Skip to main content

Allocentric and Egocentric Spatial Representations: Definitions, Distinctions, and Interconnections

  • Chapter
  • First Online:
Book cover Spatial Cognition

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1404))

Abstract

Although the literatures on human spatial cognition and animal navigation often make distinctions between egocentric and allocentric (also called exocentric or geocentric) representations, the terms have not generally been well defined. This chapter begins by making formal distinctions between three kinds of representations: allocentric locational, egocentric locational, and allocentric heading representations. These distinctions are made in the context of whole-body navigation (as contrasted, e.g., with manipulation). They are made on the basis of primitive parameters specified by each representation, and the representational distinctions are further supported by work on brain mechanisms used for animal navigation. From the assumptions about primitives, further inferences are made as to the kind of information each representation potentially makes available. Empirical studies of how well people compute primitive and derived spatial parameters are briefly reviewed. Finally, the chapter addresses what representations humans may use for processing spatial information during physical and imagined movement, and work on imagined updating of spatial position is used to constrain the connectivity among representations.

Chapter prepared for conference on Raumkognition, Trier, Germany, September 1997. The author acknowledges support of Grant 9740 from the National Eye Institute for the study of Klatzky et al. (in press). This work has benefited from extensive discussions of spatial cognition with Jack Loomis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, G. L. (1981). A developmental perspective on the effects of “subdividing” macrospatial experience. Journal of Experimental Psychology: Human Learning and Memory, 7, 120–132.

    Article  Google Scholar 

  2. Amorim, M., Glasauer, S., Corpinot, K., & Berthoz, A. (1997). Updating an object’s orientation and location during nonvisual navigation: A comparison between two processing modes. Perception & Psychophysics, 59(3), 404–418.

    Google Scholar 

  3. Berthoz, A. (1991). Reference frames for the perception and control of movement. In J. Paillard (Ed.), Brain and space (pp. 81–111). New York: Oxford University Press.

    Google Scholar 

  4. Brewer, B., & Pears, J. (1993). Frames of reference. In R. Eilan, R. McCarthy, & B. Brewer (Eds.), Spatial representation: Problems in philosophy and psychology (pp. 25–30). Oxford: Blackwell.

    Google Scholar 

  5. Easton, R. D., & Sholl, M. J. (1995). Object-array structure, frames of reference, and retrieval of spatial knowledge. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 483–500.

    Article  Google Scholar 

  6. Etienne, A. S., Maurer, R., & Séguinot, V. (1996). Path integration in mammals and its interaction with visual landmarks. Journal of Experimental Biology, 199, 201–209.

    Google Scholar 

  7. Gallistel, C. R. (1990). The organization of learning. Cambridge, MA: MIT Press.

    Google Scholar 

  8. Klatzky, R. L., Loomis, J. M., Beall, A. C., Chance, S. S., & Golledge, R. G. Updating an egocentric spatial representation during real, imagined, and virtual locomotion. Psychological Science, in press.

    Google Scholar 

  9. Klatzky, R. L., Loomis, J. M., & Golledge, R. G. (1997). Encoding spatial representations through nonvisually guided locomotion: Tests of human path integration. In D. Medin (Ed.), The psychology of learning and motivation (Vol. 37, pp. 41–84). San Diego: Academic Press.

    Google Scholar 

  10. Klatzky, R. L., Loomis, J. M., Golledge, R. G., Cicinelli, J. G., Doherty, S., & Pellegrino, J. W. (1990). Acquisition of route and survey knowledge in the absence of vision. Journal of Motor Behavior, 22, 19–43.

    Google Scholar 

  11. Kosslyn, S. M., Pick, H. L., & Fariello, G. R. (1974). Cognitive maps in children and men. Child Development, 45, 707–716.

    Article  Google Scholar 

  12. Lederman, S. J., Klatzky, R. L., & Barber, P. (1985). Spatial-and movement-based heuristics for encoding pattern information through touch. Journal of Experimental Psychology: General, 114, 33–49.

    Article  Google Scholar 

  13. Lederman, S. J., & Taylor, M. M. (1969). Perception of interpolated position and orientation by vision and active touch. Perception & Psychophysics, 6, 153–159.

    Google Scholar 

  14. Levinson, S. C. (1996). Frames of reference and Molyneux’s question: Crosslinguistic evidence. In P. Bloom, M. A. Peterson, L. Nadel, & M. F. Garrett (Eds.), Language and space: Language, speech, and communication (pp. 109–169). Cambridge, MA: MIT Press.

    Google Scholar 

  15. Loomis, J. M., Da Silva, J. A., Fujita, N., & Fukusima, S. S. (1992). Visual space perception and visually directed action. Journal of Experimental Psychology: Human Perception and Performance, 18, 906–922.

    Article  Google Scholar 

  16. Loomis, J. M., Klatzky, R. L., & Golledge, R. G. (in press). Human navigation by path integration. In R. Golledge (Ed.), Wayfinding: Cognitive mapping and spatial behavior. Baltimore, MD: Johns Hopkins University.

    Google Scholar 

  17. Loomis, J. M., Klatzky, R. L., Golledge, R. G., Cicinelli, J. G., Pellegrino, J. W., & Fry, P. (1993). Nonvisual navigation by blind and sighted: Assessment of path integration ability. Journal of Experimental Psychology: General, 122, 73–91.

    Article  Google Scholar 

  18. Loomis, J. M., Klatzky, R. L., Philbeck, J. W., & Golledge, R. G. (in press). Assessing auditory distance perception using perceptually directed action. Perception & Psychophysics.

    Google Scholar 

  19. Maki, R. H. (1981). Categorization and distance effects with spatial linear orders. Journal of Experimental Psychology: Human Learning and Memory, 7, 15–32.

    Article  Google Scholar 

  20. Maurer, R., & Séguinot, V. (1995). What is modeling for? A critical review of the models of path integration. Journal of Theoretical Biology, 175, 457–475.

    Article  Google Scholar 

  21. May, M. (1996). Cognitive and embodied modes of spatial imagery. Psychologische Beitraege, 38, 418–434.

    Google Scholar 

  22. McNaughton, B. L., Leonard, B., & Chen, L. (1989). Cortical-hippocampal interactions and cognitive mapping: A hypothesis based on reintegration of the parietal and inferotemporal pathways for visual processing. Psychobiology, 17(3), 230–235.

    Google Scholar 

  23. O’Keefe, J. (1976). Place units in the hippocampus of the freely moving rat. Experimental Neurology, 51, 78–109.

    Article  Google Scholar 

  24. O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map: Preliminary evidence from unit activity in the freely moving rat. Experimental Brain Research, 34, (171–175).

    Article  Google Scholar 

  25. O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Clarendon Press.

    Google Scholar 

  26. Paillard, J. (1971). The motor determinants of spatial organization. Cahiers de Psychologie, 14, 261–316.

    Google Scholar 

  27. Philbeck, J. W., Loomis, J. M., & Beall, A. C. (1997). Visually perceived location is an invariant in the control of action. Perception & Psychophysics, 59(4), 601–612.

    Google Scholar 

  28. Pick, H. L. (1988). Perceptual aspects of spatial cognitive development. In J. Stiles-Davis, M. Kritchevsky, & U. Bellugi (Eds.), Spatial cognition: Brain bases and development (pp. 145–156). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  29. Presson, C.C., & Montello, D.R. (1994). Updating after rotational and translation body movements: Coordinate structure of perspective space. Perception, 23, 1447–1455.

    Article  Google Scholar 

  30. Redish, A. D. (1997). Beyond the cognitive map: A computational neuroscience theory of navigation in the rodent. Unpublished doctoral dissertation, Carnegie Mellon University, Pittsburgh, PA.

    Google Scholar 

  31. Redish, A. D., & Touretzky, D. S. (1997). Cognitive maps beyond the hippocampus. Hippocampus, 7, 15–35.

    Article  Google Scholar 

  32. Rieser, J. J. (1989). Access to knowledge of spatial structure at novel points of observation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15(6), 1157–1165.

    Article  Google Scholar 

  33. Soechting, J. F., Tong, D. C., & Flanders, M. (1996). Frames of reference in sensorimotor integration: Position sense of the arm and hand. In A. M. Wing, P. Haggard, & J. R. Flanagan (Eds.), Hand and brain: The neurophysiology and psychology of hand movements (pp. 151–167). San Diego, CA: Academic Press, Inc.

    Google Scholar 

  34. Stevens, A., & Coupe, P. (1978). Distortions in judged spatial relations. Cognitive Psychology, 10, 422–437.

    Article  Google Scholar 

  35. Thorndyke, P. W. (1981). Distance estimation from cognitive maps. Cognitive Psychology, 13, 526–550.

    Article  Google Scholar 

  36. Touretzky, D. S., & Redish, A. D. (1996). Theory of rodent navigation based on interacting representations of space. Hippocampus, 6, 247–270.

    Article  Google Scholar 

  37. Tversky, B. (1981). Distortions in memory for maps. Cognitive Psychology, 13, 407–433.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Klatzky, R.L. (1998). Allocentric and Egocentric Spatial Representations: Definitions, Distinctions, and Interconnections. In: Freksa, C., Habel, C., Wender, K.F. (eds) Spatial Cognition. Lecture Notes in Computer Science(), vol 1404. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69342-4_1

Download citation

  • DOI: https://doi.org/10.1007/3-540-69342-4_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64603-7

  • Online ISBN: 978-3-540-69342-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics