Skip to main content

How Are the Locations of Objects in the Environment Represented in Memory?

  • Conference paper
  • First Online:
Spatial Cognition III (Spatial Cognition 2002)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 2685))

Included in the following conference series:

Abstract

This chapter summarizes a new theory of spatial memory. According to the theory, when people learn the locations of objects in a new environment, they interpret the spatial structure of that environment in terms of a spatial reference system. Our current conjecture is that a reference system intrinsic to the collection of objects is used. Intrinsic axes or directions are selected using egocentric (e.g., viewing perspective) and environmental (e.g., walls of the surrounding room) cues. The dominant cue is egocentric experience. The reference system selected at the first view is typically not updated with additional views or observer movement. However, if the first view is misaligned but a subsequent view is aligned with natural and salient axes in the environment, a new reference system is selected and the layout is reinterpreted in terms of this new reference system. The chapter also reviews evidence on the orientation dependence of spatial memories and recent results indicating that two representations may be formed when people learn a new environment; one preserves interobject spatial relations and the other comprises visual memories of experienced views.

Preperation of this chapter and the research reported in it were supported in part by National Institute of Mental Health Grant R01-MH57868. The chapter was improved as a result of the comments of two anonymous reviewers. I am enormously indebted to Vaibhav Diwadkar, Weimin Mou, Björn Rump, Amy Shelton, Christine Valiquette, and Steffen Werner for their contributions to the empirical and theoretical developments summarized in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, R. A. (1999). Multimodal integration for the representation of space in the posterior parietal cortex. In N. Burgess, K. J. Jeffery, & J. O’Keefe (Eds.), The hippocampal and parietal foundations of spatial cognition (pp. 90–103). Oxford: Oxford University Press.

    Google Scholar 

  • Bryant, D. J., & Tversky, B. (1999). Mental representations of perspective and spatial relations from diagrams and models. Journal of Experimental Psychology: Learning, Memory, and Cognition, 25, 137–156.

    Article  Google Scholar 

  • Christou, C. G., & Bülthoff, H. H. (1999). View dependence in scene recognition after active learning. Memory & Cognition, 27, 996–1007.

    Google Scholar 

  • Diwadkar, V. A., & McNamara, T. P. (1997). Viewpoint dependence in scene recognition. Psychological Science, 8, 302–307.

    Article  Google Scholar 

  • Easton, R. D., & Sholl, M. J. (1995). Object-array structure, frames of reference, and retrieval of spatial knowledge. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21, 483–500.

    Article  Google Scholar 

  • Evans, G. W., & Pezdek, K. (1980). Cognitive mapping: Knowledge of real-world distance and location information. Journal of Experimental Psychology: Human Learning and Memory, 6, 13–24.

    Article  Google Scholar 

  • Farrell, M. J., & Robertson, I. H. (1998). Mental rotation and the automatic updating of body-centered spatial relationships. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 227–233.

    Article  Google Scholar 

  • Franklin, N., & Tversky, B. (1990). Searching imagined environments. Journal of Experimental Psychology: General, 119, 63–76.

    Article  Google Scholar 

  • Friedman, A., & Hall, D. L. (1996). The importance of being upright: Use of environmental and viewer-centered reference frames in shape discriminations of novel three-dimensional objects. Memory & Cognition, 24, 285–295.

    Google Scholar 

  • Hermer, L., & Spelke, E. S. (1994). A geometric process for spatial reorientation in young children. Nature, 370, 57–59.

    Article  Google Scholar 

  • Huttenlocher, J., Hedges, L. V., & Duncan, S. (1991). Categories and particulars: Prototype effects in estimating spatial location. Psychological Review, 98, 352–376.

    Article  Google Scholar 

  • Lansdale, M. W. (1998). Modeling memory for absolute location. Psychological Review, 105, 351–378.

    Article  Google Scholar 

  • Learmonth, A. E., Newcombe, N. S., & Huttenlocher, J. (2001). Toddlers’ use of metric information and landmarks to reorient. Journal of Experimental Child Psychology, 80, 225–244.

    Article  Google Scholar 

  • Levine, M., Jankovic, I. N., & Palij, M. (1982). Principles of spatial problem solving. Journal of Experimental Psychology: General, 111, 157–175.

    Article  Google Scholar 

  • Levinson, S. C. (1996). Frames of reference and Molyneaux’s question: Crosslinguistic evidence. In P. Bloom, M. A. Peterson, L. Nadel, & M. F. Garrett (Eds.), Language and space (pp. 109–169). Cambridge, MA: MIT Press.

    Google Scholar 

  • McMullen, P. A., & Jolicoeur, P. (1990). The spatial frame of reference in object naming and discrimination of left-right reflections. Memory & Cognition, 18, 99–115.

    Google Scholar 

  • McNamara, T. P., Rump, B., & Werner, S. (in press). Egocentric and geocentric frames of reference in memory of large-scale space. Psychonomic Bulletin & Review.

    Google Scholar 

  • Milner, A. D., & Goodale, M. A. (1995). The visual brain in action. Oxford: Oxford University Press.

    Google Scholar 

  • Montello, D. R. (1991). Spatial orientation and the angularity of urban routes: A field study. Environment and Behavior, 23, 47–69.

    Article  Google Scholar 

  • Mou, W., & McNamara, T. P. (2001). Spatial memory and spatial updating. Unpublished manuscript.

    Google Scholar 

  • Mou, W., & McNamara, T. P. (2002). Intrinsic frames of reference in spatial memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 162–170.

    Article  Google Scholar 

  • Palmer, S. E. (1989). Reference frames in the perception of shape and orientation. In B. E. Shepp & S. Ballesteros (Eds.), Object perception: Structure and process (pp. 121–163). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Presson, C. C., DeLange, N., & Hazelrigg, M. D. (1989). Orientation specificity in spatial memory: What makes a path different from a map of the path? Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 887–897.

    Article  Google Scholar 

  • Presson, C. C., & Hazelrigg, M. D. (1984). Building spatial representations through primary and secondary learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10, 716–722.

    Article  Google Scholar 

  • Presson, C. C., & Montello, D. R. (1994). Updating after rotational and translational body movements: Coordinate structure of perspective space. Perception, 23, 1447–1455.

    Article  Google Scholar 

  • Richardson, A. E., Montello, D. R., & Hegarty, M. (1999). Spatial knowledge acquisition from maps and from navigation in real and virtual environments. Memory & Cognition, 27, 741–750.

    Google Scholar 

  • Rieser, J. J. (1989). Access to knowledge of spatial structure at novel points of observation. Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 1157–1165.

    Article  Google Scholar 

  • Rieser, J. J., Guth, D. A., & Hill, E. W. (1986). Sensitivity to perspective structure while walking without vision. Perception, 15, 173–188.

    Article  Google Scholar 

  • Rock, I. (1956). The orientation of forms on the retina and in the environment. American Journal of Psychology, 69, 513–528.

    Article  Google Scholar 

  • Rock, I. (1973). Orientation and form. New York: Academic Press.

    Google Scholar 

  • Roskos-Ewoldsen, B., McNamara, T. P., Shelton, A. L., & Carr, W. (1998). Mental representations of large and small spatial layouts are orientation dependent. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24, 215–226.

    Article  Google Scholar 

  • Schober, M. F. (1993). Spatial perspective-taking in conversation. Cognition, 47, 1–24.

    Article  Google Scholar 

  • Shelton, A. L., & McNamara, T. P. (1997). Multiple views of spatial memory. Psychonomic Bulletin & Review, 4, 102–106.

    Google Scholar 

  • Shelton, A. L., & McNamara, T. P. (2001a). Spatial memory and perspective taking. Unpublished manuscript.

    Google Scholar 

  • Shelton, A. L., & McNamara, T. P. (2001b). Systems of spatial reference in human memory. Cognitive Psychology, 43, 274–310.

    Article  Google Scholar 

  • Shelton, A. L., & McNamara, T. P. (2001c). Visual memories from nonvisual experiences. Psychological Science, 12, 343–347.

    Article  Google Scholar 

  • Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171, 701–703.

    Article  Google Scholar 

  • Sholl, M. J. (1987). Cognitive maps as orienting schemata. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13, 615–628.

    Article  Google Scholar 

  • Sholl, M. J., & Nolin, T. L. (1997). Orientation specificity in representations of place. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23, 1494–1507.

    Article  Google Scholar 

  • Simons, D. J., & Wang, R. F. (1998). Perceiving real-world viewpoint changes. Psychological Science, 9, 315–320.

    Article  Google Scholar 

  • Tversky, B. (1981). Distortions in memory for maps. Cognitive Psychology, 13, 407–433.

    Article  Google Scholar 

  • Valiquette, C. M., McNamara, T. P., & Smith, K. (2002). Locomotion, incidental learning, and the orientation dependence of spatial memory. Unpublished manuscript.

    Google Scholar 

  • Vetter, T., Poggio, T., & Bülthoff, H. H. (1994). The importance of symmetry and virtual views in three-dimensional object recognition. Current Biology, 4, 18–23.

    Article  Google Scholar 

  • Wang, R. F. (1999). Representing a stable environment by egocentric updating and invariant representations. Spatial Cognition and Computation, 1, 431–445.

    Article  Google Scholar 

  • Werner, S., & Schmidt, K. (1999). Environmental reference systems for large scale spaces. Spatial Cognition and Computation, 1, 447–473.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

McNamara, T.P. (2003). How Are the Locations of Objects in the Environment Represented in Memory?. In: Freksa, C., Brauer, W., Habel, C., Wender, K.F. (eds) Spatial Cognition III. Spatial Cognition 2002. Lecture Notes in Computer Science, vol 2685. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-45004-1_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-45004-1_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40430-9

  • Online ISBN: 978-3-540-45004-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics