholar 

  • Meerlo P, Turek FW (2001) Effects of social stimuli on sleep in mice: non-rapid-eye-movement (NREM) sleep is promoted by aggressive interaction but not by sexual interaction. Brain Res 907(1–2):84–92

    CAS  PubMed  Google Scholar 

  • Meerlo P, Pragt BJ, Daan S (1997) Social stress induces high intensity sleep in rats. Neurosci Lett 225(1):41–44

    CAS  PubMed  Google Scholar 

  • Meerlo P, de Bruin EA, Strijkstra AM, Daan S (2001a) A social conflict increases EEG slow-wave activity during subsequent sleep. Physiol Behav 73(3):331–335

    CAS  PubMed  Google Scholar 

  • Meerlo P, Easton A, Bergmann BM, Turek FW (2001b) Restraint increases prolactin and REM sleep in C57BL/6 J mice but not in BALB/cJ mice. Am J Physiol Regul Integr Comp Physiol 281(3):R846–R854

    CAS  PubMed  Google Scholar 

  • Meerlo P, Mistlberger RE, Jacobs BL, Heller HC, McGinty D (2009) New neurons in the adult brain: the role of sleep and consequences of sleep loss. Sleep Med Rev 13(3):187–194

    PubMed Central  PubMed  Google Scholar 

  • Mellman TA, Bustamante V, Fins AI, Pigeon WR, Nolan B (2002) REM sleep and the early development of posttraumatic stress disorder. Am J Psychiatry 159(10):1696–1701

    PubMed  Google Scholar 

  • Mellman TA, Pigeon WR, Nowell PD, Nolan B (2007) Relationships between REM sleep findings and PTSD symptoms during the early aftermath of trauma. J Trauma Stress 20(5):893–901

    PubMed  Google Scholar 

  • Mikkelsen JD, Hay-Schmidt A, Kiss A (2004) Serotonergic stimulation of the rat hypothalamo-pituitary-adrenal axis: interaction between 5-HT1A and 5-HT2A receptors. Ann N Y Acad Sci 1018:65–70

    CAS  PubMed  Google Scholar 

  • Miklos IH, Kovacs KJ (2003) Functional heterogeneity of the responses of histaminergic neuron subpopulations to various stress challenges. Eur J Neurosci 18(11):3069–3079

    CAS  PubMed  Google Scholar 

  • Miller RR, Daniel D, Berk AM (1974) Successive reversals of a discriminated preference for signaled tailshock. Anim Learn Behav 2(4):271–274

    Google Scholar 

  • Mitra R, Jadhav S, McEwen BS, Vyas A, Chattarji S (2005) Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. Proc Natl Acad Sci USA 102(26):9371–9376

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mrdalj J, Pallesen S, Milde AM, Jellestad FK, Murison R, Ursin R, Bjorvatn B, Gronli J (2013) Early and later life stress alter brain activity and sleep in rats. PLoS One 8(7):e69923

    PubMed Central  CAS  PubMed  Google Scholar 

  • Myers KM, Davis M (2007) Mechanisms of fear extinction. Mol Psychiatry 12(2):120–150

    CAS  PubMed  Google Scholar 

  • Neckelmann D, Mykletun A, Dahl AA (2007) Chronic insomnia as a risk factor for developing anxiety and depression. Sleep 30(7):873–880

    PubMed Central  PubMed  Google Scholar 

  • Nishida M, Pearsall J, Buckner RL, Walker MP (2009) REM sleep, prefrontal theta, and the consolidation of human emotional memory. Cereb Cortex 19(5):1158–1166

    PubMed Central  PubMed  Google Scholar 

  • Nishino S, Ripley B, Overeem S, Lammers GJ, Mignot E (2000) Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355(9197):39–40

    CAS  PubMed  Google Scholar 

  • Nomura K, Nakao M, Takeuchi T, Yano E (2009) Associations of insomnia with job strain, control, and support among male Japanese workers. Sleep Med 10(6):626–629

    PubMed  Google Scholar 

  • Obal F Jr, Kacsoh B, Alfoldi P, Payne L, Markovic O, Grosvenor C, Krueger JM (1992) Antiserum to prolactin decreases rapid eye movement sleep (REM sleep) in the male rat. Physiol Behav 52(6):1063–1068

    CAS  PubMed  Google Scholar 

  • Obal F Jr, Garcia-Garcia F, Kacsoh B, Taishi P, Bohnet S, Horseman ND, Krueger JM (2005) Rapid eye movement sleep is reduced in prolactin-deficient mice. J Neurosci 25(44):10282–10289

    CAS  PubMed  Google Scholar 

  • Pacak K, Palkovits M (2001) Stressor specificity of central neuroendocrine responses: implications for stress-related disorders. Endocr Rev 22(4):502–548

    CAS  PubMed  Google Scholar 

  • Palma BD, Suchecki D, Tufik S (2000) Differential effects of acute cold and footshock on the sleep of rats. Brain Res 861(1):97–104

    CAS  PubMed  Google Scholar 

  • Pawlyk AC, Morrison AR, Ross RJ, Brennan FX (2008) Stress-induced changes in sleep in rodents: Models and mechanisms. Neurosci Biobehav Rev 32(1):99–117

    PubMed Central  PubMed  Google Scholar 

  • Paylor R, Tracy R, Wehner J, Rudy J (1994) DBA/2 and C57BL/6 mice differ in contextual fear but not auditory fear conditioning. Behav Neurosci 108:810–817

    CAS  PubMed  Google Scholar 

  • Petrov T, Krukoff TL, Jhamandas JH (1992) The hypothalamic paraventricular and lateral parabrachial nuclei receive collaterals from raphe nucleus neurons: a combined double retrograde and immunocytochemical study. J Comp Neurol 318(1):18–26

    CAS  PubMed  Google Scholar 

  • Petrov T, Krukoff TL, Jhamandas JH (1994) Chemically defined collateral projections from the pons to the central nucleus of the amygdala and hypothalamic paraventricular nucleus in the rat. Cell Tissue Res 277(2):289–295

    CAS  PubMed  Google Scholar 

  • Peyron C, Petit JM, Rampon C, Jouvet M, Luppi PH (1998a) Forebrain afferents to the rat dorsal raphe nucleus demonstrated by retrograde and anterograde tracing methods. J Neurosci 82(2):443–468

    CAS  Google Scholar 

  • Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, Kilduff TS (1998b) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18(23):9996–10015

    CAS  PubMed  Google Scholar 

  • Phillips RG, LeDoux JE (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106(2):274–285

    CAS  PubMed  Google Scholar 

  • Pitman RK, Shin LM, Rauch SL (2001) Investigating the pathogenesis of posttraumatic stress disorder with neuroimaging. J Clin Psychiatry 62(Suppl 17):47–54

    PubMed  Google Scholar 

  • Popa D, El Yacoubi M, Vaugeois JM, Hamon M, Adrien J (2006) Homeostatic regulation of sleep in a genetic model of depression in the mouse: effects of muscarinic and 5-HT1A receptor activation. Neuropsychopharmacology 31(8):1637–1646

    CAS  PubMed  Google Scholar 

  • Prewitt CM, Herman JP (1997) Hypothalamo-pituitary-adrenocortical regulation following lesions of the central nucleus of the amygdala. Stress 1(4):263–280

    CAS  PubMed  Google Scholar 

  • Prewitt CM, Herman JP (1998) Anatomical interactions between the central amygdaloid nucleus and the hypothalamic paraventricular nucleus of the rat: a dual tract-tracing analysis. J Chem Neuroanat 15(3):173–185

    CAS  PubMed  Google Scholar 

  • Price J, Russchen F, Amaral D (1987). The limbic region. II: the amygdaloid complex. In: Swanson L (ed) Handbook of chemical neuroanatomy. Integrated systems of the CNA, Part I. Elsevier, New York, pp 279–375

    Google Scholar 

  • Rachalski A, Alexandre C, Bernard JF, Saurini F, Lesch KP, Hamon M, Adrien J, Fabre V (2009) Altered sleep homeostasis after restraint stress in 5-HTT knock-out male mice: a role for hypocretins. J Neurosci 29(49):15575–15585

    CAS  PubMed  Google Scholar 

  • Radley JJ, Morrison JH (2005) Repeated stress and structural plasticity in the brain. Ageing Res Rev 4(2):271–287

    PubMed  Google Scholar 

  • Radley JJ, Rocher AB, Miller M, Janssen WG, Liston C, Hof PR, McEwen BS, Morrison JH (2006) Repeated stress induces dendritic spine loss in the rat medial prefrontal cortex. Cereb Cortex 16(3):313–320

    PubMed  Google Scholar 

  • Rampin C, Cespuglio R, Chastrette N, Jouvet M (1991) Immobilisation stress induces a paradoxical sleep rebound in rat. Neurosci Lett 126(2):113–118

    CAS  PubMed  Google Scholar 

  • Rojas-Zamorano JA, Esqueda-Leon E, Jimenez-Anguiano A, Cintra-McGlone L, Mendoza Melendez MA, Velazquez Moctezuma J (2009) The H1 histamine receptor blocker, chlorpheniramine, completely prevents the increase in REM sleep induced by immobilization stress in rats. Pharmacol Biochem Behav 91(3):291–294

    CAS  PubMed  Google Scholar 

  • Roky R, Obâal F Jr, Valatx JL, Bredow S, Fang J, Pagano LP, Krueger JM (1995) Prolactin and rapid eye movement sleep regulation. Sleep 18(7):536–542

    CAS  PubMed  Google Scholar 

  • Roozendaal B, Koolhaus J, Bohus B (1991a) Attenuated cardiovascular, neuroendocrine, and behavioral responses after a single footshock in central amygdaloid lesioned male rats. Phys Behav 50:771–775

    CAS  Google Scholar 

  • Roozendaal B, Koolhaus J, Bohus B (1991b) Central amygdala lesions affect behavioral and autonomic balance during stress in rats. Phys Behav 50:777–781

    CAS  Google Scholar 

  • Rosenkranz JA, Buffalari DM, Grace AA (2006) Opposing influence of basolateral amygdala and footshock stimulation on neurons of the central amygdala. Biol Psychiatry 59(9):801–811

    PubMed  Google Scholar 

  • Rudolph C, Richards GE, Kaplan S, Ganong WF (1979) Effect of intraventricular histamine on hormone secretion in dogs. Neuroendocrinology 29(3):169–177

    CAS  PubMed  Google Scholar 

  • Sajdyk TJ, Schober DA, Gehlert DR, Shekhar A (1999) Role of corticotropin-releasing factor and urocortin within the basolateral amygdala of rats in anxiety and panic responses. Behav Brain Res 100(1–2):207–215

    CAS  PubMed  Google Scholar 

  • Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richarson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M (1998). Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92(5):1 page following 696

    Google Scholar 

  • Samson WK, Taylor MM, Follwell M, Ferguson AV (2002) Orexin actions in hypothalamic paraventricular nucleus: physiological consequences and cellular correlates. Regul Pept 104(1–3):97–103

    CAS  PubMed  Google Scholar 

  • Sandi C, Davies HA, Cordero MI, Rodriguez JJ, Popov VI, Stewart MG (2003) Rapid reversal of stress induced loss of synapses in CA3 of rat hippocampus following water maze training. Eur J Neurosci 17(11):2447–2456

    PubMed  Google Scholar 

  • Sanford LD, Tejani-Butt SM, Ross RJ, Morrison AR (1995) Amygdaloid control of alerting and behavioral arousal in rats: involvement of serotonergic mechanisms. Arch Ital Biol 134(1):81–99

    CAS  PubMed  Google Scholar 

  • Sanford LD, Nassar P, Ross RJ, Schulkin J, Morrison AR (1998) Prolactin microinjections into the amygdalar central nucleus lead to decreased NREM sleep. Sleep Res Online 1(3):109–113

    CAS  PubMed  Google Scholar 

  • Sanford LD, Silvestri AJ, Ross RJ, Morrison AR (2001) Influence of fear conditioning on elicited ponto-geniculo-occipital waves and rapid eye movement sleep. Arch Ital Biol 139(3):169–183

    CAS  PubMed  Google Scholar 

  • Sanford LD, Parris B, Tang X (2002) GABAergic regulation of the central nucleus of the amygdala: implications for sleep control. Brain Res 956(2):276–284

    CAS  PubMed  Google Scholar 

  • Sanford L, Yang L, Tang X (2003a) Influence of contextual fear on sleep architecture in mice: a strain comparison. Sleep 26:527–540

    PubMed  Google Scholar 

  • Sanford LD, Fang J, Tang X (2003b) Sleep after differing amounts of conditioned fear training in BALB/cJ mice. Behav Brain Res 147(1–2):193–202

    PubMed  Google Scholar 

  • Sanford LD, Tang X, Ross RJ, Morrison AR (2003c) Influence of shock training and explicit fear-conditioned cues on sleep architecture in mice: strain comparison. Behav Genet 33(1):43–58

    PubMed  Google Scholar 

  • Sanford LD, Xiao J, Liu X, Yang L, Tang X (2005) Influence of avoidance training (AT) and AT cues on sleep in C57BL/6 J (B6) and BALB/cJ (C) mice. Sleep (Abstract Supplement) 28:A6

    Google Scholar 

  • Sanford LD, Yang L, Liu X, Tang X (2006) Effects of tetrodotoxin (TTX) inactivation of the central nucleus of the amygdala (CNA) on dark period sleep and activity. Brain Res 1084(1):80–88

    CAS  PubMed  Google Scholar 

  • Sanford LD, Yang L, Wellman LL, Liu X, Tang X (2010) Differential effects of controllable and uncontrollable footshock stress on sleep in mice. Sleep 33(5):621–630

    PubMed Central  PubMed  Google Scholar 

  • Schiffelholz T, Aldenhoff JB (2002) Novel object presentation affects sleep–wake behavior in rats. Neurosci Lett 328(1):41–44

    CAS  PubMed  Google Scholar 

  • Seltzer AM, Donoso AO, Podesta E (1986) Restraint stress stimulation of prolactin and ACTH secretion: role of brain histamine. Physiol Behav 36(2):251–255

    CAS  PubMed  Google Scholar 

  • Semba K, Fibiger HC (1992) Afferent connections of the laterodorsal and the pedunculopontine tegmental nuclei in the rat: a retro- and antero-grade transport and immunohistochemical study. J Comp Neurol 323(3):387–410

    CAS  PubMed  Google Scholar 

  • Shors TJ, Seib TB, Levine S, Thompson RF (1989) Inescapable versus escapable shock modulates long-term potentiation in the rat hippocampus. Science 244(4901):224–226

    CAS  PubMed  Google Scholar 

  • Silvestri AJ (2005) REM sleep deprivation affects extinction of cued but not contextual fear conditioning. Physiol Behav 84(3):343–349

    CAS  PubMed  Google Scholar 

  • Sinha RK (2006) P-CPA pretreatment reverses the changes in sleep and behavior following acute immobilization stress rats. Journal Physiol Sci: JPS 56(1):123–129

    PubMed  Google Scholar 

  • Smith C (1995) Sleep states and memory processes. Behav Brain Res 69(1–2):137–145

    CAS  PubMed  Google Scholar 

  • Smith C, Lapp L (1986) Prolonged increases in both PS and number of REMS following a shuttle avoidance task. Physiol Behav 36(6):1053–1057

    CAS  PubMed  Google Scholar 

  • Smith CT, Miskiman DE (1975) Increases in paradoxical sleep as a result of amygdaloid stimulation. Physiol Behav 15(1):17–19

    CAS  PubMed  Google Scholar 

  • Smith SM, Vale WW (2006) The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin Neurosci 8(4):383–395

    PubMed Central  PubMed  Google Scholar 

  • Steiger A (2007) Neurochemical regulation of sleep. J Psychiatr Res 41(7):537–552

    PubMed  Google Scholar 

  • Steiger A, Holsboer F (1997) Neuropeptides and human sleep. Sleep 20(11):1038–1052

    CAS  PubMed  Google Scholar 

  • Steiger A, Antonijevic IA, Bohlhalter S, Frieboes RM, Friess E, Murck H (1998) Effects of hormones on sleep. Horm Res 49(3–4):125–130

    CAS  PubMed  Google Scholar 

  • Steiner MA, Sciarretta C, Brisbare-Roch C, Strasser DS, Studer R, Jenck F (2013) Examining the role of endogenous orexins in hypothalamus-pituitary-adrenal axis endocrine function using transient dual orexin receptor antagonism in the rat. Psychoneuroendocrinology 38(4):560–571

    Google Scholar 

  • Steriade M, McCarley R (1990) Brainstem control of wakefulness and sleep. Plenum Press, New York

    Google Scholar 

  • Stewart MG, Davies HA, Sandi C, Kraev IV, Rogachevsky VV, Peddie CJ, Rodriguez JJ, Cordero MI, Donohue HS, Gabbott PL, Popov VI (2005) Stress suppresses and learning induces plasticity in CA3 of rat hippocampus: a three-dimensional ultrastructural study of thorny excrescences and their postsynaptic densities. Neuroscience 131(1):43–54

    CAS  PubMed  Google Scholar 

  • Suchecki D, Tiba PA, Machado RB (2012) REM sleep rebound as an adaptive response to stressful situations. Frontiers Neurol 3:41

    Google Scholar 

  • Sutcliffe JG, de Lecea L (2002) The hypocretins: setting the arousal threshold. Nat Rev Neurosci 3(5):339–349

    CAS  PubMed  Google Scholar 

  • Swerdlow N, Geyer M, Vale W, Koob G (1986) Corticotropin-releasing factor potentiates acoustic startle in rats: blockade by chlordiazepoxide. Psychopharmacology 88:147–152

    CAS  PubMed  Google Scholar 

  • Takahashi K, Koyama Y, Kayama Y, Yamamoto M (2000) The effects of prolactin on the mesopontine tegmental neurons. Psychiatry Clin Neurosci 54(3):257–258

    CAS  PubMed  Google Scholar 

  • Tang X, Xiao J, Liu X, Sanford LD (2004) Strain differences in the influence of open field exposure on sleep in mice. Behav Brain Res 154(1):137–147

    PubMed  Google Scholar 

  • Tang X, Liu X, Yang L, Sanford LD (2005a) Rat strain differences in sleep after acute mild stressors and short-term sleep loss. Behav Brain Res 160(1):60–71

    PubMed  Google Scholar 

  • Tang X, Xiao J, Parris BS, Fang J, Sanford LD (2005b) Differential effects of two types of environmental novelty on activity and sleep in BALB/cJ and C57BL/J mice. Physiol Behav 85:419–429

    CAS  PubMed  Google Scholar 

  • Tang X, Yang L, Liu X, Sanford LD (2005c) Influence of tetrodotoxin inactivation of the central nucleus of the amygdala on sleep and arousal. Sleep 28(8):923–930

    PubMed  Google Scholar 

  • Tang X, Yang L, Sanford LD (2005d) Rat strain differences in freezing and sleep alterations associated with contextual fear. Sleep 28(10):1235–1244

    PubMed  Google Scholar 

  • Tang X, Yang L, Sanford LD (2006) Spectral EEG power after uncontrollable shock (US) and fearful context (FC): variability amongst mouse strains. Sleep 29:A11

    Google Scholar 

  • Tang X, Yang L, Sanford LD (2007) Individual variation in sleep and motor activity in rats. Behav Brain Res 180(1):62–68

    PubMed Central  PubMed  Google Scholar 

  • Tiba PA, Tufik S, Suchecki D (2004) Effects of maternal separation on baseline sleep and cold stress-induced sleep rebound in adult Wistar rats. Sleep 27(6):1146–1153

    PubMed  Google Scholar 

  • Tiba PA, Tufik S, Suchecki D (2008) Long lasting alteration in REM sleep of female rats submitted to long maternal separation. Physiol Behav 93(3):444–452

    CAS  PubMed  Google Scholar 

  • Tononi G, Cirelli C (2006) Sleep function and synaptic homeostasis. Sleep Med Rev 10(1):49–62

    PubMed  Google Scholar 

  • Tsuda A, Ida Y, Tsujimaru S, Satoh H, Nishimura H, Tanaka M (1987) Stressor controllability and brain noradrenaline turnover in rats. Yakubutsu Seishin Kodo 7(3):363–374

    CAS  PubMed  Google Scholar 

  • Van Bockstaele EJ, Colago EE, Valentino RJ (1998) Amygdaloid corticotropin-releasing factor targets locus coeruleus dendrites: substrate for the co-ordination of emotional and cognitive limbs of the stress response. J Neuroendocrinol 10(10):743–757

    PubMed  Google Scholar 

  • Vertes RP (2004) Differential projections of the infralimbic and prelimbic cortex in the rat. Synapse 51(1):32–58

    CAS  PubMed  Google Scholar 

  • Vyas A, Jadhav S, Chattarji S (2006) Prolonged behavioral stress enhances synaptic connectivity in the basolateral amygdala. Neuroscience 143(2):387–393

    CAS  PubMed  Google Scholar 

  • Walker MP (2009) The role of sleep in cognition and emotion. Ann N Y Acad Sci 1156:168–197

    PubMed  Google Scholar 

  • Wellman CL (2001) Dendritic reorganization in pyramidal neurons in medial prefrontal cortex after chronic corticosterone administration. J Neurobiol 49(3):245–253

    CAS  PubMed  Google Scholar 

  • Wellman LL, Holbrook BD, Yang L, Tang X, Sanford LD (2008) Contextual fear extinction eliminates sleep disturbances found following fear conditioning in rats. Sleep 31:1035–1042

    PubMed Central  PubMed  Google Scholar 

  • Wellman LL, Ambrozewicz MA, Yang L, Machida M, Sanford LD (2013) Basolateral amygdala and the regulation of fear conditioned changes in sleep: role of corticotropin releasing factor. Sleep 36:471–480

    Google Scholar 

  • Winsky-Sommerer R, Yamanaka A, Diano S, Borok E, Roberts AJ, Sakurai T, Kilduff TS, Horvath TL, de Lecea L (2004) Interaction between the corticotropin-releasing factor system and hypocretins (orexins): a novel circuit mediating stress response. J Neurosci 24(50):11439–11448

    CAS  PubMed  Google Scholar 

  • Winsky-Sommerer R, Boutrel B, de Lecea L (2005) Stress and arousal: the corticotrophin-releasing factor/hypocretin circuitry. Mol Neurobiol 32(3):285–294

    CAS  PubMed  Google Scholar 

  • Xu L, Anwyl R, Rowan MJ (1997) Behavioural stress facilitates the induction of long-term depression in the hippocampus. Nature 387(6632):497–500

    CAS  PubMed  Google Scholar 

  • Yang L, Tang X, Wellman LL, Liu X, Sanford LD (2009) Corticotropin releasing factor (CRF) modulates fear-induced alterations in sleep in mice. Brain Res 1276:112–122

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang L, Wellman LL, Ambrozewicz MA, Sanford LD (2011a) Effects of stressor predictability and controllability on sleep, temperature, and fear behavior in mice. Sleep 34(6):759–771

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang L, Wellman LL, Tang X, Sanford LD (2011b) Effects of corticotropin releasing factor (CRF) on sleep and body temperature following controllable footshock stress in mice. Physiol Behav 104(5):886–892

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu GQ, Zhong MK, Zhang JX, Zhao LZ, Ke DP, Wang M, Shi L (1998) Role of basolateral amygdaloid nuclei in sleep and wakeful state regulation. Sheng Li Xue Bao 50(6):688–692

    CAS  PubMed  Google Scholar 

  • Ziegler DR, Cass WA, Herman JP (1999) Excitatory influence of the locus coeruleus in hypothalamic-pituitary-adrenocortical axis responses to stress. J Neuroendocrinol 11(5):361–369

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The contribution of L.D.S. was supported by NIH research grants MH64827 and EVMS institutional funds. D.S. was supported by research grants from FAPESP (98/14303-3) and Associação Fundo de Incentivo à Pesquisa and she is the recipient of a research fellowship from CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larry D. Sanford .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sanford, L.D., Suchecki, D., Meerlo, P. (2014). Stress, Arousal, and Sleep. In: Meerlo, P., Benca, R., Abel, T. (eds) Sleep, Neuronal Plasticity and Brain Function. Current Topics in Behavioral Neurosciences, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/7854_2014_314

Download citation

Publish with us

Policies and ethics