Skip to main content

Introduction to Flow Control

  • Chapter
  • First Online:
Flow Control

Part of the book series: Lecture Notes in Physics ((LNPMGR,volume 53))

Abstract

The subject of flow control is broadly introduced in this first chapter, leaving much of the details to the subsequent chapters of the book. The ability to actively or passively manipulate a flow field to effect a desired change is of immense technological importance, and this undoubtedly accounts for the fact that the subject is more hotly pursued by scientists and engineers than any other topic in fluid mechanics. In this chapter classical tools of flow control are emphasized, leaving the more modern strategies to the following chapter. Methods of control to achieve transition delay, separation postponement, lift enhancement, drag reduction, turbulence augmentation, or noise suppression are considered. The treatment is tutorial at times, making the material accessible to the advanced graduate student in the field of fluid mechanics. Emphasis is placed on external boundary-layer flows although applicability of some of the methods reviewed for internal flows will be mentioned. An attempt is made to present a unified view of the means by which different methods of control achieve a variety of end results. Performance penalties associated with a particular method such as cost, complexity, or trade-off will be elaborated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackeret J., Ras M., Pfenninger W. (1941): Verhinderung des Turbulentwerdens einer Grenzschicht durch Absaugung. Naturwissenschaften 29, 622–623.

    ADS  Google Scholar 

  • Adkins R.C. (1975): A Short Diffuser with Low Pressure Loss. J. Fluids Eng. 97, 297–302.

    Google Scholar 

  • Adkins R.C. (1977): Diffusers and Their Performance Improvement by Means of Boundary Layer Control. AGARD Special Course on Concepts for Drag Reduction, AGARD Report No. R-654; Paper No. 6, Rhode-Saint-Génèse, Belgium.

    Google Scholar 

  • Adkins R.C., Mathaus D.S., Yost J.O. (1980): The Hybrid Diffuser. ASME Paper No. 80-GT-136, New York.

    Google Scholar 

  • Ahuja K.K., Burrin R.H. (1984): Control of Flow Separation by Sound. AIAA Paper No. 84-2208, New York.

    Google Scholar 

  • Ahuja K.K., Whipkey R.R., Jones G.S. (1983): Control of Turbulent Boundary Layer Flows by Sound. AIAA Paper No. 83-0726, New York.

    Google Scholar 

  • Alvarez-Calderon A. (1964): Rotating Cylinder Flaps of V/STOL Aircraft. Aircraft Eng. 36, 304–309.

    Google Scholar 

  • Anders J.B., Jr. (1990): Outer-Layer Manipulators for Turbulent Drag Reduction. Viscous Drag Reduction in Boundary Layers, eds. D.M. Bushnell and J.N. Hefner, Progress in Astronautics & Aeronautics, vol. 123, (AIAA, Washington, D.C.), 263–284.

    Google Scholar 

  • Anders J.B., Hefner J.N., Bushnell D.M. (1984): Performance of Large-Eddy Breakup Devices at Post-Transitional Reynolds Numbers. AIAA Paper No. 84-0345, New York.

    Google Scholar 

  • Anders J.B., Walsh M.J., Bushnell D.M. (1988): The Fix for Tough Spots. Aerospace America 26, January, 24–27.

    Google Scholar 

  • Anders J.B., Watson R.D. (1985): Airfoil Large-Eddy Breakup Devices for Turbulent Drag Reduction. AIAA Paper No. 85-0520, New York.

    Google Scholar 

  • Antonia R.A., Fulachier L., Krishnamoorthy L.V., Benabid T., Anselmet F. (1988): Influence of Wall Suction on the Organized Motion in a Turbulent Boundary Layer. J. Fluid Mech. 190, 217–240.

    ADS  Google Scholar 

  • Anyiwo J.C., Bushnell D.M. (1982): Turbulence Amplification in Shock Wave-Boundary Layer Interaction. AIAA J. 20, 893–899.

    ADS  Google Scholar 

  • Aroesty J., Berger S.A. (1975): Controlling the Separation of Laminar Boundary Layers in Water: Heating and Suction. RAND Corporation Report No. R-1789-ARPA, Santa Monica, CA. (Also available from U.S. NTIS; Document Number AD-AO20026.)

    Google Scholar 

  • Aslanov P.V., Maksyutenko S.N., Povkh I.L., Simonenko A.P., Stupin A.B. (1980): Turbulent Flows of Solutions of Surface-Active Substances. Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, no. 1, 36–43.

    Google Scholar 

  • Atassi H.M., Gebert G.A. (1987): Modification of Turbulent Boundary Layer Structure by Large-Eddy Breakup Devices. Proc. Int. Conf. on Turbulent Drag Reduction by Passive Means, vol. 2, (Royal Aeronautical Society, London, United Kingdom), 432–456.

    Google Scholar 

  • Atta R., Rockwell D. (1990): Leading-Edge Vortices Due to Low Reynolds Number Flow Past a Pitching Delta Wing. AIAA J. 28, 995–1004.

    ADS  Google Scholar 

  • Aubry N., Hohnes P., Lumley XL., Stone E. (1988): The Dynamics of Coherent Structures in the Wall Region of a Turbulent Boundary Layer. J. Fluid Mech. 192, 115–173.

    MATH  ADS  MathSciNet  Google Scholar 

  • Ayers R.F., Wilde M.R. (1956): An Experimental Investigation of the Aerodynamic Characteristics of a Low Aspect Ratio Swept Wing with Blowing in a Spanwise Direction from the Tips. CoEege of Aeronautics, Note No. 57, Cranfield, England.

    Google Scholar 

  • Bahi L., Ross J.M., Nagamatsu H.T. (1983): Passive Shock Wave/Boundary Layer Control for Transonic Airfoil Drag Reduction. AIAA Paper No. 83-0137, New York.

    Google Scholar 

  • Bandyopadhyay P.R. (1986): Review-Mean Flow in Turbulent Boundary Layers Disturbed to Alter Skin Friction. J. Fluids Eng. 108, 127–140.

    Google Scholar 

  • Bandyopadhyay P.R. (1988): Resonant Flow in Small Cavities Submerged in a Boundary Layer. Proc. R. Soc. Lond. A 420, 219–245.

    ADS  Google Scholar 

  • Bar-Sever A. (1989): Separation Control on an Airfoil by Periodic Forcing. AIAA J. 27, 820–821.

    ADS  Google Scholar 

  • Barger J.E., Von Winkle W.A. (1961): Evaluation of a Boundary Layer Stabilization Coating. J. Acoustical Soc. of America 33, 836.

    ADS  Google Scholar 

  • Barker R.A. (1986): The Aerodynamic Effects of a Serrated Strip Near the Leading Edge of an Airfoil. M.S. Thesis, Royal Air Force College, Report No. ETN-87-99480, Cranwell, England.

    Google Scholar 

  • Barker S.J., Gile D. (1981): Experiments on Heat-Stabilized Laminar Boundary Layers in Water. J. Fluid Mech. 104, 139–158.

    ADS  Google Scholar 

  • Barnwell R., Bushnell D.M., Nagamatsu H.T., Bahi L., Ross J. (1985): Passive Drag Control of Airfoils at Transonic Speeds. U.S. Patent No. 4,522,360.

    Google Scholar 

  • Barnwell R.W., Hussaini M.Y. (editors) (1992): Natural Laminar Flow and Laminar Flow Control (Springer-Verlag, Berlin).

    Google Scholar 

  • Batchelor G.K. (1967): An Introduction to Fluid Dynamics. (Cambridge University Press, London).

    MATH  Google Scholar 

  • Batchelor G.K., Green J.T. (1972): The Determination of the Bulk Stress in a Suspension of Spherical Particles to Order c2. J. Fluid Mech. 56, 401–427.

    MATH  ADS  Google Scholar 

  • Bauer S.X.S., Hernandez G. (1988): Reduction of Cross-Flow Shock-Induced Separation with a Porous Cavity at Supersonic Speeds. AIAA Paper No. 88-2567, New York. Baullinger N., Page V. (1989): High Altitude Long Endurance (HALE) RPV. AIAA Paper No. 89-2014, New York.

    Google Scholar 

  • Bechert D.W., Hoppe G., Reif W.-E. (1985): On the Drag Reduction of the Shark Skin. AIAA Paper No. 85-0546, New York.

    Google Scholar 

  • Benjamin T.B. (1960): Effects of a Flexible Boundary on Hydrodynamic Stability. J. Fluid Mech. 9, 513–532.

    MATH  ADS  MathSciNet  Google Scholar 

  • Bergles A.E. (1978): Enhancement of Heat Transfer. Proc. Sixth Int. Heat Transfer Conference, vol. 6, (Hemisphere, Washington, D.C.), 89–108.

    Google Scholar 

  • Bergles A.E., Morton L.H. (1965): Survey and Evaluation of Techniques to Augment Convective Heat Transfer. Dept. of Mech. Eng., Report No. EPL 5382-34, MET, Cambridge, MA.

    Google Scholar 

  • Bergles A.E., Webb R.L. (1985): A Guide to the Literature on Convective Heat Transfer Augmentation. Twenty-Third National Heat Transfer Conference: Advances in Enhanced Heat Transfer, Denver, CO.

    Google Scholar 

  • Berman N.S. (1978): Drag Reduction by Polymers. Ann. Rev. Fluid Mech. 10, 47–64.

    ADS  Google Scholar 

  • Berman N.S., George W.K. (1974): Time Scale and Molecular Weight Distribution Contributions to Dilute Polymer Solution Fluid Mechanics. Proc. Heat Transfer Fluid Mech. Inst., eds. L.R. Davis and R.E. Wilson, (Stanford Univ. Press, CA), 348–364.

    Google Scholar 

  • Bernard J.J., Siestrunck R. (1959). Échanges de Chaleur dans les Écoulements Présentant des Décollements. Proc. First Int. Congr. Aero. Sci.,, eds. Th. von Karman et al., Madrid, Spain, Adv. in Aero. Sci 1 (Pergamon Press, London, England), 314–332.

    Google Scholar 

  • Bertelrud A., Truong T.V., Avellan F. (1982): Drag Reduction in Turbulent Boundary Layers Using Ribbons. AIAA Paper No. 82-1370, New York.

    Google Scholar 

  • Bnattacharjee S., Scheelke B., Troutt T.R. (1985): Modification of Vortex Interactions in a Reattaching Separated Flow. AIAA Paper No. 85-0555, New York.

    Google Scholar 

  • Biringen S. (1984): Active Control of Transition by Periodic Suction-Blowing. Phys. Fluids 27, 1345–1347.

    ADS  Google Scholar 

  • Blackwelder R.F., Gad-el-Hak M., (1990): Method and Apparatus for Reducing Turbulent Skin Friction. United States Patent No. 4,932,612.

    Google Scholar 

  • Blackwelder R.F., Gad-el-Hak M., Srnsky R.A. (1987): Method and Apparatus for Controlling Bound Vortices in the Vicinity of Lifting Surfaces. U.S. Patent No. 4,697,769.

    Google Scholar 

  • Blake W.K., Gershfeld J.L. (1989): The Aeroacoustics of Trailing Edges. Frontiers in Experimental Fluid Mechanics, ed. M. Gad-el-Hak, Lecture Notes in Engineering, vol. 46, (Springer-Verlag, Berlin), 457–532.

    Google Scholar 

  • Bogdevich V.G., Evseev A.R., Malyuga A.G., Migirenko G.S. (1977): Gas-Saturation Effect on Near-Wall Turbulence Characteristics. Second Int. Conf. on Drag Reduction, Paper No. D2, (BHRA Fluid Engineering, Cranfield, United Kingdom).

    Google Scholar 

  • Bogdevich V.G., Malyuga A.G. (1976): The Distribution of Skin Friction in a Turbulent Boundary Layer of Water beyond the Location of Gas Injection. Studies on the Boundary Layer Control (in Russian), eds. S.S. Kutateladze and G.S. Migirenko, (Institute of Thermophysics, Novosibirsk, U.S.S.R.), 62.

    Google Scholar 

  • Bradley R.G., Wray W.O. (1974): A Conceptual Study of Leading-Edge-Vortex Enhancement by Blowing. J. Aircraft 11, 33–38.

    Google Scholar 

  • Bradshaw P. (1969): A Note on Reverse Transition. J. Fluid Mech. 35, 387–390.

    ADS  Google Scholar 

  • Bragg M.B., Gregorek G.M. (1987): Experimental Study of Airfoil Performance with Vortex Generators. J. Aircraft 24, 305–309.

    Google Scholar 

  • Braslow A.L., Burrows D.L., Tetervin N., Visconti F. (1951): Experimental and Theoretical Studies of Area Suction for the Control of Laminar Boundary Layer. NACA Report No. 1025, Washington, D.C.

    Google Scholar 

  • Briedenthal R.E., Jr., Russell D.A. (1988): Aerodynamics of Vortex Generators. NASA Contractor Report No. CR-182511, Washington, D.C.

    Google Scholar 

  • Brown A.C., Nawrocki H.F., Paley P.N. (1968): Subsonic Diffusers Designed Integrally with Vortex Generators. J. Aircraft 5, 221–229.

    Google Scholar 

  • Burd J.E. (1981): Flow Control for a High Energy Laser Turret Using Trapped Vortices Stabilized by Suction. M.Sc. Thesis, Naval Postgraduate School, Monterey, CA. (Also available from U.S. NTIS; Document Number AD-A115263.)

    Google Scholar 

  • Bushnell D.M. (1983): Turbulent Drag Reduction for External Flows. AIAA Paper No. 83-0227, New York.

    Google Scholar 

  • Bushnell D.M. (1989): Applications and Suggested Directions of Transition Research. Fourth Symp. on Numerical and Physical Aspects of Aerodynamic Flows, Long Beach, CA, 16–19 January.

    Google Scholar 

  • Bushnell D.M. (1994): Viscous Drag Reduction in Aeronautics. Proceedings of the Nineteenth Congress of the International Council of the Aeronautical Sciences, vol. 1, Paper No. ICAS-94-0.1, (AIAA, Washington, D.C.), XXXIII-LVI.

    Google Scholar 

  • Bushnell D.M., Hefner J.N. (editors) (1990): Viscous Drag Reduction in Boundary Layers, Progress in Astronautics & Aeronautics, vol. 123, (AIAA, Washington, D.C.)

    Google Scholar 

  • Bushnell D.M., Hefner J. N., Ash R.L. (1977): Effect of Compliant Wall Motion on Turbulent Boundary Layers. Phys. Fluids 20, S31–S48.

    ADS  Google Scholar 

  • Bushnell D.M., Malik M.R. (1988): Compressibility Influences on Boundary-Layer Transition. Synvp. on Physics of Compressible Turbulent Mixing, Princeton, NJ, 25–27 October.

    Google Scholar 

  • Bushnell D.M., McGinley C.B. (1989): Turbulence Control in Wall Flows. Ann. Rev. Fluid Mech. 21, 1–20.

    ADS  Google Scholar 

  • Bushnell D.M., Trimpi R.L. (1986): Optimum Supersonic Wind Tunnel. AIAA Paper No. 86-0773, New York.

    Google Scholar 

  • Bussmann K., Münz H. (1942): Die Stabilität der laminaren Reibungsschicht mit Absaugung. Jahrb. Dtsch. Luftfahrtforschung 1, 36–39.

    Google Scholar 

  • Calarese W., Crisler W.P., Gustafeon G.L. (1985): Afterbody Drag Reduction by Vortex Generators. AIAA Paper No. 85-0354, New York.

    Google Scholar 

  • Cantwell B.J. (1981): Organized Motion in Turbulent Flow, it Ann. Rev. Fluid Mech. 13, 457–515.

    ADS  Google Scholar 

  • Carmichael B.H. (1974): Application of Sailplane and Low-Drag Underwater Vehicle Technology to the Long-Endurance Drone Problem. AIAA Paper No. 74-1036, New York.

    Google Scholar 

  • Carpenter P.W., Garrad A.D. (1985): The Hydrodynamic Stability of Flow over Kramer-Type Compliant Surfaces. Part 1. Tollmien-Schlichting Instabilities. J. Fluid Mech. 155, 465–510.

    MATH  ADS  Google Scholar 

  • Gary A.M., Jr., Weinstein L.M., Bushnell D.M. (1980): Drag Reduction Characteristics of Small Amplitude Rigid Surface Waves. Viscous Flow Drag Reduction, ed. G.R. Hough, Progress in Astronautics & Aeronautics, vol. 72, (AIAA, New York), XXXIII-LVL

    Google Scholar 

  • Cebeci T., Chang K.C. (1978): Calculation of Incompressible Rough-Wall Boundary-Layer Flows. AIAA J. 16, 730–735.

    ADS  Google Scholar 

  • Cebeci T., Egan D.A. (1989): Prediction of Transition due to Isolated Roughness. AIAA J. 27, 89–1015.

    Google Scholar 

  • Chang P.K. (1970): Separation of Flow, (Pergamon Press, Oxford, England).

    MATH  Google Scholar 

  • Chang P.K. (1976): Control of Flow Separation, (Hemisphere, Washington, D.C.).

    Google Scholar 

  • Cheeseman I.C., Seed A.R. (1967): The Application of Circulation Control by Blowing to Helicopter Rotors. J. Royal Aeronautical Society 71, 451–467.

    Google Scholar 

  • Chen C.P., Goland Y., Reshotko E. (1979): Generation Rate of Turbulent Patches in the Laminar Boundary Layer of a Submersible. Viscous Flow Drag Reduction, ed. G.R. Hough, Progress in Astronautics & Aeronautics, vol. 72, (AIAA, New York), 73–89.

    Google Scholar 

  • Chen D., Shi Ying Z. (1989): Control of Separation in Diffusers Using Forced Unsteadiness. AIAA Paper No. 89-1015, New York.

    Google Scholar 

  • Chow C.Y., Chen C.L., Huang M.K. (1985): Trapping of Free Vortex by Airfoils with Surface Suction. AIAA Paper No. 85-0446, New York.

    Google Scholar 

  • Cichy D.R., Harris J.W., MacKay, J.K. (1972): Flight Tests of a Rotating Cylinder Flap on a North American Rockwell YOV-10A Aircraft. NASA Contractor Report No. CR-2135, Washington, D.C.

    Google Scholar 

  • Collins F.G. (1979): Boundary Layer Control on Wings Using Sound and Leading Edge Serrations. AIAA Paper No. 79-1875, New York.

    Google Scholar 

  • Collins F.G. (1981): Boundary Layer Control on Wings Using Sound and Leading-Edge Serrations. AIAA J. 19, 129–130.

    ADS  Google Scholar 

  • Collins F.G., Zelenevitz J. (1975): Influence of Sound upon Separated Flow over Wings. AIAA J. 13, 408–410.

    ADS  Google Scholar 

  • Compton D.A., Johnston J.P. (1991): Streamwise Vortex Development by Pitched and Skewed Jets in a Turbulent Boundary Layer. AIAA Paper No. 91-0038, New York.

    Google Scholar 

  • Cook W.L., Mickey D.M., Quigley H.G. (1974): Aerodynamics of Jet Flap and Rotating Cylinder Flap STOL Concepts. AGARD Fluid Dynamics Panel on V/STOL Aerodynamics, Paper No. 10, Delft, Netherlands.

    Google Scholar 

  • Corke T.C., Guezennec Y., Nagib H.M. (1980): Modification in Drag of Turbulent Boundary Layers Resulting from Manipulation of Large-Scale Structures. Viscous Flow Drag Reduction, ed. G.R. Hough, Progress in Astronautics & Aeronautics, vol. 72, (AIAA, New York), 128–143.

    Google Scholar 

  • Corke T.C., Nagib H.M., Guezennec Y. (1981): A New View on Origin, Role and Manipulation of Large Scales in Turbulent Boundary Layers. NASA Contractor Report No. 165861, Washington, D.C.

    Google Scholar 

  • Crighton D.G. (1984): Long-Range Acoustic Scattering by Surface Inhomogeneities Beneath a Turbulent Boundary Layer. J. Vibration, Acoustics, Stress & Reliability in Design 106, 376–382.

    Google Scholar 

  • Cutler A., Bradshaw P. (1986): The Interaction Between a Strong Longitudinal Vortex and a Turbulent Boundary Layer. AIAA Paper No. 86-1071, New York.

    Google Scholar 

  • Cutler A., Bradshaw P. (1989): Vortex/Boundary-Layer Interactions. AIAA Paper No. 89-0083, New York.

    Google Scholar 

  • Davidson C.J. (1985): The Experimental Investigation of the Effects of Roughness upon Aerofoil Characteristics at Low Reynolds Numbers. M.Sc. Thesis, Cranfield Institute of Technology, Cranfield, England.

    Google Scholar 

  • Delery, J.M. (1985): Shock Wave/Turbulent Boundary Layer Interaction and Its Control. Prog. Aerospace Sci. 22, 209–280.

    ADS  Google Scholar 

  • DeMeis R. (1986): Sounding a Happy Note for Lift. Aerospace America 24, August, 10–11.

    Google Scholar 

  • DiPrima R.C., Swinney H.L. (1985): Instabilities and Transition in Flow Between Concentric Rotating Cylinders Hydrodynamic Instabilities and the Transition to Turbulence, eds. H.L. Swinney and J.P. Gollub, second edition, (Springer-Verlag, Berlin), 139–180.

    Google Scholar 

  • Donovan J.F., Selig M.S. (1989): Low Reynolds Number Airfoil Design and Wind Tunnel Testing at Princeton University. Low Reynolds Number Aerodynamics, ed. T.J. Mueller, Lecture Notes in Engineering, vol. 54, (Springer-Verlag, Berlin), 39–57.

    Google Scholar 

  • Dougherty N.S., Fisher D.F. (1980): Boundary Layer Transition on a 10-Degree Cone. AIAA Paper No. 80-0154, New York.

    Google Scholar 

  • Dowling A.P. (1983): Flow-Acoustic Interaction Near a Flexible Wall. J. Fluid Mech. 128, 181–198.

    MATH  ADS  Google Scholar 

  • Dowling A.P. (1985): The Effect of Large-Eddy Breakup Devices on Oncoming Vorticity. J. Fluid Mech. 160, 447–463.

    MATH  ADS  MathSciNet  Google Scholar 

  • Dowling A.P. (1986): Mean Flow Effects on the Low-Wavenumber Pressure Spectrum on a Flexible Surface. J. Fluids Eng. 108, 104–108.

    Google Scholar 

  • Drazin P., Reid W. (1981): Hydrodynamic Stability (Cambridge University Press, London).

    MATH  Google Scholar 

  • Durbin P.A., McKinzie D.J. (1987): Corona Anemometry for Qualitative Measurement of Reversing Surface Flow with Application to Separation Control by External Excitation. Proc. Forum on Unsteady Flow Separation, ed. K.N. Ghia, (ASME, New York), 15–18.

    Google Scholar 

  • Button R. A. (1960): The Effects of Distributed Suction on the Development of Turbulent Boundary Layers. Aeronautical Research Council R&M No. 3155, London, England.

    Google Scholar 

  • Eléna M. (1975): Etude des Champs Dynamiques et Thermiques d’un Ecoulement Turbulent en Conduit avec Aspiration à la Paroi. Thèse de Doctoratès Sciences, Université d’Aix-Marseille, Marseille, France.

    Google Scholar 

  • Eléna M. (1984): Suction Effects on Turbulence Statistics in a Heated Pipe Flow. Phys. Fluids 27, 861–866.

    ADS  Google Scholar 

  • Ely W.L., Berrier F.C. (1975): Performance of Steady and Intermittent Blowing Jet Flaps and Spanwise Upper Surface Slots. Air Force Flight Dynamics Laboratory Report No. AFFDL-TR-75-128, Wright-Patterson Air Force Base, OH.

    Google Scholar 

  • Eppler R., Somers D.M. (1985): Airfoil Design for Reynolds Numbers between 50,000 and 500,000. Proc. Conf. on Low Reynolds Number Airfoil Aerodynamics, ed. T.J. Mueller, (University of Notre Dame, Notre Dame, IN), 1–14.

    Google Scholar 

  • Ericsson L.E. (1967): Comment on Unsteady Airfoil Stal. J. Aircraft 4, 478–480.

    Google Scholar 

  • Ericsson L.E. (1988): Moving Wall Effects in Unsteady Flow. J. Aircraft 25, 977–990.

    Google Scholar 

  • Eriksson L. J., Allie M.C., Bremigan C.D., Gilbert J.A. (1988): Active Noise Control and Specificiations for Fan Noise Problems. Proc. Noise Control Design: Methods and Practice, ed. J.S. Bolton, (Noise Control Foundation, Poughkeepsie, NY), 273–278.

    Google Scholar 

  • Favre A., Dumas R., Verollet E., Coantic M. (1966): Couche Limite Turbulente suc Paroi Poreuse avec Aspiration. J. Mécanique 5, 3–28.

    Google Scholar 

  • Feir J.B. (1965): The Effects of an Arrangement of Vortex Generators Installed to Eliminate Wind Tunnel Diffuser Separation. Institute for Aerospace Studies, University of Toronto, UTIAS Technical Note No. 87, Toronto, Canada.

    Google Scholar 

  • Ffowcs Williams J.E. (1965): Sound Radiation from Turbulent Boundary Layers Formed on Compliant Surfaces. J. Fluid Mech. 22, 347–358.

    ADS  MathSciNet  Google Scholar 

  • Ffowcs Williams J.E. (1977): Aeroacoustics. Ann. Rev. Fluid Mech. 9, 447–468.

    ADS  Google Scholar 

  • Fiedler H.E., Fernholz H.H. (1990): On Management and Control of Turbulent Shear Flows. Prog. Aerospace Sci. 27, 305–387.

    MATH  ADS  Google Scholar 

  • Fiedler H.E., Glezer A., Wygnanski I. (1988): Control of Plane Mixing Layer: Some Novel Experiments. Current Trends in Turbulence Research, eds. H. Branover, M. Mond and Y. Unger, Progress in Astronautics & Aeronautics, vol. 112, (AIAA, Washington, D.C.), 30–64.

    Google Scholar 

  • Flatt J. (1961): The History of Boundary Layer Control Research in the United States of America. Boundary Layer and Flow Control, ed. G.V. Lachmann, vol. 1, (Pergamon Press, Oxford, England), 122–143.

    Google Scholar 

  • Flettner A. (1924): Die Anwendung der Erkenntnisse der Aerodynamik zum Windantrieb von Schiffen. Jb. Schiffbautech. Ges. 25, 222–251.

    Google Scholar 

  • Francis M.S., Keesee J.E., Lang J.D., Sparks G.W., Sisson G.E. (1979): Aerodynamic Characteristics of an Unsteady Separated Flow. AIAA J. 17 1332–1339.

    ADS  Google Scholar 

  • Frick C.W., McCullough C.B. (1942): Tests of a Heated Low Drag Airfoil. NACA ARR, Washington, D.C., December.

    Google Scholar 

  • Gad-el-Hak M. (1986a): The Use of the Dye-Layer Technique for Unsteady Flow Visualization. J. Fluids Eng. 108, 34–38.

    Google Scholar 

  • Gad-el-Hak M. (1986b): Boundary Layer Interactions With Compliant Coatings: An yer. J. Appl. Mech. Rev. 39, 206–212.

    Google Scholar 

  • Gad-el-Hak M. (1986c): The Response of Elastic and Viscoelastic Surfaces to a Turbulent Boundary Layer. J. Appl. Mech. 53, 206–212.

    Google Scholar 

  • Gad-el-Hak M. (1987): Compliant Coatings Research: A Guide to the Experimentalist. J. Fluids & Struct. 1, 55–70.

    Google Scholar 

  • Gad-el-Hak M. (1988a): Review of Flow Visualization Techniques for Unsteady Flows. Flow Visualization IV, ed. C. Véret, (Hemisphere, Washington, D.C.), 1–12.

    Google Scholar 

  • Gad-el-Hak M. (1988b): Visualization Techniques for Unsteady Flows: An Overview. J. Fluids Eng. 110, 231–243.

    Google Scholar 

  • Gad-el-Hak M. (1994): Interactive Control of Turbulent Boundary Layers: A Futuristic Overview. AIAA J. 32, 1753–1765.

    ADS  Google Scholar 

  • Gad-el-Hak M. (1995): Questions in Fluid Mechanics: Stokes’ Hypothesis for a Newtonian, Isotropic Fluid. J. Fluids Eng. 117, 3–5.

    Google Scholar 

  • Gad-el-Hak M. (1996a): Compliant Coatings: A Decade of Progress. Appl. Mech. Rev. 49, no. 10, part 2, S147–S157.

    Google Scholar 

  • Gad-el-Hak M. (1996b): Modern Developments in Flow Contro. Appl. Mech. Rev. 49, 365–379.

    Google Scholar 

  • Gad-el-Hak M., Blackwelder R.F. (1989): Selective Suction from a Delta Wing. AIAA J. 23, 961–962.

    ADS  Google Scholar 

  • Gad-el-Hak M., Blackwelder R.F. (1987a): Control of the Discrete Vortices from a Delta Wing. AIAA J. 25, 1042–1049.

    ADS  Google Scholar 

  • Gad-el-Hak M., Blackwelder R.F. (1987b): A Drag Reduction Method for Turbulent Boundary Layers. AIAA Paper No. 87-0358, Washington, D.C.

    Google Scholar 

  • Gad-el-Hak M., Blackwelder R.F. (1987c): Simulation of Large-Eddy Structures in a Turbulent Boundary Layer. AIAA J. 25, 1207–1215.

    ADS  Google Scholar 

  • Gad-el-Hak M., Blackwelder R.F. (1989): Selective Suction for Controlling Bursting Events in a Boundary Layer AIAA J. 27, 308–314.

    ADS  Google Scholar 

  • Gad-el-Hak M., Blackwelder R.F., Riley J.J. (1984): On the Interaction of Compliant Coatings With Boundary Layer Flows. J. Fluid Mech. 140, 257–280.

    ADS  Google Scholar 

  • Gad-el-Hak M., Ho C.-M. (1985): The Pitching Delta Wing. AIAA J. 23, 1660–1665.

    ADS  Google Scholar 

  • Gad-el-Hak M., Ho C.-M. (1986a): Unsteady Vortical Flow Around Three-Dimensional Lifting Surfaces. AIAA J. 24, 713–721.

    ADS  Google Scholar 

  • Gad-el-Hak M., Ho C.-M. (1986b): Unsteady Flow Around An Ogive-Cylinder. J. Aircraft 23, 520–528.

    Google Scholar 

  • Gadd G.E. (1960): Boundary Layer Separation in the Presence of Heat Transfer. NATO Advisory Group for Aerospace Research and Development, AGARD Report No. R-280, Rhode-Saint-Génèse, Belgium.

    Google Scholar 

  • Gadd G.E., Cope W.F., Attridge J.L. (1958): Heat-Transfer and Skin-Friction Measurements at a Mach Number of 2.44 for a Turbulent Boundary Layer on a Flat Surface and in Regions of Separated Flow. Aeronautical Research Council R&M No. 3148, London, England.

    Google Scholar 

  • Gadetskii V.M., Serebriiskii I.A.M., Fomin V.M. (1972): Investigation of the Influence of Vortex Generators on Turbulent Boundary Layer Separation. Uchenye Zapiski TSAGI 3, 22–28.

    Google Scholar 

  • Gampert B., Homann K., Rieke H.B. (1980): The Drag Reduction in Laminar and Turbulent Boundary Layers by Prepared Surfaces with Reduced Momentum Transfer. Israel J. Technology 18, 287–292.

    ADS  Google Scholar 

  • Gartling D.K. (1970): Tests of Vortex Generators to Prevent Separation of Supersonic Flow in a Compression Corner. Applied Research Laboratory, University of Texas, Report No. ARL-TR-70-44, Austin, TX. (Also available from U.S. NTIS; Document Number AD-734154.)

    Google Scholar 

  • Gebert G.A. (1988): Turbulent Boundary Layer Modification by Streamlined Devices. Ph.D. Thesis, University of Notre Dame, Notre Dame, IN.

    Google Scholar 

  • Gedney C.J. (1983): The Cancellation of a Sound-Excited Tollmien-Schlichting Wave with Plate Vibration. Phys. Fluids 26, 1158–1160.

    ADS  Google Scholar 

  • Gol’d Fel’d M.A., Zatoloka V.V. (1979): On the Improvement of Separating Properties of a Turbulent Boundary Layer as a Result of the Effect of a Shock Wave. Izvestiya Sibirskogo Otdeleniya, Akademii Nank 3, 40–47.

    Google Scholar 

  • Goldstein M.E. (1984): Generation of Instability Waves in Flows Separating from Smooth Surfaces. J. Fluid Mech. 145, 71–94.

    MATH  ADS  Google Scholar 

  • Goldstein M.E., Hultgren L.S. (1989): Boundary-Layer Receptivity to Long-Wave Free-Stream Disturbances. Ann. Rev. Fluid Mech. 21, 137–166.

    ADS  MathSciNet  Google Scholar 

  • Goodman W.L. (1985): Emmons Spot Forcing for Turbulent Drag Reduction. AIAA J. 23, 155–157.

    ADS  Google Scholar 

  • Granville P.S. (1979): Drag of Underwater Bodies. Hydroballistics Design Handbook, vol. 1, (Naval Sea Systems Command, SEAHAC TR 79-1, Washington, D.C.), 309–341.

    Google Scholar 

  • Gratzer L.B. (1971): Analysis of Transport Applications for High Lift Schemes. AGARD Course on Assessment of Lift Augmentation Devices, eds. P.E. Colin and J. Williams, AGARD-LS-43-71, Paper No. 7, Rhode-Saint-Génèse, Belgium.

    Google Scholar 

  • Gregory N., Stuart J.T., Walker W.S. (1955): On the Stability of Three-Dimensional Boundary Layers with Applications to the Flow due to a Rotating Disk. Phil. Trans. R. Soc. London A 248, 155–199.

    ADS  MathSciNet  MATH  Google Scholar 

  • Gutmark E., Ho C.-M. (1986): Visualization of a Forced Elliptical Jet. AIAA J. 24, 684–685.

    ADS  Google Scholar 

  • Gutmark E.J., Schadow K.C., Yu K.H. (1995): Mixing Enhancement in Supersonic Free Shear Flows. Annu. Rev. Fluid Mech. 27, 375–417.

    ADS  Google Scholar 

  • Görtier H. (1955): Dreidimensionales zur Stabilittstheorie laminarer Grenzschichten. ZAMM 35, 362–363.

    Google Scholar 

  • Haight C.H., Reed T.D., Morland B.T. (1974): Design Studies of Transonic and STOL Airfoils with Active Diffusion Control. Advanced Technology Center Report No. ATC-B-94300/4CR-24, Dallas, TX. (Also available from U.S. NTIS; Document Number AD-A011928/9.)

    Google Scholar 

  • Harris C.D., Bartlett D.W. (1972): Wind-Tunnel Investigation of Effects of Underwing Leading Edge Vortex Generators on a Supercritical-Wing Research Airplane Configuration. NASA Technical Memorandum No. TMX-2471, Washington, D.C.

    Google Scholar 

  • Harvey W.D. (1986): Low-Reynolds Number Aerodynamics Research at NASA Langley Research Center. Proc. Int. Conf. on Aerodynamics at Low Reynolds Numbers, vol II, Royal Aeronautical Society, London, England, 19.1–19.49.

    Google Scholar 

  • Harvey W.D., Bushnell D.M., Beckwith I.E. (1969): On the Fluctuating Properties of Turbulent Boundary Layers for Mach. Numbers up to 9.0. NASA Technical Document No. TND-5496, Washington, D.C.

    Google Scholar 

  • Hayakawa L., Squire L.C. (1982): The Effect of the Upstream Boundary Layer State on the Shock Interaction at a Compression Corner. J. Fluid Mech. 122, 369–394.

    ADS  Google Scholar 

  • Heckl M. (1988): The Use of Mathematical Methods in Noise Control Design. Proc. Noise Control Design; Methods and Practice, ed. J.S. Bolton, (Noise Control Foundation, Poughkeepsie, NY), 27–38.

    Google Scholar 

  • Hefner J.N. (1988): Dragging Down Fuel Costs. Aerospace America 26, January, 14–16.

    Google Scholar 

  • Hefner J.N., Anders J.B., Bushnell D.M. (1983): Alteration of Outer Flow Structures for Turbulent Drag Reduction. AIAA Paper No. 83-0293, New York.

    Google Scholar 

  • Hefner J.N., Sabo F.E. (editors) (1987): Research in Natural Laminar Flow and Laminar Flow Control, part 1, NASA Conference Proceedings No. CP-2487, Washington, D.C.

    Google Scholar 

  • Hefner J.N., Weinstein L.M., Bushnell D.M. (1980): Large-Eddy Breakup Scheme for Turbulent Viscous Drag Reduction. Viscous Flow Drag Reduction, ed. G.R. Hough, Progress in Astronautics & Aeronautics, vol. 72, (AIAA, New York), 110–127.

    Google Scholar 

  • Hendricks E.W., Ladd D.M. (1983): Effect of Surface Roughness on the Delayed Transition on 9:1 Heated Ellipsoid. AIAA J. 21, 1406–1409.

    ADS  Google Scholar 

  • Hendricks E.W., Lawler J.V., Home M.P., Handler R.A., Swearingen J.D. (1989): Experiments in Drag-Reducing Polymer Flows. Advances in Fluid Mechanics Measurements, ed. M. Gad-el-Hak, Lecture Notes in Engineering, vol. 45, (Springer-Verlag, Berlin), 535–568.

    Google Scholar 

  • Henry J.R., Wood C.C., Wilbur S.W. (1956): Summary of Subsonic Diffuser Data. NACA Report No. RML-56F05, Washington, D.C.

    Google Scholar 

  • Hinch E.J. (1977): Mechanical Models of Dilute Polymer Solutions in Strong Flows. Phys. Fluids 20, S22–S30.

    ADS  Google Scholar 

  • Hinze J. O. (1975): Turbulence, second edition, (McGraw-Hill, New York).

    Google Scholar 

  • Hoffmann J.A. (1981): Effects of Free Stream Turbulence on Diffuser Performance. J. Fluids Eng. 103, 385–390.

    Google Scholar 

  • Hoffmann J.A., Kassir S.M., Larwood S.M. (1988): The Influence of Free Stream Turbulence on Turbulent Boundary Layers with Mild Adverse Pressure Gradients. NASA Contractor Report No. CR-184677, Washington, D.C.

    Google Scholar 

  • Holmes B. J. (1988): NLF Technology is Ready to Go. Aerospace America 26, January, 16–20.

    Google Scholar 

  • Holstein H. (1940): Messungen zur Laminarhaltung der Grenzschicht an einem Flügel. Lilienthal-Bericht S10, 17–27.

    Google Scholar 

  • Hooshmand A., Youngs R., Wallace J.M., Balint J.-L. (1983): An Experimental Study of Changes in the Structure of a Turbulent Boundary Layer Due to Surface Geometry Changes. AIAA Paper No. 83-0230, New York.

    Google Scholar 

  • Horstmann K.-H., Quast A. (1981): Widerstandsverminderung durch Blasturbulatoren. DFVLR Report No. FB-81-33, Braunschweig, Federal Republic of Germany.

    Google Scholar 

  • Hough G.R. (editor) (1980): Viscous Flow Drag Reduction. Progress in Astronautics & Aeronautics, vol. 72, (AIAA, New York).

    Google Scholar 

  • Howard F.G., Hefner J.N., Srokowski A.J. (1975): Multiple Slot Skin Friction Reduction. J. Aircraft 12, 753–754.

    Google Scholar 

  • Howard F.G., Goodman W.L. (1985): Axisymmetric Bluff-Body Drag Reduction Through Geometrical Modification. J. Aircraft 22, 516–522.

    Google Scholar 

  • Howard F.G., Goodman W.L. (1987): Drag Reduction on a Bluff Body at Yaw Angles to 30 Degrees. J. Spacecraft & Rockets 24, 179–181.

    ADS  Google Scholar 

  • Howarth L. (1938): On the Solution of the Laminar Boundary Layer Equations. Proc. R. Soc. Lond. Ser. A 164, 547–579.

    ADS  MATH  Google Scholar 

  • Hoyt J.W. (1972): Turbulent Flow of Drag-Reducing Suspensions. Naval Undersea Center Report No. TP 299, San Diego, CA.

    Google Scholar 

  • Hoyt J.W. (1979): Polymer Drag Reduction-A Literature Review. Second Int. Conf. on Drag Reduction, Paper No. Al, (BHRA Fluid Engineering, Cranfield, United Kingdom).

    Google Scholar 

  • Hsiao F.-B., Liu C.-F., Shyu J.-Y. (1990): Control of Wall-Separated Flow by Internal Acoustic Excitation. AIAA J. 28, 1440–1446.

    ADS  Google Scholar 

  • Huang L.S., Maestrello L., Bryant T.D. (1987): Separation Control over an Airfoil at High Angles of Attack by Sound Emanating from the Surface. AIAA Paper No. 87-1261, New York.

    Google Scholar 

  • Huerre P., Monkewitz P.A. (1990): Local and Global Instabilities in Spatially Developing Flows. Annu. Rev. Fluid Mech. 22, 473–537.

    ADS  MathSciNet  Google Scholar 

  • Hunter P.A., Johnson H.I. (1954): A Flight Investigation of the Practical Problems Associated with Porous Leading-Edge Suction. NACA Technical Note No. TN-3062, Washington, D.C.

    Google Scholar 

  • Hurley D.G. (1961): The Use of Boundary Layer Control to Establish Free Streamline Flows. Boundary Layer and Flow Control, ed. G.V. Lachmann, vol. 1, (Pergamon Press, New York), 295–341.

    Google Scholar 

  • Huyer S.A., Robinson M.C., Luttges M.W. (1990): Unsteady Aerodynamic Loading Produced by a Sinusoidally Oscillating Delta Wing. AIAA Paper No. 90-1536, New York.

    Google Scholar 

  • Iglisch R. (1944): Exakte Berechnung der laminaren Reibungsschicht an der längsangeströmten ebenen Platte mit homogener Absaugung. Schr. Dtsh. Akad, Luftfahrtforschung 8B, 1–51.

    Google Scholar 

  • Ulingworth C.R. (1954): The Effect of Heat Transfer on the Separation of a Compressible Laminar Boundary Layer. Quart. J. Mech. Appl. Math. 7, 8–34.

    MathSciNet  Google Scholar 

  • Inger G.R., Siebersma T. (1988): Computational Simulation of Vortex Generator Effects on Transonic Shock/Boundary Layer Interaction. AIAA Paper No. 88-2590, New York.

    Google Scholar 

  • Isomoto K., Honami S. (1989): The Effect of Inlet Turbulence Intensity on the Reattachment Process over a Backward-Facing Step. J. Fluids Eng. 111, 87–92.

    Article  Google Scholar 

  • Itoh N. (1987): Another Route to the Three-Dimensional Development of Tollmien-SchlichtingWaves with Finite Amplitude. J. Fluid Mech. 181, 1–16.

    MATH  ADS  Google Scholar 

  • Johansen J.B., Smith C.R. (1986): The Effects of Cylindrical Surface Modifications on Turbulent Boundary Layers. AIAA J. 24, 1081–1087.

    ADS  Google Scholar 

  • Johnson W.S., Tennant J.S., Stamps R.E. (1975): Leading-Edge Rotating Cylinder for Boundary Layer Control on Lifting Surfaces. J. Hydronautics 9, 76–78.

    ADS  Google Scholar 

  • Johnston J., Nishi M. (1989): Vortex Generator Jets-A Means for Passive and Active Control of Boundary Layer Separation. AIAA Paper No. 89-0564, New York.

    Google Scholar 

  • Johnston J., Nishi M. (1990): Vortex Generator Jets-Means for Flow Separation Control. AIAA J. 28, 989–994.

    ADS  Google Scholar 

  • Kachanov Y.S., Koslov V.V., Levchenko V. Ya. (1974): Experimental Study of the Influence of Cooling on the Stability of Laminar Boundary Layers. Izvestia Sibirskogo Otdielenia Ak. Nauk SSSR, Seria Technicheskikh Nauk, Novosibirsk, no. 8–2, 75–79.

    Google Scholar 

  • Kandil O.A., Chuang H.A. (1988): Unsteady Vortex-Dominated Flows around Maneuvering Wings over a Wide Range of Mach Numbers. AIAA Paperr No. 88-0317, New York.

    Google Scholar 

  • Kannberg L.D. (1988): The Urgency Will Return. Mechanical Engineering 110, 33.

    Google Scholar 

  • Kaplan R. E. (1964): The Stability of Laminar Incompressible Boundary Layers in the Presence of Compliant Boundaries. Sc.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA.

    Google Scholar 

  • Katz Y., Nishri B., Wygnanski I. (1989a): The Delay of Turbulent Boundary Layer Separation by Oscillatory Active Control. AIAA Paper No. 89-0975, New York.

    Google Scholar 

  • Katz Y., Nishri B., Wygnanski I. (1989b): The Delay of Turbulent Boundary Layer Separation by Oscillatory Active Control. Phys. of Fluids 1, 179–181.

    ADS  Google Scholar 

  • Kays W.M., Crawford M.E. (1993): Convective Heat and Mass Transfer, third edition, (McGraw-Hill, New York).

    Google Scholar 

  • Kendall J.M. (1970): The Turbulent Boundary Layer over a Wall with Progressive Surface Waves. J. Fluid Mech. 41, 259–281.

    ADS  Google Scholar 

  • Kentfield J.A.C. (1985a): Drag Reduction of Controlled Separated Flows. AIAA Paper No. 85-1800, New York.

    Google Scholar 

  • Kentfield J.A.C. (1985b): Short, Multi-Step, Afterbody Fairings. J. Aircraft 21

    Google Scholar 

  • Kidd J.A., Wikoff D., Cottrell C.J. (1990): Drag Reduction by Controlling Flow Separation Using Stepped Afterbodies. J. Aircraft 27, 564–566.

    Google Scholar 

  • Kim H.T., Kline S.J., Reynolds W.C. (1971): The Production of Turbulence Near a Smooth Wall in a Turbulent Boundary Layer. J. Fluid Mech. 50, 133–160.

    ADS  Google Scholar 

  • Kind R.J. (1967): A Proposed Method of Circulation Control. Ph.D. Dissertation, Cambridge University, Cambridge, England.

    Google Scholar 

  • Klebanoff P.S., Schubauer G.B., Tidstrom K.D. (1955): Measurements of the Effect of Two-Dimensional and Three-Dimensional Roughness Elements on Boundary-Layer Transition. J. Aero. Sci. 22, 803–804.

    Google Scholar 

  • Klebanoff P.S., Tidstrom K.D., Sargent L.M. (1962): The Three-Dimensional Nature of Boundary Layer Instability. J. Fluid Mech. 12, 1–34.

    MATH  ADS  Google Scholar 

  • Koga D. J., Reisenthel P., Nagib H.M. (1984): Control of Separated Flowfields Using Forced Unsteadiness. Illinois Institute of Technology, Fluids & Heat Transfer Report No. R84-1, Chicago, IL.

    Google Scholar 

  • Kosecoff M.A., Ko D.R.S., Merkle C.L. (1976): An Analytical Study of the Effect of Surface Roughness on the Stability of a Heated Water Boundary Layer. Dynamics Technology, Inc., Final Report No. PDT 76-131, Torrance, CA.

    Google Scholar 

  • Koval’nogov S.A., Fomin V.M., Shapovalov G.K. (1987): Experimental Study of the Possibility of Passive Control of Shock-Boundary Layer Interactions. Uchemye kZapiski TSAGI 18, 112–116.

    Google Scholar 

  • Krall K.M., Haight C.H. (1972): Wind Tunnel Tests of a Trapped Vortex-High Lift Airfoil. Advanced Technology Center Report No. ATC-B-94300/3TR-10, Dallas, TX. (Also available from U.S. NTIS; Document Number AD-762 077.)

    Google Scholar 

  • Kramer M.O. (1960): Boundary Layer Stabilization by Distributing Damping. J. Am. Soc. Naval Engrs. 72, 25–33.

    Google Scholar 

  • Kuethe A.M. (1973): Boundary Layer Control of Flow Separation and Heat Exchange. U.S. Patent No. 3,741,285.

    Google Scholar 

  • Kukainis J. (1969): Effects of Three-Dimensional Boundary Layer Control Devices on a Quasi-Two-Dimensional Swept Wing at High Subsonic Speeds. Arnold Engineering Development Center Technical Report No. AEDC-TR-69-251, Arnold Air Fore Base, TN.

    Google Scholar 

  • Lachmann G.V. (1961): Boundary Layer and Flow Control, volumes 1 and 2, (Pergamon Press, New York).

    MATH  Google Scholar 

  • Ladd D.M., Hendricks E.W. (1988): Active Control of 2-D Instability Waves on an Axisymmetric Body. Exp. Fluids 6, 69–70.

    Google Scholar 

  • Landahl M.T. (1962): On the Stability of a Laminar Incompressible Boundary Layer over a Flexible Surface. J. Fluid Mech. 13, 609–632.

    MATH  ADS  Google Scholar 

  • Landahl M.T. (1973): Drag Reduction by Polymer Addition. Proc. 13th IUTAM Congress, eds. E. Becker and G.K. Mikhailov, (Springer-Verlag, Berlin), 177–199.

    Google Scholar 

  • Landahl M.T. (1977): Dynamics of Boundary Layer Turbulence and the Mechanism of Drag Reduction. Phys. Fluids 20, S55–S63.

    ADS  Google Scholar 

  • Landau L.D., Lifshitz E.M. (1987): Fluid Mechanics, second edition, translated from the Russian, (Pergamon Press, Oxford).

    MATH  Google Scholar 

  • Lange R.H. (1954): Present Status of Information Relative to the Prediction of Shock-Induced Boundary Layer Separation. NACA Technical Note No. TN-3065, Washington, D.C.

    Google Scholar 

  • Lankford J.L. (1960): Investigation of the Flow over an Axisymmetric Compression Surface at High Mach Numbers. U.S. Naval Ordnance Laboratory Report No. 6866, Corona, CA.

    Google Scholar 

  • Lankford J.L. (1961): The Effect of Heat Transfer on the Separation of Laminar Flow over Axisymmetric Compression Surfaces: Preliminary Results at Mach No. 6.78. U.S. Naval Ordnance Laboratory Report No. 7402, Corona, CA.

    Google Scholar 

  • Lauchle G.C., Gurney G.B. (1984): Laminar Boundary-Layer Transition on a Heated Underwater Body. J. Fluid Mech. 144, 79–101.

    ADS  Google Scholar 

  • Laufer J. (1975): New Trends in Experimental Turbulence Research. Ann. Rev. Fluid Mech. 7, 307–326.

    ADS  Google Scholar 

  • Lee C.S., Tavella D.A., Wood N.J., Roberts L. (1986): Flow Structure of Lateral Wing-Tip Blowing. AIAA Paper No. 86-1810, New York.

    Google Scholar 

  • Lee C.S., Tavella D.A., Wood N.J., Roberts L. (1989): Flow Structure and Scaling Laws in Lateral Wing-Tip Blowing. AIAA J. 2, 1002–1007.

    ADS  Google Scholar 

  • Lee D.G. (1974): Subsonic Force Characteristics of a Low Aspect Ratio Wing Incorporating a Spinning Cylinder. DTNSRDC Report No. ASED-329, Bethesda, MD. (Also available from U.S. NTIS; Document Number AD-AOO11135.)

    Google Scholar 

  • Lee M., Ho C.-M. (1989): Vortex Dynamics of Delta Wings. Frontiers in Experimental Fluid Mechanics, ed. M. Gad-el-Hak, Lecture Notes in Engineering, vol. 46, (Springer-Verlag, Berlin), 365–428.

    Google Scholar 

  • Lee M., Ho C.-M. (1990): Lift Force of Delta Wings. Appl. Mech. Rev. 43, 209–221.

    Google Scholar 

  • Lee W.K., Vaseleski R.C., Metzner A.B. (1974): Turbulent Drag Reduction in Polymeric Solutions Containing Suspended Fibers. AIChE J. 20, 128–133.

    Google Scholar 

  • Lees L. (1947): The Stability of the Laminar Boundary Layer in a Compressible Fluid. NACA Report No. 876, Washington, D.C.

    Google Scholar 

  • Legner H.H. (1984): A Simple Model for Gas Bubble Drag Reduction. Phys Fluids 27, 2788–2790.

    ADS  Google Scholar 

  • Liandrat J., Aupoix B., Cousteix T. (1986): Calculation of Longitudinal Vortices embedded in a Turbulent Boundary Layer. Fifth Symposium on Turbulent Shear Flows, eds. F. Durst, B.E. Launder, F.W. Schmidt and J.H. Whitelaw, (Springer-Verlag, Berlin), 7.17–7.22.

    Google Scholar 

  • Libby P.A. (1954): Method for Calculation of Compressible Laminar Boundary Layer with Axial Pressure Gradient and Heat Transfer. NACA Technical Note No. TN-3157, Washington, D.C.

    Google Scholar 

  • Liebeck R.H. (1978): Design of Subsonic Airfoils for High Lift. J. Aircraft 15, 547–561.

    Google Scholar 

  • Liepmann H.W., Brown G.L., Nosenchuck D.M. (1982): Control of Laminar Instability Waves Using a New Technique. J. Fluid Mech. 118, 187–200.

    ADS  Google Scholar 

  • Liepmann H.W., Fila G.H. (1947): Investigations of Effects of Surface Temperature and Single Roughness Elements on Boundary Layer Transition. NACA Report No. 890, Washington, D.C.

    Google Scholar 

  • Liepmann H.W., Nosenchuck D.M. (1982): Active Control of Laminar-Turbulent Transition. J. Fluid Mech. 118, 201–204.

    ADS  Google Scholar 

  • Lighthill M.J. (1952): On Sound Generated Aerodynamically. I. General Theory. Proc. Roy.Soc. London A 211, 564–587.

    MATH  ADS  MathSciNet  Google Scholar 

  • Lighthill M. J. (1963): Introduction-Boundary Layer Theory. Laminar Boundary Layers, ed. L. Rosenhead, (Clarendon Press, Oxford), 46–113.

    Google Scholar 

  • Lighthill M.J. (1973): On the Weis-Fogh Mechanism of Lift Generation. J. Fluid Mech. 60, 1–17.

    MATH  ADS  Google Scholar 

  • Lighthill, M.J. (1975): Aerodynamic Aspects of Animal Flight. Swimming and Flying in Nature, eds. T.Y. Wu, C. J. Brokaw and C. Brennen, vol. 2, (Plenum, New York), 423–491.

    Google Scholar 

  • Lin J.C., Ash R.L. (1986): Wall Temperature Control of Low-Speed Body Drag. J. Aircraft 23, 93–94.

    ADS  Google Scholar 

  • Lin J.C., Howard F.G. (1989): Turbulent Flow Separation Control Through Passive Techniques. AIAA Paper No. 89-0976, New York.

    Google Scholar 

  • Lin J.C., Howard F.G., Bushnell D.M., Selby G.V. (1990a): Investigation of Several Passive and Active Methods for Turbulent Flow Separation Control. AIAA Paper No. 90-1598, New York.

    Google Scholar 

  • Lin J.C., Howard F.G., Selby G.V. (1990b): Control of Turbulent Separated Flow over a Rearward-Facing Ramp Using Longitudinal Grooves. J. Aircraft 27, 283–285.

    ADS  Google Scholar 

  • Lin J.C., Weinstein L.M., Watson R.D., Balasubramanian R. (1983): Turbulent Drag Characteristic of Small Amplitude Rigid Surface Waves. AIAA Paper No. 83-0228, New York.

    Google Scholar 

  • Linke W. (1942): Über den Strömungswiderstand einer beheizten ebenen Platte. Luftfahrtforschung 19, 157–160.

    Google Scholar 

  • Lissaman P.B.S. (1983): Low-Reynolds-Number Airfoils. Ann. Rev. Fluid Mech. 15, 223–239.

    ADS  Google Scholar 

  • Liu C.K., Kline S. J., Johnston J.P. (1966): Experimental Study of Turbulent Boundary Layer on Rough Walls. Department of Mechanical Engineering Report No. MD-15, Stanford University, Stanford, CA.

    Google Scholar 

  • Lowell R.L., Reshotko E. (1974): Numerical Study of the Stability of a Heated Water Boundary Layer. Case Western University Report No. FTAS/TR-73-93, Cleveland, OH.

    Google Scholar 

  • Ludwig G.R. (1964): An Experimental Investigation of Laminar Separation from a Moving Wall. AIAA Paper No. 64-6, New York.

    Google Scholar 

  • Lumley J.L. (1969): Drag Reduction by Additives. Ann. Rev. Fluid Mech. 1, 367–384.

    ADS  Google Scholar 

  • Lumley J.L. (1973): Drag Reduction in Turbulent Flow by Polymer Additives. J. Polym. Sci.: Macromol. Rev. 7, 263–290.

    Google Scholar 

  • Lumley J.L. (1977): Drag Reduction in Two Phase and Polymer Flows. Phys. Fluids 20, S64–S71.

    ADS  Google Scholar 

  • Lumley J.L. (1978): Two-Phase and Non-Newtonian Flows. Turbulence, ed. P. Bradshaw, second edition, (Springer-Verlag, Berlin), 289–324.

    Google Scholar 

  • Lumley J.L. (1983): Turbulence Modeling. J. Applied Mechanics 105, 1097–1103.

    Article  Google Scholar 

  • Lumley J.L. (1987): Turbulence Modeling. Proc. Wth U.S. National Cong, of Applied Mechanics, ed. J.P. Lamb, (ASME, New York), 33–39.

    Google Scholar 

  • Lumley J.L., Kubo I. (1984): Turbulent Drag Reduction by Polymer Additives: A Survey. Sibley School of Mechanical and Aerospace Engineering Report No. FDA-84-07, Cornell University, Ithaca, NY.

    Google Scholar 

  • Luttges M.W. (1989): Accomplished Insect Fliers. Frontiers in Experimental Fluid Mechanics, ed. M. Gad-el-Hak, Lecture Notes in Engineering, vol. 46, (Springer-Verlag, Berlin), 429–456.

    Google Scholar 

  • Luttges M.W., Somps C, Kliss M., Robinson M. (1984): Unsteady Separated Flows: Generation and Use by Insects. Unsteady Separated Flows, eds. M.S. Francis and M.W. Luttges, (University of Colorado, Boulder, CO), 127–136.

    Google Scholar 

  • Mabey D.G. (1988): Design Features Which Influence Flow Separations on Aircraft. Aero. J. 92, 409–415.

    Google Scholar 

  • Macha J.M., Norton D.J., Young J.C. (1972): Surface Temperature Effect on Subsonic Stall. AIAA Paper No. 72-960, New York.

    Google Scholar 

  • Madavan N.K., Deutsch S., Merkle C.L. (1984): Reduction of Turbulent Skin Friction by Microbubbles. Phys. Fluids 27, 356–363.

    ADS  Google Scholar 

  • Madavan N.K., Deutsch S., Merkle C.L. (1985): Measurements of Local Skin Friction in a Microbubble-Modified Turbulent Boundary Layer. J. Fluid Mech. 156, 237–256.

    ADS  Google Scholar 

  • Maestrello L., Badavi F.F., Noonan K.W. (1988): Control of the Boundary Layer Separation about an Airfoil by Active Surface Heating. AIAA Paper No. 88-3545-CP, New York.

    Google Scholar 

  • Magnus G. (1852): On the Deflection of a Projectile. Abhandlung der Akademie der Wissenschaften, Berlin, Germany.

    Google Scholar 

  • Malik M.R., Weinstein L.M., Hussaini M.Y. (1983): Ion Wind Drag Reduction. AIAA Paper No. 83-0231, New York.

    Google Scholar 

  • Maltby R.L. (1962): Flow Visualization in Wind Tunnels Using Indicators. NATO Advisory Group for Aerospace Research and Development, AGARDograph No. 70, Rhode-Saint-Génèse, Belgium.

    Google Scholar 

  • Mangalam S.M., Bar-Sever A., Zaman K.B.M.Q., Harvey W.D. (1986): Transition and Separation Control on a Low-Reynolds number Airfoil. Proc. Int. Gonf. on Aerodynamics at Low Reynolds Numbers, vol. I, (Royal Aeronautical Society, London, England), 10.1–10.19.

    Google Scholar 

  • Marchman J.F., Manor D., Plentovich. E.B. (1980): Performance Improvement of Delta Wings at Subsonic Speeds Due to Vortex Flaps. AIAA Paper No. 80-1802, New York.

    Google Scholar 

  • Maxworthy T. (1979): Experiments on the Weis-Fogh Mechanism of Lift Generation by Insects in Hovering Flight. Part 1. Dynamics of the ‘Fling’. J. Fluid Mech. 93, 47–63.

    ADS  Google Scholar 

  • Maxworthy T. (1981): The Fluid Dynamics of Insect Flight. Ann. Rev. Fluid Mech. 13, 329–350.

    ADS  Google Scholar 

  • McComb W.D., Chan K.T.J. (1979): Drag Reduction in Fibre Suspensions: Transitional Behavior due to Fibre Degradation. Nature 280, 45–46.

    ADS  Google Scholar 

  • McComb W.D., Chan K.T.J. (1981): Drag Reduction in Fibre Suspension. Nature 292, 520–522.

    ADS  Google Scholar 

  • McComb W.D., Rabie L.H. (1979): Development of Local Turbulent Drag Reduction Due to Nonuniform Polymer Concentration. Phys. Fluids 22, 183–185.

    ADS  Google Scholar 

  • McCormick M.E., Bhattacharyya R. (1973): Drag Reduction of a Submersible Hull by Electrolysis. Nav. Eng. J. 85, 11–16.

    Google Scholar 

  • McCroskey W.J. (1977): Some Current Research in Unsteady Fluid Dynamics. J. Fluids Eng. 99, 8–39.

    Google Scholar 

  • McCroskey W.J. (1982): Unsteady Airfoils. Ann. Rev. Fluid Mech. 14, 285–311.

    ADS  Google Scholar 

  • Mclnville R.M., Hassan H.A., Goodman W.L. (1985): Mixing Layer Control for Tangential Slot Injection in Turbulent Flows. AIAA Paper No. 85-0541, New York.

    Google Scholar 

  • McLachlan B.G. (1989): Study of a Circulation Control Airfoil with Leading/Trailing-Edge Blowing. J. Aircraft 26, 817–821.

    Google Scholar 

  • McMichael J.M., Klebanoff P.S., Meese N.E. (1980): Experimental Investigation of Drag on a Compliant Surface. Viscous Flow Drag Reduction, ed. G.R. Hough, Progress in Astronautics & Aeronautics, vol. 72, (AIAA, New York), 410–438.

    Google Scholar 

  • McMurray J.T., Metcalfe R.W., Riley J.J. (1983): Direct Numerical Simulations of Active Stabilization of Boundary Layer Flows. Proc. Eighth Biennial Symp. on Turbulence, ed. J.L. Zakin and G.K. Patterson, Paper No. 36, (University of Missouri, Rolla, MO).

    Google Scholar 

  • Mehta R.D. (1985a): Aerodynamics of Sports Balls. Ann. Rev. Fluid Mech. 17, 151–189.

    ADS  Google Scholar 

  • Mehta R.D. (1985b): Effect of a Longitudinal Vortex on a Separated Turbulent Boundary Layer. AIAA Paper No. 85-0530, New York.

    Google Scholar 

  • Mehta R.D. (1988): Vortex/Separated Boundary-Layer Interactions at Transonic Mach Numbers. AIAA J. 26, 15–26.

    ADS  Google Scholar 

  • Merkle C.L., Deutsch, S. (1985): Drag Reduction by Microbubbles: Current Research Status. AIAA Paper No. 85-0537, New York.

    Google Scholar 

  • Merkle C.L., Deutsch S. (1989): Microbubble Drag Reduction. Frontiers inExperimental Fluid Mechanics, ed. M. Gad-el-Hak, Lecture Notes in Engineering, vol. 46, (Springer-Verlag, Berlin), 291–336.

    Google Scholar 

  • Miau J.J., Chen M.H., Chow J.H. (1988): Flow Structures of a Vertically Oscillating Plate Immersed in a Flat-Plate Turbulent Boundary Layer. Proc. Eleventh Biennial Symp. on Turbulence, Paper No. A28, (University of Missouri, Rolla, MO).

    Google Scholar 

  • Migay V.K. (1960a): Diffuser with Transverse Fins (English translation from Russian). Energomashinostroenie, no. 4, 31.

    Google Scholar 

  • Migay V.K. (1960b): On Improving the Effectiveness of Diffuser Flows with Separation (English translation from Russian). Mekhanika i Mashinostroyeniye, no. 4, 171–173.

    Google Scholar 

  • Migay V.K. (1961): Increasing the Efficiency of Diffosers by Fitting Transverse Fins (English translation from Russian). Teploenergetika, no. 1, 45–46.

    Google Scholar 

  • Migay V.K. (1962a): The Efficiency of a Cross-Ribbed Curvilinear Diffuser (English translation from Russian). Energomashinostroenie, no. 1, 45–46.

    Google Scholar 

  • Migay V.K. (1962b): The Aerodynamic Effectiveness of a Discontinuous Surface (English translation from Russian). Inzhenerno-Fizicheskiy Zhurnal 5, 20–24.

    Google Scholar 

  • Migay V.K. (1962c): Investigating Finned Diffusers: Effects of Geometry on Effectiveness of Finned Body Diffusers (English translation from Russian). Teploenergetika, no. 10, 55–59.

    Google Scholar 

  • Miffing R.W. (1981): Tollmien-Schlichting Wave Cancellation. Phys. Fluids 24, 979–981.

    ADS  Google Scholar 

  • Modi V.J., Fernando M., Yokomizo T. (1990): Drag Reduction of Bluff Bodies Through Moving Surface Boundary Layer Control. AIAA Paper No. 90-0298, New York.

    Google Scholar 

  • Modi V.J., Mokhtarian F., Fernando M., Yokomizo T. (1989): Moving Surface Boundary Layer Control as Applied to 2-D Airfoils. AIAA Paper No. 89-0296, New York.

    Google Scholar 

  • Modi V.J., Sun J.L.C., Akutsu T., Lake P., McMillan K., Swinton P.G., Muffins D. (1980): Moving Surface Boundary Layer Control for Aircraft Operations at High Incidence. AIAA Paper No. 80-1621, New York.

    Google Scholar 

  • Modi V.J., Sun J.L.C., Akutsu T., Lake P., McMiffian K., Swinton P.G., Muffins D. (1981): Moving Surface Boundary Layer Control for Aircraft Operation at High Incidence. J. Aircraft 18, 963–968.

    Google Scholar 

  • Moin P., Bewley T. (1994): Feedback Control of Turbulence. Appl. Mech. Rev. 47, S3–S13.

    Article  Google Scholar 

  • Mokhtarian F., Modi V.J. (1988): Fluid Dynamics of Airfoils with Moving Surface Boundary Layer Control. J. Aircraft 25, 163–169.

    Google Scholar 

  • Mokhtarian F., Modi V.J., Yokomizo T. (1988a): Effect of Moving Surfaces on the Airfoil Boundary Layer Control. AIAA Paper No. 88-4337-CP, New York.

    Google Scholar 

  • Mokhtarian F., Modi V.J., Yokomizo T. (1988b): Rotating Air Scopp as Airfoil Boundary Layer Control. J. Aircraft 25, 973–975.

    Google Scholar 

  • Moore F.K. (1958): On the Separation of the Unsteady Laminar Boundary Layer. Boundary-Layer Research, ed. H. Görtier, (Springer-Verlag, Berlin), 296–310.

    Google Scholar 

  • Morduchow M., Grape R.G. (1955): Separation, Stability, and Other Properties of Compressible Laminar Boundary Layer with Pressure Gradient and Heat Transfer. NACA Technical Note No. TN-3296, Washington, D.C.

    Google Scholar 

  • Morkovin M.V. (1969): Critical Evaluation of Transition from Laminar to Turbulent Shear Layers with Emphasis on Hypersonically Traveling Bodies. Air Force Flight Dynamics Laboratory Report No. AFFDL-TR-68-149, Wright-Patterson AFB, OH.

    Google Scholar 

  • Morkovin M.V. (1984): Bypass Transition to Turbulence and Research Desiderata. Transition in Turbines Symposium, NASA CP-2386, Washington, D.C.

    Google Scholar 

  • Morkovin M.V. (1988): Recent Insights into Instability and Transition to Turbulence in Open-Flow Systems. AIAA Paper No. 88-3675, New York.

    Google Scholar 

  • Muffin T., Greated C.A., Grant I. (1980): Pulsating Flow over a Step. Phys. Fluids 23, 669–674.

    ADS  Google Scholar 

  • Nadolink R.H., Haigh W.W. (1995): Bibliography on Skin Friction Reduction with Polymers and other Boundary-Layer Additives. Appl. Mech. Rev. 48, 351–460.

    Google Scholar 

  • Nagamatsu H.T., Dyer R., Ficarra R.V. (1985): Supercritical Airfoil Drag Reduction by Passive Shock Wave/Boundary Layer Control in the Mach Number Range.75 to.9. AIAA Paper No. 85-0207, New York.

    Google Scholar 

  • Nagamatsu H.T., Trilling T.W., Bossard J.A. (1987): Passive Drag Reduction on a Complete NACA 0012 Airfoil at Transonic Mach Numbers. AIAA Paper No. 87-1263, New York.

    Google Scholar 

  • Nagel A.L., Alford W.J., Jr., Dugan J.F. (1975): Future Long-Range Transports— Prospects for Improved Fuel Efficiency. NASA Technical Memorandum No. X-72659, Washington, D.C.

    Google Scholar 

  • Nakayama W. (1986): Thermal Management of Electronic Equipment. App. Mech. Rev. 39, 1847–1868.

    Article  Google Scholar 

  • Narasimha R., Ojha S.K. (1967): Effect of Longitudinal Surface Curvature on Boundary Layers. J. Fluid Mech. 29, 187–199.

    MATH  ADS  Google Scholar 

  • Narasimha R., Sreenivasan K.R. (1973): Relaminarization in Highly Accelerated Turbulent Boundary Layers. J. Fluid Mech. 61, 417–447.

    ADS  Google Scholar 

  • Narasimha R., Sreenivasan K.R. (1979): Relaminarization of Fluid Flows. Advances in Applied Mechanics, ed. C.-S. Yih, vol. 19, (Academic Press, New York), 221–309.

    Google Scholar 

  • Nayfeh A.H., Ragab S.A., Al-Maaitah A. (1986): Effects of Roughness on the Stability of Boundary Layers. AIAA Paper No. 86-1044, New York.

    Google Scholar 

  • Nelson C.F., Koga D.J., Eaton J.K. (1987): Control of the Unsteady Separated Flow behind an Oscillating Two-Dimensional Flap. AIAA Paper No. 89-1027, New York.

    Google Scholar 

  • Nelson C.F., Koga D.J., Eaton J.K. (1990): Unsteady, Separated Flow behind an Oscillating, Two-Dimensional Spoiler. AIAA J. 2, 845–852.

    ADS  Google Scholar 

  • Neuburger D., Wygnanski I. (1988): The Use of a Vibrating Ribbon to Delay Separation on Two-Dimensional Airfoils: Some Preliminary Observations. Proc. Workshop II on Unsteady Separated Flow, ed. J.M. Walker, Frank J. Seiler Research Laboratory, U.S. Air Force Systems Command Report No. FJSRL-TR-88-0004, Colorado Springs, CO, 333–341.

    Google Scholar 

  • Nickerson J.D. (1986): A Study of Vortex Generators at Low Reynolds Numbers. AIAA Paper No. 86-0155, New York.

    Google Scholar 

  • Norman J.R., Fraser F.C. (1937): Giant Fishes, Whales and Dolphins. (Putnam, London, England).

    Google Scholar 

  • Novak C.J., Cornelius K. C, Roads R.K. (1987): Experimental Investigations of the Circular Wall Jet on a Circulation Control Airfoil. AIAA Paper No. 87-0155, New York.

    Google Scholar 

  • Ogorodnikov D.A., Grin V.T., Zakharov N.N. (1972): Boundary Layer Control of Hypersonic Air Inlets. NASA Report No. TTF-13927, Washington, D.C.

    Google Scholar 

  • Oyler T.E., Palmer W.E. (1972): Exploratory Investigation of Pulse Blowing for Boundary Layer Control. Columbus Aircraft Division, North American Rockwell Corp. Report No. NR 72H-12, Columbus, OH. (Also available from U.S. NTIS; Document Number AD-742 085.)

    Google Scholar 

  • Panton R.L. (1996): Incompressible Flow, second edition, (Wiley-Interscience, New York).

    Google Scholar 

  • Papell S.S. (1984): Vortex Generating Flow Passage Design for Increased Film-Cooling Effectiveness and Surface Coverage. NASA Technical Memorandum No. TM-83617, Washington, D.C.

    Google Scholar 

  • Patel V.C., Head M.R. (1968): Reversion of Turbulent to Laminar Flow. J. Fluid Mech. 34, 371–392.

    ADS  Google Scholar 

  • Patera A.T. (1986): Spectral Element Simulation of Flow in Grooved Channels: Cooling Chips with Tollmien-Schlichting Waves. Supercomputers and Fluid Dynamics, eds. K. Kuwahara, R. Mendez, and S.A. Orszag, (Springer-Verlag, Berlin), 41–51.

    Google Scholar 

  • Patera A.T., Mikić B.B. (1986): Exploiting Hydrodynamic Instabilities—Resonant Heat Transfer Enhancement. Int. J. Heat Mass Transfer 29, 1127–1138.

    Google Scholar 

  • Patterson G.K., Zakin J.L., Rodriguez J.M. (1969): Drag Reduction. Polymer Solutions, Soap Solutions, and Solid Particle Suspensions in Pipe Flow. Indus. & Eng. Chem. 61, 22–30.

    Google Scholar 

  • Pearcey H.H. (1961): Shock Induced Separation and Its Prevention by Design and Boundary Layer Control. Boundary Layer and Flow Control—Its Principle and Applications, ed. G.V. Lachmann, vol. 2, (Pergamon Press, Oxford, England), 1166–1344.

    Google Scholar 

  • Pfeifer R., Rosetti S.J. (1971): Experimental Determination of Pressure Drop and Flow Characteristics of Dilute Gas-Solid Suspensions. NASA Contractor Report No. 1894, Washington, D.C.

    Google Scholar 

  • Pfenninger W. (1946): Untersuchungen über Reibungsverminderung an Tragflügeln, insbesondere mit Hilfe von Grenzschichtabsaugung. Institute of Aerodynamics Report No. 13, ETH, Zürich, Switzerland.

    Google Scholar 

  • Pfenninger W., Vemuru C.S. (1990): Design of Low Reynolds Number Airfoils. J. Aircraft 27, 204–210.

    Google Scholar 

  • Phillips O.M. (1979): The Last Chance Energy Book (Johns Hopkins Univ. Press, Baltimore, MD).

    Google Scholar 

  • Plesniak M.W., Nagib H.M. (1985): Net Drag Reduction in Turbulent Boundary Layers Resulting from Optimized Manipulation. AIAA Paper No. 85-0518, New York.

    Google Scholar 

  • Povkh I.L., Bolonov N.I., Eidel’man A.Ye. (1979): The Average Velocity Profile and the Frictional Loss in Turbulent Flow of an Aqueous Suspension of Clay. Fluid Mech.—Soviet Research 8. 118–124.

    Google Scholar 

  • Prandtl L. (1904): Über Flüssigkeitsbewegung bei sehr kleiner Reibung. Proc. Third Int. Math. Congr., (Heidelberg, Germany), 484–491.

    Google Scholar 

  • Prandtl L. (1925): Magnuseffeckt und Windkraftscbiff. Naturwissenschaften 13, 93–108.

    ADS  Google Scholar 

  • Prandtl L. (1935): The Mechanics of Viscous Fluids. Aerodynamic Theory, ed. W.F. Durand, vol. III, (Springer-Verlag, Berlin), 34–208.

    Google Scholar 

  • Preston J.H. (1958): The Minimurn Reynolds Number for a Turbulent Boundary Layer and the Selection of a Transition Device. J. Fluid Mech. 3, 373–384.

    MATH  ADS  Google Scholar 

  • Pretsch J. (1942): Umschlagbeginn und Absaugung. Jahrb. Dtsch. Luftfahrtforschung 1, 54–71.

    MathSciNet  Google Scholar 

  • Purohit S.C. (1987): Effect of Vectored Suction on a Shock-Induced Separation. AIAA J. 25, 759–760.

    ADS  Google Scholar 

  • Purshouse M. (1976): On the Damping of Unsteady Flow by Compliant Boundaries. J. Sound & Vibration 49, 423–436.

    MATH  ADS  Google Scholar 

  • Purshouse M. (1977): Interaction of Flow with Compliant Surfaces. Ph.D. Thesis, Cambridge University, Cambridge, United Kingdom.

    Google Scholar 

  • Radin I. (1974): Solid-Fluid Drag Reduction. Ph.D. Thesis, University of Missouri, Rolla, MO.

    Google Scholar 

  • Radin I., Zakin J.L., Patterson G.K. (1975): Drag Reduction in Solid-Fluid Systems. AIChE J. 21, 358–371.

    Google Scholar 

  • Ragab S.A., Nayfeh A.H. (1980): A Comparison of the Second-Order Triple-Deck Theory and Interacting Boundary Layers for Incompressible Flows Past a Hump. AIAA Paper No. 80-0072, New York.

    Google Scholar 

  • Raghunathan S. (1985): Passive Control of Shock-Boundary Layer Interaction. Prog. Aerospace Sci. 25, 271–296.

    ADS  Google Scholar 

  • Rao D.M. (1979): Leading-Edge Vortex Flap Experiments on a 74-Deg. Delta Wing. NASA Contractor Report No. CR-159161, Washington, D.C.

    Google Scholar 

  • Rao D.M. Kariya T.T. (1988): Boundary-Layer Submerged Vortex Generators for Separation Control—An Exploratory Study. AIAA Paper No. 88-3546-CP, New York.

    Google Scholar 

  • Ras M., Ackeret J. (1941): Über Verhinderung der Grenzschicht-Turbulenz durch Absaugung. Helv. Phys. Acta 14, 323.

    Google Scholar 

  • Raspet A. (1952): Boundary-Layer Studies on a Sailplane. Aeronaut. Eng. Rev. 11, 52–60.

    Google Scholar 

  • Reed H.L., Nayfeh A.H. (1986): Numerical-Perturbation Technique for Stability of Flat-Plate Boundary Layers with Suction. AIAA J. 24, 208–214.

    MATH  ADS  MathSciNet  Google Scholar 

  • Reed H.L., Saric W.S. (1987): Stability and Transition of Three-Dimensional Flows. Proc. 10th U.S. Nat. Cong. Applied Meck, ed. J.P. Lamb, (ASME, New York), 457–468.

    Google Scholar 

  • Reed H.L., Saric W.S. (1989): Stability of Three-Dimensional Boundary Layers. Ann. Rev. Fluid Mech. 21, 235–284.

    ADS  MathSciNet  Google Scholar 

  • Reischman M.M., Tiederman W.G. (1975): Laser-Doppler Anemometer Measurements in Drag-Reducing Channel Flows. J. Fluid Mech. 70, 369–392.

    ADS  Google Scholar 

  • Reisenthel P.H., Nagib H.M., Koga D. J. (1985): Control of Separated Flows Using Forced Unsteadiness. AIAA Paper No. 85-0556, New York.

    Google Scholar 

  • Reshotko E. (1976): Boundary-Layer Stability and Transition. Ann. Rev. Fluid Mech. 8, 311–349.

    ADS  Google Scholar 

  • Reshotko E. (1979): Drag Reduction by Cooling in Hydrogen-Fueled Aircraft. J. Aircraft 16, 584–590.

    Google Scholar 

  • Reshotko E. (1985): Control of Boundary Layer Transition. AIAA Paper No. 85-0562, New York.

    Google Scholar 

  • Reshotko E. (1987): Stability and Transition—How Much Do We Know?. Proc. 10th U.S. National Gong, of App. Mech., ed. J.P. Lamb, (ASME, New York), 421–434.

    Google Scholar 

  • Reynolds G.A., Saric W.S. (1986): Experiments on the Stability of the Flate-Plate Boundary Layer with Suction. AIAA J. 24, 202–207.

    ADS  Google Scholar 

  • Reynolds W.C., Carr, L.W. (1985): Review of Unsteady, Driven, Separated Flows. AIAA Paper No. 85-0527, New York.

    Google Scholar 

  • Reynolds W.C., Eaton J.K., Johnston J.P., Hesselink L., Powell D.J., Roberts L., Kroo E. (1988): Flow Control for Unsteady and Separated Flows and Turbulent Mixing. AFOSR Technical Report No. TR-89-0232, Washington, D.C. (Also available from U.S. NTIS; Document Number AD-A205989.)

    Google Scholar 

  • Riley J.J., Gad-el-Hak M. (1985): The Dynamics of Turbulent Spots. Frontiers in Fluid Mechanics, eds. S.H. Davis and J.L. Lumley, (Springer-Verlag, Berlin), 123–155.

    Google Scholar 

  • Riley J.J., Gad-el-Hak M., Metcalfe R.W. (1988): Compliant Coatings. Ann, Rev. Fluid Mech. 20, 393–420.

    ADS  Google Scholar 

  • Ringleb E.O. (1961): Separation Control by Trapped Vortices. Boundary Layer and Flow Control, ed. G.V. Lachmann, vol. 1, (Pergamon Press, Oxford, England), 265–294.

    Google Scholar 

  • Robinson S.K. (1991): Coherent Motions in the Turbulent Boundary Layer. Annu. Rev. Fluid Mech. 23, 601–639.

    ADS  Google Scholar 

  • Roos F.W., Kegelman J.T. (1986): Control of Coherent Structures in Reattaching Laminar and Turbulent Shear Layers. AIAA J. 24, 1956–1963.

    ADS  Google Scholar 

  • Rott N. (1956): Unsteady Viscous Flow in the Vicinity of a Stagnation Point. Q. Appl Math. 13, 444–451.

    MathSciNet  MATH  Google Scholar 

  • Rotta J.C. (1970): Control of Turbulent Boundary Layers by Uniform Injection and Suction of Fluid. Seventh Congress of the International Council of the Aeronautical Sciences, ICAS Paper No. 70-10, Rome, Italy.

    Google Scholar 

  • Runyan L.J., Steers L. L. (1980): Boundary Layer Stability Analysis of a Natural Laminar Flow Glove on the F-111 TACT Airplane. Viscous Flow Drag Reduction, ed. G.R. Hough, Progress in Astronautics & Aeronautics, vol. 72, (AIAA, New York), 17–32

    Google Scholar 

  • Ryskin G. (1987): Turbulent Drag Reduction by Polymers: A Quantitative Theory. Phys. Rev. Letters 59, 2059–2062.

    ADS  Google Scholar 

  • Sabadell L.A. (1988): Effects of a Drag Reducing Additive on Turbulent Boundary Layer Structure. M.Sc. Thesis, Princeton University, Princeton, NJ.

    Google Scholar 

  • Sajben M., Chen C.P., Kroutil J.C. (1976): A New, Passive Boundary Layer Control Device. AIAA Paper No. 76-700, New York.

    Google Scholar 

  • Saric W.S., Reed H.L. (1986): Effect of Suction and Weak Mass Injection on Boundary-Layer Transition. AIAA J. 24, 383–389.

    ADS  Google Scholar 

  • Saripalli K.R., Simpson R.L. (1980): Investigation of Blown Boundary Layers with an Improved Wall Jet System. NASA Contractor Report No. CR-3340, Washington, D.C.

    Google Scholar 

  • Sasaki K., Kiya M. (1985): Effect of Free-Stream Turbulence on Turbulent Properties of a Separation-Reattachment Flow. Bulletin of JSME 28, 610–616.

    ADS  Google Scholar 

  • Savins J.G. (1967): A Stress-Controlled Drag-Reduction Phenomenon. Rheologica Acta 6, 323–330.

    Google Scholar 

  • Savu G., Trifu O. (1984): Porous Airfoils in Transonic Flow. AIAA J. 22, 989–991.

    ADS  Google Scholar 

  • Schilz W. (1965/66): Experimentelle Untersuchungen zur Akustischen Beeinflussung der Strömungsgrenzschicht in Luft. Acustica 16, 208–223.

    Google Scholar 

  • Schlichting H. (1959): Einige neuere Ergebnisse über Grenzschichtbeein flussung. Proc. First Int. Congr. Aero. Sci., eds. Th. von Karman et al., Adv. in Aero. Sci., vol. 2, (Pergamon Press, London, England), 563–586.

    Google Scholar 

  • Schlichting H. (1979): Boundary-Layer Theory, seventh edition, (McGraw-Hill, New York).

    MATH  Google Scholar 

  • Schlichting H., Pechau W. (1959): Auftriebserhöhung von Tragflügeln durch kontinuierlich verteilte Absaugtmg. ZFW 7, 113–119.

    MATH  Google Scholar 

  • Schlichting H., Ulrich A. (1940): Zur Berechnung des Umschlages laminar-turbulent. Jahrb. Dtsch. Luftfahrtforschung 1, 8–35.

    Google Scholar 

  • Schofield W.H. (1985): Turbulent Boundary Layer Development in an Adverse Pressure Gradient After an Interaction with a Normal Shock Wave. J. Fluid Mech. 154, 43–62.

    ADS  Google Scholar 

  • Schubauer G.B., Skramstad H.K. (1947): Laminar Boundary-Layer Oscillations and Stability of Laminar Flow. J. Aero. Sci. 14, 69–78.

    Google Scholar 

  • Schubauer G.B., Spangenberg W.G. (1960): Forced Mixing in Boundary Layers. J. Fluid Mech. 8, 10–32.

    MATH  ADS  Google Scholar 

  • Scott M.R., Watts H.A. (1977): Computational Solution of Linear Two-Point Boundary Value Problems via Orthonormalization. J. Numerical Analysis 14, 40–70.

    MATH  MathSciNet  ADS  Google Scholar 

  • Sears W.R. (1956): Some Recent Developments in Airfoil Theory. J. Aeronaut. Sci. 23, 490–499.

    MATH  MathSciNet  Google Scholar 

  • Sears W.R., Telionis D.P. (1972): Unsteady Boundary-Layer Separation. Recent Research on Unsteady Boundary Layers, ed. E.A. Eichelbrenner, vol. 1,(Presses de l’Université Laval, Quebec, Canada), 404–442.

    Google Scholar 

  • Sears W.R., Telionis D.P. (1975): Boundary-Layer Separation in Unsteady Flow. J. Appl Math. 28, 215–235.

    ADS  MATH  Google Scholar 

  • Selby G.V., Miandoab, F.H. (1990): Effect of Surface Grooves on Base Pressure for a Blunt Trailing-Edge Airfoil. AIAA J. 28, 1133–1135.

    ADS  Google Scholar 

  • Sen M. (1989): The Influence of Developments in Dynamical Systems Theory on Experimental Fluid Mechanics. Frontiers in Experimental Fluid Mechanics, ed. M. Gad-el-Hak, Lecture Notes in Engineering, vol. 46, (Springer-Verlag, Berlin), 1–24.

    Google Scholar 

  • Shiloh K., Shivaprasad B.G., Simpson R.L. (1981): The Structure of a Separating Turbulent Boundary Layer. Part 3: Transverse Velocity Measurements. J. Fluid Mech. 113, 75–90.

    ADS  Google Scholar 

  • Sigal A. (1971): An Experimental Investigation of the Turbulent Boundary Layer over a Wavy Wall. Ph.D. Thesis, California Institute of Technology, Pasadena, CA.

    Google Scholar 

  • Sigurdson L.W., Roshko A. (1985): Controlled Unsteady Excitation of a Reattaching Flow. AIAA Paper No. 85-0552, New York.

    Google Scholar 

  • Smith A.M.O. (1957): Transition, Pressure Gradient, and Stability Theory. Actes IX Congrès International de Mécanique Appliquée, vol. 4, (Université de Bruxelles, Belgique), 234–244.

    Google Scholar 

  • Smith A.M.O. (1977): Stratford’s Turbulent Separation Criterion for Axially-Symmetric Flows. J. Applied Math. & tPhysics 28, 929–939.

    MATH  ADS  Google Scholar 

  • Smith A.M.O., Gamberoni N. (1956): Transition, Pressure Gradient and Stability Theory. Douglas Aircraft Company Report No. ES-26388, El Segundo, CA.

    Google Scholar 

  • Smith A.M.O., Kaups K. (1968): Aerodynamics of Surface Roughness and Imperfections. Society of Automotive Engineers Paper No. SAE-680198, New York.

    Google Scholar 

  • Smith A.M.O., Stokes T.R., Jr., Lee R.S. (1981): Optimum Tail Shapes for Bodies of Revolution. J. Hydronautics 15, 67–73.

    Google Scholar 

  • Smits A.J., Wood, D.H. (1985): The Response of Turbulent Boundary Layers to Sudden Perturbations. Ann. Rev. Fluid Mech. 17, 321–358.

    ADS  Google Scholar 

  • So R.M.C., Mellor G.L. (1973): Experiment on Convex Curvature Effects in Turbulent Boundary Layers. J. Fluid Mech. 60, 43–62.

    ADS  Google Scholar 

  • Soderman P.T. (1972): Aerodynamic Effects of Leading Edge Separation on a Two-Dimensional Airfoil. NASA Technical Memorandum No. TMX-2643, Washington, D.C.

    Google Scholar 

  • Soo S.L., Trezek G.J. (1966): Turbulent Pipe Flow of Magnesia Particles in Air. I&EC Fundamentals 5, 388–392.

    Google Scholar 

  • Spaid F.W. (1972): Cooled Supersonic Turbulent Boundary Layer Separated by a Forward Facing Step. AIAA J. 19, 1117–1119.

    ADS  Google Scholar 

  • Squire H.B. (1933): On the Stability for Three-Dimensional Disturbances of Viscous Fluid Flow Between Parallel Walls. Proc. R. Soc. Lond. A 142, 621–628.

    ADS  Google Scholar 

  • Stanewsky E., KroGhiann P. (1985): Transonic Drag Rise and Drag Reduction by Active/Passive Boundary Layer Control. Aircraft Drag Prediction and Reduction, AGARD Report No. R-723, Rhode-Saint-Génèse, Belgium, 11.1–11.41.

    Google Scholar 

  • Staniforth R. (1958): Some Tests on Cascades of Compressor Blades Fitted with Vortex Generators. National Gas Turbine Establishment Memorandum No. NGTE-M-314, Farnborough, England. (Also Aeronautical Research. Council, CP-487, London, England.)

    Google Scholar 

  • Steinheil E., Scherber W., Seidl M., Rieger H. (1977): Investigations on the Interaction of Gases and Well-Defined Solid Surfaces with Respect to Possibilities for Reduction of Aerodynamic Friction and Aerothermal Heating. Rarefied Gas Dynamics, ed. J.L. Potter, AIAA Progress in Aeronautics & Astronautics, vol. 51, (AIAA, New York), 589–602.

    Google Scholar 

  • Stratford B.S. (1959a): The Prediction of Separation of the Turbulent Boundary Layer. J. Fluid Mech. 5, 1–16.

    MATH  ADS  MathSciNet  Google Scholar 

  • Stratford B.S. (1959b): An Experimental Flow with Zero Skin Friction Throughout its Region of Pressure Rise. J. Fluid Mech. 5, 17–35.

    MATH  ADS  MathSciNet  Google Scholar 

  • Strazisar A.J., Reshotko E., Prahl J.M. (1977): Experimental Study of the Stability of Heated Laminar Boundary Layers in Water. J. Fluid Mech. 83, 225–247.

    ADS  Google Scholar 

  • Stuart J.T. (1963): Hydrodynamic Stability. Laminar Boundary Layer Theory, ed. L. Rosenhead, (Clarendon Press, Oxford), 492–579.

    Google Scholar 

  • Stull F.D., Velkoff H.R. (1975): Flow Regimes in Two-Dimensional Ribbed Diffusera. J. Fluids Eng. 97, 87–96.

    Google Scholar 

  • Swanson W.M. (1961): The Magnus Effect: A Summary of Investigations to Date. J. Basic Eng. 83, 461–470.

    Google Scholar 

  • Swearingen J.D., Blackwelder R.F. (1984): Instantaneous Streamwise Velocity Gradients in the Wall Region. Bull. Am. Phys. Soc. 29, 1528.

    Google Scholar 

  • Tanil. I. (1969): Boundary-Layer Transition. Ann. Rev. Fluid Mech. 1, 169–196.

    ADS  Google Scholar 

  • Tavella D.A., Lee C.S., Wood N.J. (1986a): Influence of Wing Tip Configuration on Lateral Blowing Efficiency. AIAA Paper No. 86-0475, New York.

    Google Scholar 

  • Tavella D.A., Wood N.J., Lee C.S., Roberts L. (1986b): Two Blowing Concepts for Roll and Lateral Control of Aircraft. Department of Aeronautics and Astronautics Report No. TR-75, Stanford University, Stanford, CA.

    Google Scholar 

  • Tavella D.A., Wood N.J., Lee C.S., Roberts L. (1988): Lift Modulation with Lateral Wing-Tip Blowing. J. Aircraft 25, 311–316.

    Google Scholar 

  • Taylor G.I. (1923): Stability of a Viscous Liquid Contained between Two Rotating Cylinders. Phil. Trans. R. Soc. London A 223, 289–343.

    ADS  Google Scholar 

  • Taylor H.D. (1948a): Application of Vortex Generator Mixing Principles to Diffasers. Research Department Concluding Report No. R-15064-5, United Aircraft Corporation, East Hartford, CN.

    Google Scholar 

  • Taylor H.D. (1948b): Design Criteria for and Applications of the Vortex Generator Mixing Principle,” Research Department Report No. M-15 038-1, United Aircraft Corporation, East Hartford, CN.

    Google Scholar 

  • Telionis D.P., Werle M.J. (1973): Boundary-Layer Separation from Downstream Moving Boundaries. J. Appl. Mech. 40, 369–374.

    MATH  Google Scholar 

  • Tennant J.S. (1973): A Subsonic Diffuser with Moving Walls for Boundary Layer Control AIAA J. 11, 240–242.

    ADS  Google Scholar 

  • Tennant J.S., Johnson W.S., Keanton D.D., Krothapalli A. (1975): The Application of Moving Wall Boundary Layer Control to Submarine Control Surfaces. University of Tennesse, Report No. MAE-75-01210-1, Knoxville, TN. (Also available from U.S. NTIS; Document Number AD-AO23536.)

    Google Scholar 

  • Thomas A.S.W. (1983): The Control of Boundary-Layer Transition Using a Wave Superposition Principle. J. Fluid Mech. 137, 233–250.

    ADS  Google Scholar 

  • Tichy J., Warnaka G.E., Poole L.A. (1984): A Study of Active Control of Noise in Ducts. J. Vibration, Acoustics, Stress & Reliability in Design 106, 399–404.

    ADS  Google Scholar 

  • Tiederman W.G., Luchik T.S., Bogard D.G, (1985): Wall-Layer Structure and Drag Reduction. J. Fluid Mech. 156, 419–437.

    ADS  Google Scholar 

  • Tobak M., Peake D.J. (1982): Topology of Three-Dimensional Separated Flows. Ann. Rev. Fluid Mech. 14, 61–85.

    ADS  MathSciNet  Google Scholar 

  • Toms B.A. (1948): Some Observations on the Flow of Linear Polymer Solutions Through Straight Tubes at Large Reynolds Numbers. Proc. 1st Int. Congr. Rheol., vol. 2, (North-Holland, Amsterdam), 135–141.

    Google Scholar 

  • Truckenbrodt E. (1956): Ein einfaches Näherungsverfahren zum Berechnen der laminaren Reibungsschicht mit Absaugung. Forschg. Ing.-Wes. 22, 147–157.

    MATH  Google Scholar 

  • Ulrich A. (1944): Theoretische Untersuchungen über die Widerstandsersparnis durch Laminarhaltung mit Absaugung. Schriften Dtsch. Akad. Luftfahrtforschung B 8, 53.

    Google Scholar 

  • Vakili A.D. (1990): Review of Vortical Flow Utilization. AIAA Paper No. 90-1429, New York.

    Google Scholar 

  • Vakili A.D., Wu J.M., Bhat M.K. (1988): High Angle of Attack Aerodynamics of Excitation of the Locked Leeside Vortex. Society of Automotive Engineers Paper No. SAE-88-1424, New York.

    Google Scholar 

  • Van Ingen J.L., Boermans L.M.M. (1986): Aerodynamics at Low Reynolds Numbers: A Review of Theoretical and Experimental Research at Delft University of Technology. Proc. Int. Conf. on Aerodynamics at Low Reynolds Numbers, vol. I, (Royal Aeronautical Society, London, England), 1.1–1.40.

    Google Scholar 

  • Van Laere L., Sas P. (1988): Principles and Applications of Active Noise Cancellation. Proc. Noise Control Design: Methods and Practice, ed. J.S. Bolton, (Noise Control Foundation, Poughkeepsie, NY), 279–284.

    Google Scholar 

  • Verollet E., Fulachier L., Dumas R., Favre A. (1972): Turbulent Boundary Layer with Suction and Heating to the Wall. Heat and Mass Transfer in Boundary Layers, eds. N. Afgan, Z. Zaric and P. Anastasijevec, vol. 1, (Pergamon Presss, Oxford), 157–168.

    Google Scholar 

  • Vidal R.J. (1959): Research on Rotating Stall in Axial-Flow Compressors: Part III—Experiments on Laminar Separation from a Moving Wall. Wright Air Development Center Technical Report No. 59-75, Wright-Patterson Air Force Base, OH.

    Google Scholar 

  • Viets H. (1980): Coherent Structures in Time Dependent Shear Flows. Turbulent Boundary Layers, AGARD/NATO CPP-271, Paper No. 5, Nevilly Sur Seine, France.

    Google Scholar 

  • Viets H., Ball M., Bougine D. (1981a): Performance of Forced Unsteady Diffusers. AIAA Paper No. 81-0154, New York.

    Google Scholar 

  • Viets H., Palmer G.M., Bethke R.J. (1984): Potential Applications of Forced Unsteady Flows. Unsteady Separated Flows, eds. M.S. Francis and M.W. Luttges, (University of Colorado, Boulder, CO), 21–27.

    Google Scholar 

  • Viets H., Piatt M., Ball M. (1981c): Unsteady Wing Boundary Layer Energization. AIAA Paper No. 79-1631, New York.

    Google Scholar 

  • Viets H., Piatt M., Ball M. (1981b): Forced Vortex Near a Wall. AIAA Paper No. 81-0256, New York.

    Google Scholar 

  • Viets H., Piatt M., Ball M. (1981c): Boundary Layer Control by Unsteady Vortex Generation. J. Wind Eng. & Industrial Aerodynamics 7, 135–144.

    Google Scholar 

  • Vijgen P.M.H.W., van Dam C.P., Hohnes B.J., Howard F.G. (1989): Wind-Tunnel Investigations of Wings with Serrated Sharp Trailing Edges. Low Reynolds Number Aerodynamics, ed. T.J. Mueller, Lecture Notes in Engineering, vol. 54, (Springer-Verlag, Berlin), 295–313.

    Google Scholar 

  • Virk P.S. (1975): Drag Reduction Fundamentals. AIChE J. 21, 625–656.

    Google Scholar 

  • Virk P.S., Merrill E.W., Mickley H.S., Smith K.A., Mollo-Christensen E.L. (1967). The Toms Phenomenon: Turbulent Pipe Flow of Dilute Polymer Solutions. J. Fluid Mech. 30, 305–328.

    ADS  Google Scholar 

  • Viswanath P.R. (1988): Shockwave-Turbulent Boundary Layer Interaction and Its Control: A Survey of Recent Developments. Sādhanā 12, 45–104.

    Google Scholar 

  • Viswanath P.R. (1995): Flow Management Techniques for Base and Afterbody Drag Reduction. Prog. Aero. Sci. 32, 79–129.

    Google Scholar 

  • Von Winkle W.A. (1961): An Evaluation of a Boundary Layer Stabilization Coating. Naval Underwater Systems Center Technical Memorandum No. 922-111-61, New London, CT.

    Google Scholar 

  • Wagner R.D., Bartlett D.W., Maddalond. V. (1988): Laminar Flow Control is Maturing. Aerospace America 26, January, 20–24.

    Google Scholar 

  • Wagner R.D., Fischer M.C. (1984): Fresh Attack on Laminar Flow. Aerospace America 22, March, 72–76.

    Google Scholar 

  • Wagner, R.D. Maddalon D.V., Fischer M.C. (1984): Technology Development for Laminar Boundary Control on Subsonic Transport Aircraft. AGARD CP-365, Paper No. 16, Rhode-Saint-Génèse, Belgium.

    Google Scholar 

  • Wallis R.A., Stuart C.M. (1958): On the Control of Shock Induced Boundary Layer Separation with Discrete Jets. Aeronautical Research Council Current Paper No. 494, London, England.

    Google Scholar 

  • Walsh M. J. (1980): Drag Characteristics of V-Groove and Transverse Curvature Riblets. Viscous Flow Drag Reduction, ed. G.R. Hough, Progress in Astronautics & Aeronautics, vol. 72, (AIAA, New York), 168–184.

    Google Scholar 

  • Walsh M.J. (1982): Turbulent Boundary Layer Drag Reduction Using Riblets. AIAA Paper No. 82-0169, New York.

    Google Scholar 

  • Walsh M.J. (1983): Riblets as a Viscous Drag Reduction Technique. AIAA J. 21, 485–486.

    ADS  Google Scholar 

  • Walsh M. J. (1990): Riblets. Viscous Drag Reduction in Boundary Layers, eds. D.M. Bushnell and J.N. Hefner, Progress in Astronautics & Aeronautics, vol. 123, (AIAA, Washington, D.C.), 203–261.

    Google Scholar 

  • Walsh M.J., Lindemann A.M. (1984): Optimization and Application of Riblets for Turbulent Drag Reduction. AIAA Paper No. 84-0347, New York.

    Google Scholar 

  • Walsh M.J., Weinstein M. (1978): Drag and Heat Transfer on surfaces with Small Longitudinal Fins. AIAA Paper No. 78-1161, New York.

    Google Scholar 

  • Warnaka G.E. (1982): Active Attenuation of Noise: The State of the Art. Noise Control Eng. 18, 100–110.

    ADS  Google Scholar 

  • Warner J.V., Waters D.E., Bernhard R.J. (1988): Adaptive Active Noise Control in Three Dimensional Enclosures. Proc. Noise Control Design: Methods and Practice, ed. J.S. Bolton, (Noise Control Foundation, Poughkeepsie, NY), 285–290.

    Google Scholar 

  • Wazzan A.R., Okamura T.T., Smith A.M.O. (1968): Stability of Water Flow over Heated and Cooled Flat Plates. J. Heat Transfer 90, 109–114.

    Google Scholar 

  • Wazzan A.R., Okamura T.T., Smith A.M.O. (1970): The Stability and Transition of Heated and Cooled Incompressible Boundary Layers. Proc. 4th Int. Heat Transfer Conf., eds. U. Grigull and E. Hahne, vol. 2, FC 1.4, (Elsevier, New York).

    Google Scholar 

  • Weiberg J.A., Giulianettij D., Gambucci B., Innis R.C. (1973): Takeoff and Landing Performance and Noise Characteristics of a Deflected STOL Airplane with Interconnected Propellers and Rotating Cylinder Flaps. NASA Technical Memorandum No. TM-X-62,320, Washington, D.C.

    Google Scholar 

  • Weis-Fogh T. (1973): Quick Estimates of Flight Fitness in Hovering Animals, Including Novel Mechanisms for Lift Production. J. Exp. Biol. 59, 169–230.

    Google Scholar 

  • Wells C.S. (editor) (1969): Viscous Drag Reduction (Plenum Press, New York).

    Google Scholar 

  • Wells C.S., Jr., Spangler J.G. (1967): Injection of a Drag-Reducing Fluid into Turbulent Pipe Flow of a Newtonian Fluid. Phys. Fluids 10. 1890–1894.

    ADS  Google Scholar 

  • Werle M.J., Paterson R.W., Presz W.M., Jr. (1987): Trailing-Edge Separation/Stall Alleviation. AIAA J. 25, 624–626.

    ADS  Google Scholar 

  • Wheeler G.O. (1984): Means for Maintaining Attached Flow of a Flow Medium. U.S. Patent No. 4,455,045.

    Google Scholar 

  • Whitcomb R.T. (1956): A Study of the Zero-Lift Drag-Rise Characteristics of Wing-Body Combinations Near the Speed of Sound. NACA Report No. 1273, Washington, D.C.

    Google Scholar 

  • White A., Hemmings J.A.G. (1976): Drag Reduction by Additives: Review and Bibliography (BHRA Fluid Engineering, Cranfield, United Kingdom).

    Google Scholar 

  • Whites R.C., Sudderth R.W., Wheldon W.G. (1966): Laminar Flow Control on the X-21. Astro. & Aero. 4, 38–43.

    Google Scholar 

  • Wilkinson S.P. (1988): Direct Drag Measurements on Thin-Element Riblets with Suction and Blowing. AIAA Paper No. 88-3670-CP, New York.

    Google Scholar 

  • Wilkinson S.P. (1990): Interactive Wall Turbulence Control. Viscous Drag Reduction in Boundary Layers, eds. D.M. Bushnell and J.N. Hefner, Progress in Astronautics & Aeronautics, vol. 123, (AIAA, Washington, D.C.) 479–509.

    Google Scholar 

  • Wilkinson S.P., Anders J.B., Lazos B.S., Bushnell D.M. (1988): Turbulent Drag Reduction Research at NASA Langley: Progress and Plans. Int. J. Heat and Fluid Flow 9, 266–277.

    Google Scholar 

  • Wilkinson S.P., Lazos B.S. (1987): Direct Drag and Hot-Wire Measurements on Thin-Element Riblet Arrays. Turbulence Management and Relaminarization, eds. H.W. Liepmann and R. Narasimha, (Springer-Verlag, Berlin), 121–131.

    Google Scholar 

  • Williams D.R., Amato C.W. (1989): Unsteady Pulsing of Cylinder Wakes. Frontiers in Experimental Fluid Mechanics, ed. M. Gad-el-Hak, Lecture Notes in Engineering, vol. 46, (Springer-Verlag, Berlin), 337–364.

    Google Scholar 

  • Williams J.C., III, Johnson W.D. (1974a): Semisimilar Solutions to Unsteady Boundary-Layer Flows Including Separation. AIAA J. 12, 1388–1393.

    MATH  ADS  Google Scholar 

  • Williams J.C., III, Johnson W.D. (1974b): Note on Unsteady Boundary-Layer Separation. AIAA J. 12, 1427–1429.

    Article  MATH  ADS  Google Scholar 

  • Williams T. I. (1987): The History of Invention (Facts on File Publications, New York).

    Google Scholar 

  • Willis G.J.K. (1986): Hydrodynamic Stability of Boundary Layers over Compliant Surfaces. Ph.D. Thesis, University of Exeter, United Kingdom.

    Google Scholar 

  • Wimpenny J.C. (1970): Vortex Generators. U.S. Patent No. 3,525486.

    Google Scholar 

  • Wood C. J. (1961): A Study of Hypersonic Separated Flow. Ph.D. Thesis, University of London, England

    Google Scholar 

  • Wood N.J., Nielsen J. N. (1985): Circulation Control Airfoils—Past, Present, Future. AIAA Paper No. 85-0204, New York.

    Google Scholar 

  • Wood N.J., Roberts L. (1986): Experimental Results of the Control of a Vortical Flow by Tangential Blowing. Stanford University Report No. JIAA TR-71, Stanford, CA.

    Google Scholar 

  • Wood N.J., Roberts L. (1988): Control of Vortical Lift on Delta Wings by Tangential Leading-Edge Blowing. J. Aircraft 25, 236–243.

    Google Scholar 

  • Wood N.J., Roberts L., Celik Z. (1990): Control of Asymmetric Vortical Flows over Delta Wings at High Angles of Attack. J. Aircraft 27, 429–435.

    Google Scholar 

  • Wooldridge C.E., Muzzy R.J. (1966): Boundary-Layer Turbulence Measurements with Mass Addition and Combustion. AIAA J. 4, 2009–2016.

    ADS  Google Scholar 

  • Wortmann A. (1987): Alleviation of Fuselage from Drag Using Vortex Flows. Department of Energy Report No. DOE/CE/15277-T1, Washington, D.C.

    Google Scholar 

  • Wu J., Tulin M.P. (1972): Drag Reduction by Ejecting Additive Solutions into a Pure-Water Boundary Layer. ASME J. Basic Eng. 94, 749–756.

    Google Scholar 

  • Wu J.M., Vakili A.D., Chen Z.L. (1983): Investigation on the Effects of Discrete Wingtip Jets. AIAA Paper No. 83-0546, New York.

    Google Scholar 

  • Wu J.M., Vakili A.D., Gilliam F.T. (1984): Aerodynamic Interactions of Wingtip Flow with Discrete Wingtip Jets. AIAA Paper No. 84-2206, New York.

    Google Scholar 

  • Wuest W. (1961): Survey of Calculation Methods of Laminar Boundary Layers With Suction in Incompressible Flow. Boundary Layer and Flow Control—Its Principle and Applications, ed. G.V. Lachmann, vol. 2, (Pergamon Press, New York), 771–800.

    Google Scholar 

  • Yajnik K.S., Acharya M. (1978): Non-Equilibrium Effects in a Turbulent Boundary Layer due to the Destruction of Large Eddies. Structure and Mechanisms of Turbulence, ed. H. Fiedler, vol. 1, (Springer-Verlag, Berlin), 249–260.

    Google Scholar 

  • Yeo K.S., Dowling A.P. (1987): The Stability of Inviscid Flows over Passive Compliant Walls. J. Fluid Mech. 183, 265–292.

    MATH  ADS  Google Scholar 

  • Young A.D. (1953): Boundary Layers. Modem Developments in Fluid Dynamics: High Speed Flow, ed. L. Howarth, vol. 1, (Clarendon Press, Oxford), 375–475.

    Google Scholar 

  • Zakin J.L., Poreh M., Brosh A., Warshavsky M. (1971): Exploratory Study of Friction Reduction in Slurry Flows. Ghent. Eng. Prog. Symp. Seri., no. 67, vol. 111, (AIChE, New York), 85–89.

    Google Scholar 

  • Zaman K.B.M.Q., Bar-Sever A., Mangalam S.M. (1987): Effect of Acoustic Excitation on the Flow over a Low-Re Airfoil. J. Fluid Mech. 182, 127–148.

    ADS  Google Scholar 

  • Zaman K.B.M.Q., McKinzie D.J. (1989): Control of’ Laminar Separation’ over Airfoils by Acoustic Excitation. AIAA Paper No. 89-0565, New York. (Also NASA Technical Memorandum No. TM-101379, Washington, D.C.)

    Google Scholar 

  • Zang T.A., Hussaini M.Y., Bushnell D.M. (1984): Numerical Computations of Turbulence Amplification in Shock Wave Interactions. AIAA J. 22, 13–22.

    MATH  ADS  Google Scholar 

  • Zhang F., Sheng C. (1987): A Prediction Method for Optimum Velocity Ratio of Air Jet Vortex Generator. J. Aerospace Power 2, 55–60, 92, 93.

    ADS  Google Scholar 

  • Zhuk V.I., Ryzhov O.S. (1980): Formation of Recirculation Zones in the Boundary Layer on a Moving Surface. Fluid Dynamics 15, 637–644.

    MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gad-el-Hak, M. (1998). Introduction to Flow Control. In: Gad-el-Hak, M., Pollard, A. (eds) Flow Control. Lecture Notes in Physics, vol 53. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69672-5_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-69672-5_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63936-7

  • Online ISBN: 978-3-540-69672-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics