Skip to main content

The Fetal Origins of Adult Mental Illness

  • Chapter
Early Life Origins of Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 573))

Abstract

This chapter critically examines the hypothesis that the origins of some adult mental illnesses such as schizophrenia, which is the focus of this review, derive from adverse events in utero, such as maternal nutrition deficiency, infection and hypoxia. The hypothesis was originally derived from neuropathological changes in patients with established schizophrenia that are highly suggestive of impaired neural development occurring around mid-gestation. Increasingly it appears that gestational timing and the severity of the insult, rather than type of insult, plays a critical role in subsequent behavioural outcome. Supporting the neurodevelopmental hypothesis, recent studies have demonstrated that serious mental illnesses such as schizophrenia and afferent disorders are associated firstly with behavioural abnormalities that are present from early childhood, and secondly with ongoing neural injury on serial magnetic resonance imaging through late childhood and adolescence. These data suggest that alterations in brain development during fetal life lead to an evolving damage over the course of childhood before finally being overtly expressed in early adulthood. Current data suggest that the initial loss of cells in utero leads to a long-term remodelling of the brain that is mediated by upregulation of physiological apoptosis. That such adult illnesses present with early behavioural and physiological clues, are progressive and not static in nature, and that the process is potentially governed by common mechanisms regardless of cause, offers significant new opportunities for intervention and treatment.

“I am a crooked, twisted piece of humanity. The sooner I die the better. God will relieve me from my sufferings, as I really cannot stand it.” —Voices of the mad: Patients letters from the Royal Edinburgh Asylum 1873–1908. Allan Beveridge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beveridge A. Voices of the mad: Patients’ letters from the Royal Edinburgh Asylum, 1873–1908. Psychol Med 1997; 27(4):899–908.

    PubMed  CAS  Google Scholar 

  2. In: Harrison PJ, Roberts GW, eds. The Neuropathology of Schizophrenia. Progress and Interpretation. Oxford: Oxford University Press, 2000.

    Google Scholar 

  3. Plum F. Prospects for research on schizophrenia. III. Neurophysiology. Neuropathological findings. Neurosci Res Program Bull 1972; 10(4):384–388.

    PubMed  CAS  Google Scholar 

  4. Shenton ME, Dickey CC, Frumin M et al. A review of MRI findings in schizophrenia. Schizophr Res 2001; 49(1–2):1–52.

    PubMed  CAS  Google Scholar 

  5. Harrison PJ. The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 1999; 122(Pt 4):593–624.

    PubMed  Google Scholar 

  6. Pearlson GD. Neurobiology of schizophrenia. Ann Neurol 2000; 48(4):556–566.

    PubMed  CAS  Google Scholar 

  7. Woods BT. Is schizophrenia a progressive neurodevelopmental disorder? Toward a unitary pathogenetic mechanism. Am J Psychiatry 1998; 155(12):1661–1670.

    PubMed  CAS  Google Scholar 

  8. Benes FM. Emerging principles of altered neural circuitry in schizophrenia. Brain Res Brain Res Rev 2000; 31(2–3):251–269.

    PubMed  CAS  Google Scholar 

  9. Miyamoto S, LaMantia AS, Duncan GE et al. Recent advances in the neurobiology of schizophrenia. Mol Interv 2003; 3(1):27–39.

    PubMed  Google Scholar 

  10. Harrison PJ. The neuropathology of primary mood disorder. Brain 2002; 125(Pt 7):1428–1449.

    PubMed  Google Scholar 

  11. Hirschhorn JN. Genetic epidemiology of type 1 diabetes. Pediatr Diabetes 2003; 4(2):87–100.

    PubMed  Google Scholar 

  12. Owen MJ, Williams NM, O’Donovan MC. The molecular genetics of schizophrenia: New findings promise new insights. Mol Psychiatry 2004; 9(1):14–27.

    PubMed  CAS  Google Scholar 

  13. Harrison PJ, Owen MJ. Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet 2003; 361(9355):417–419.

    PubMed  CAS  Google Scholar 

  14. Allen NB, Lewinsohn PM, Seeley JR. Prenatal and perinatal influences on risk for psychopathology in childhood and adolescence. Dev Psychopathol 1998; 10(3):513–529.

    PubMed  CAS  Google Scholar 

  15. Glasson EJ, Bower C, Petterson B et al. Perinatal factors and the development of autism: A population study. Arch Gen Psychiatry 2004; 61(6):618–627.

    PubMed  Google Scholar 

  16. McGrath JJ, Feron FP, Burne TH et al. The neurodevelopmental hypothesis of schizophrenia: A review of recent developments. Ann Med 2003; 35(2):86–93.

    PubMed  Google Scholar 

  17. Church SM, Cotter D, Bramon E et al. Does schizophrenia result from developmental or degenerative processes? J Neural Transm Suppl 2002; (63):129–147.

    PubMed  Google Scholar 

  18. Walker J, Curtis V, Murray RM. Schizophrenia and bipolar disorder: Similarities in pathogenic mechanisms but differences in neurodevelopment. Int Clin Psychopharmacol 2002; 17(Suppl 3):S11–19.

    PubMed  Google Scholar 

  19. Weinberger DR, McClure RK. Neurotoxicity, neuroplasticity, and magnetic resonance imaging morphometry: What is happening in the schizophrenic brain? Arch Gen Psychiatry 2002; 59(6):553–558.

    PubMed  Google Scholar 

  20. Clouston TS. The Neuroses of Development. Edinburgh: Oliver and Boyd, 1891.

    Google Scholar 

  21. Clouston TS. Clinical Lectures on Mental Diseases. 3rd ed. London: Churchill, 1892.

    Google Scholar 

  22. Clouston TS. Clinical Lectures on Mental Diseases. 6th ed. London: Churchill, 1904.

    Google Scholar 

  23. O’Connell P, Woodruff PW, Wright I et al. Developmental insanity or dementia praecox: Was the wrong concept adopted? Schizophr Res 1997; 23(2):97–106.

    PubMed  CAS  Google Scholar 

  24. Kraeplin E. Dementia praecox and paraphrenia. New York: Krieger, 1919.

    Google Scholar 

  25. de Haan L, Bakker JM. Overview of neuropathological theories of schizophrenia: From degeneration to progressive developmental disorder. Psychopathology 2004; 37(1):1–7.

    PubMed  Google Scholar 

  26. Bleuler E. Dementia praecox or the group of schizophrenias. New York: International Universities Press, 1911.

    Google Scholar 

  27. Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 1987; 44(7):660–669.

    PubMed  CAS  Google Scholar 

  28. Murray RM, Lewis SW. Is schizophrenia a neurodevelopmental disorder? Br Med J Clin Res ed 1987; 295(6600):681–682.

    CAS  Google Scholar 

  29. Cannon M, Caspi A, Moffitt TE et al. Evidence for early-childhood, pan-developmental impairment specific to schizophreniform disorder: Results from a longitudinal birth cohort. Arch Gen Psychiatry 2002; 59(5):449–456.

    PubMed  Google Scholar 

  30. Jones PB, Tarrant CJ. Developmental precursors and biological markers for schizophrenia and affective disorders: Specificity and public health implications. Eur Arch Psychiatry Clin Neurosci 2000; 250(6):286–291.

    PubMed  CAS  Google Scholar 

  31. Remschmidt H. Early-onset schizophrenia as a progressive-deteriorating developmental disorder: Evidence from child psychiatry. J Neural Transm 2002; 109(1):101–117.

    PubMed  CAS  Google Scholar 

  32. Isohanni M, Jones PB, Moilanen K et al. Early developmental milestones in adult schizophrenia and other psychoses. A 31-year follow-up of the Northern Finland 1966 Birth Cohort. Schizophr Res 2001; 52(1–2):1–19.

    PubMed  CAS  Google Scholar 

  33. Jones P, Rodgers B, Murray R et al. Child development risk factors for adult schizophrenia in the British 1946 birth cohort. Lancet 1994; 344(8934):1398–1402.

    PubMed  CAS  Google Scholar 

  34. Sporn AL, Addington AM, Gogtay N et al. Pervasive developmental disorder and childhood-onset schizophrenia: Comorbid disorder or a phenotypic variant of a very early onset illness? Biol Psychiatry 2004; 55(10):989–994.

    PubMed  Google Scholar 

  35. Arnold SE. Cellular and molecular neuropathology of the parahippocampal region in schizophrenia. Ann NY Acad Sci 2000; 911:275–292.

    PubMed  CAS  Google Scholar 

  36. Royston MC, Roberts GW. Schizophrenia. When neurons go astray. Curr Biol 1995; 5(4):342–344.

    PubMed  CAS  Google Scholar 

  37. Jakob H, Beckmann H. Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J Neural Transm 1986; 65(3–4):303–326.

    PubMed  CAS  Google Scholar 

  38. Akbarian S, Kim JJ, Potkin SG et al. Maldistribution of interstitial neurons in prefrontal white matter of the brains of schizophrenic patients. Arch Gen Psychiatry 1996; 53(5):425–436.

    PubMed  CAS  Google Scholar 

  39. Baumann B, Bogerts B. The pathomorphology of schizophrenia and mood disorders: Similarities and differences. Schizophr Res 1999; 39(2):141–148, discussion 162.

    PubMed  CAS  Google Scholar 

  40. Benes FM, Kwok EW, Vincent SL et al. A reduction of nonpyramidal cells in sector CA2 of schizophrenics and manic depressives. Biol Psychiatry 1998; 44(2):88–97.

    PubMed  CAS  Google Scholar 

  41. Lewis DA, Glantz LA, Pierri JN et al. Altered cortical glutamate neurotransmission in schizophrenia: Evidence from morphological studies of pyramidal neurons. Ann NY Acad Sci 2003; 1003:102–112.

    PubMed  CAS  Google Scholar 

  42. Beasley CL, Cotter DR, Everall IP. Density and distribution of white matter neurons in schizophrenia, bipolar disorder and major depressive disorder: No evidence for abnormalities of neuronal migration. Mol Psychiatry 2002; 7(6):564–570.

    PubMed  CAS  Google Scholar 

  43. Highley JR, Walker MA, McDonald B et al. Size of hippocampal pyramidal neurons in schizophrenia. Br J Psychiatry 2003; 183:414–417.

    PubMed  CAS  Google Scholar 

  44. Akil M, Lewis DA. Cytoarchitecture of the entorhinal cortex in schizophrenia. Am J Psychiatry 1997; 154(7):1010–1012.

    PubMed  CAS  Google Scholar 

  45. Hatten ME. Central nervous system neuronal migration. Annu Rev Neurosci 1999; 22:511–539.

    PubMed  CAS  Google Scholar 

  46. Chan WY, Lorke DE, Tiu SC et al. Proliferation and apoptosis in the developing human neocortex. Anat Rec 2002; 267(4):261–276.

    PubMed  Google Scholar 

  47. Wolkin A, Rusinek H, Vaid G et al. Structural magnetic resonance image averaging in schizophrenia. Am J Psychiatry 1998; 155(8):1064–1073.

    PubMed  CAS  Google Scholar 

  48. Christensen J, Holcomb J, Garver DL. State-related changes in cerebral white matter may underlie psychosis exacerbation. Psychiatry Res 2004; 130(1):71–78.

    PubMed  Google Scholar 

  49. Roessmann U, Gambetti P. Pathological reaction of astrocytes in perinatal brain injury. Immunohistochemical study. Acta Neuropathol (Berl) 1986; 70(3–4):302–307.

    PubMed  CAS  Google Scholar 

  50. Stevens JR. Neuropathology of schizophrenia. Arch Gen Psychiatry 1982; 39(10):1131–1139.

    PubMed  CAS  Google Scholar 

  51. Kunugi H, Urushibara T, Murray RM et al. Prenatal underdevelopment and schizophrenia: A case report of monozygotic twins. Psychiatry Clin Neurosci 2003; 57(3):271–274.

    PubMed  Google Scholar 

  52. Uranova NA, Vostrikov VM, Orlovskaya DD et al. Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: A study from the Stanley Neuropathology Consortium. Schizophr Res 2004; 67(2–3):269–275.

    PubMed  Google Scholar 

  53. Hof PR, Haroutunian V, Friedrich Jr VL et al. Loss and altered spatial distribution of oligodendrocytes in the superior frontal gyrus in schizophrenia. Biol Psychiatry 2003; 53(12):1075–1085.

    PubMed  CAS  Google Scholar 

  54. Davis KL, Stewart DG, Friedman JI et al. White matter changes in schizophrenia: Evidence for myelin-related dysfunction. Arch Gen Psychiatry 2003; 60(5):443–456.

    PubMed  Google Scholar 

  55. Uranova N, Orlovskaya D, Vikhreva O et al. Electron microscopy of oligodendroglia in severe mental illness. Brain Res Bull 2001; 55(5):597–610.

    PubMed  CAS  Google Scholar 

  56. Hulshoff Pol HE, Schnack HG, Mandl RC et al. Focal white matter density changes in schizophrenia: Reduced inter-hemispheric connectivity. Neuroimage 2004; 21(1):27–35.

    PubMed  Google Scholar 

  57. Rajkowska G, Halaris A, Selemon LD. Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder. Biol Psychiatry 2001; 49(9):741–752.

    PubMed  CAS  Google Scholar 

  58. Rajkowska G, Miguel-Hidalgo JJ, Makkos Z et al. Layer-specific reductions in GFAP-reactive astroglia in the dorsolateral prefrontal cortex in schizophrenia. Schizophr Res 2002; 57(2–3):127–138.

    PubMed  Google Scholar 

  59. Flynn SW, Lang DJ, Mackay AL et al. Abnormalities of myelination in schizophrenia detected in vivo with MRI, and post-mortem with analysis of oligodendrocyte proteins. Mol Psychiatry 2003; 8(9):811–820.

    PubMed  CAS  Google Scholar 

  60. Chance SA, Highley JR, Esiri MM et al. Fiber content of the fornix in schizophrenia: Lack of evidence for a primary limbic encephalopathy. Am J Psychiatry 1999; 156(11):1720–1724.

    PubMed  CAS  Google Scholar 

  61. Hakak Y, Walker JR, Li C et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 2001; 98(8):4746–4751.

    PubMed  CAS  Google Scholar 

  62. Hyde TM, Ziegler JC, Weinberger DR. Psychiatric disturbances in metachromatic leukodystrophy. Insights into the neurobiology of psychosis. Arch Neurol 1992; 49(4):401–406.

    PubMed  CAS  Google Scholar 

  63. Laruelle M, Kegeles LS, Abi-Dargham A. Glutamate, dopamine, and schizophrenia: From pathophysiology to treatment. Ann NY Acad Sci 2003; 1003:138–158.

    PubMed  CAS  Google Scholar 

  64. Brown AS, Susser ES. In utero infection and adult schizophrenia. Ment Retard Dev Disabil Res Rev 2002; 8(1):51–57.

    PubMed  Google Scholar 

  65. Hulshoff Pol HE, Hoek HW, Susser E et al. Prenatal exposure to famine and brain morphology in schizophrenia. Am J Psychiatry 2000; 157(7):1170–1172.

    PubMed  CAS  Google Scholar 

  66. Verdoux H, Sutter AL. Perinatal risk factors for schizophrenia: Diagnostic specificity and relationships with maternal psychopathology. Am J Med Genet 2002; 114(8):898–905.

    PubMed  Google Scholar 

  67. Cannon M, Jones PB, Murray RM. Obstetric complications and schizophrenia: Historical and meta-analytic review. Am J Psychiatry 2002; 159(7):1080–1092.

    PubMed  Google Scholar 

  68. Geddes JR, Lawrie SM. Obstetric complications and schizophrenia: A meta-analysis. Br J Psychiatry 1995; 167(6):786–793.

    PubMed  CAS  Google Scholar 

  69. Buka SL, Tsuang MT, Lipsitt LP. Pregnancy/delivery complications and psychiatric diagnosis. A prospective study. Arch Gen Psychiatry 1993; 50(2):151–156.

    PubMed  CAS  Google Scholar 

  70. Howes OD, McDonald C, Cannon M et al. Pathways to schizophrenia: The impact of environmental factors. Int J Neuropsychopharmacol 2004; 7(Suppl 1):S7–S13.

    PubMed  CAS  Google Scholar 

  71. McNeil TF. Perinatal risk factors and schizophrenia: Selective review and methodological concerns. Epidemiol Rev 1995; 17(1):107–112.

    PubMed  CAS  Google Scholar 

  72. Preti A, Cardascia L, Zen T et al. Risk for obstetric complications and schizophrenia. Psychiatry Res 2000; 96(2):127–139.

    PubMed  CAS  Google Scholar 

  73. Bennedsen BE, Mortensen PB, Olesen AV et al. Preterm birth and intra-uterine growth retardation among children of women with schizophrenia. Br J Psychiatry 1999; 175:239–245.

    PubMed  CAS  Google Scholar 

  74. Bennedsen BE, Mortensen PB, Olesen AV et al. Obstetric complications in women with schizophrenia. Schizophr Res 2001; 47(2–3):167–175.

    PubMed  CAS  Google Scholar 

  75. Modrzewska K. The offspring of schizophrenic parents in a North Swedish isolate. Clin Genet 1980; 17(3):191–201.

    PubMed  CAS  Google Scholar 

  76. Nilsson E, Lichtenstein P, Cnattingius S et al. Women with schizophrenia: Pregnancy outcome and infant death among their offspring. Schizophr Res 2002; 58(2–3):221–229.

    PubMed  Google Scholar 

  77. Sacker A, Done DJ, Crow TJ. Obstetric complications in children born to parents with schizophrenia: A meta-analysis of case-control studies. Psychol Med 1996; 26(2):279–287.

    PubMed  CAS  Google Scholar 

  78. Gunduz H, Woerner MG, Alvir JM et al. Obstetric complications in schizophrenia, schizoaffective disorder and normal comparison subjects. Schizophr Res 1999; 40(3):237–243.

    PubMed  CAS  Google Scholar 

  79. Kinney DK, Yurgelun-Todd DA, Tohen M et al. Pre and perinatal complications and risk for bipolar disorder: A retrospective study. J Affect Disord 1998; 50(2–3):117–124.

    PubMed  CAS  Google Scholar 

  80. Zornberg GL, Buka SL, Tsuang MT. The problem of obstetrical complications and schizophrenia. Schizophr Bull 2000; 26(2):249–256.

    PubMed  CAS  Google Scholar 

  81. Rosso IM, Cannon TD, Huttunen T et al. Obstetric risk factors for early-onset schizophrenia in a Finish birth cohort. Am J Psychiatry 2000; 157(5):801–807.

    PubMed  CAS  Google Scholar 

  82. Moller HJ. Bipolar disorder and schizophrenia: Distinct illnesses or a continuum? J Clin Psychiatry 2003; 64(Suppl 6):23–27, discussion 28.

    PubMed  Google Scholar 

  83. Rees S, Harding R. Brain development during fetal life: Influences of the intra-uterine environment. Neurosci Lett 2004; 361(1–3):111–114.

    PubMed  CAS  Google Scholar 

  84. MacLennan A. A template for defining a causal relation between acute intrapartum events and cerebral palsy: International consensus statement. Bmj 1999; 319(7216):1054–1059.

    PubMed  CAS  Google Scholar 

  85. George S, Gunn AJ, Westgate JA et al. Fetal heart rate variability and brainstem injury after asphyxia in preterm fetal sheep. Am J Physiol Regul Integr Comp Physiol 2004.

    Google Scholar 

  86. Bennet L, Rossenrode S, Gunning MI et al. The cardiovascular and cerebrovascular responses of the immature fetal sheep to acute umbilical cord occlusion. J Physiol 1999; 517 (Pt 1):247–257.

    PubMed  CAS  Google Scholar 

  87. Keunen H, Blanco CE, van Reempts JL et al. Absence of neuronal damage after umbilical cord occlusion of 10, 15, and 20 minutes in midgestation fetal sheep. Am J Obstet Gynecol 1997; 176(3):515–520.

    PubMed  CAS  Google Scholar 

  88. Shelley H. Glycogen reserves and their changes at birth and in anoxia. Br med Bull 1961; 17(2):137–143.

    Google Scholar 

  89. Mott JC. The ability of young mammals to withstand total oxygen lack. Br Med Bull 1961; 17:144–148.

    PubMed  CAS  Google Scholar 

  90. Gunn AJ, Quaedackers JS, Guan J et al. The premature fetus: Not as defenseless as we thought, but still paradoxically vulnerable? Dev Neurosci 2001; 23(3):175–179.

    PubMed  CAS  Google Scholar 

  91. Grafe MR. The correlation of prenatal brain damage with placental pathology. J Neuropathol Exp Neurol 1994; 53(4):407–415.

    PubMed  CAS  Google Scholar 

  92. Ment LR, Schwartz M, Makuch RW et al. Association of chronic sublethal hypoxia with ventriculomegaly in the developing rat brain. Brain Res Dev Brain Res 1998; 111(2):197–203.

    PubMed  CAS  Google Scholar 

  93. Tashima L, Nakata M, Anno K et al. Prenatal influence of ischemia-hypoxia-induced intrauterine growth retardation on brain development and behavioral activity in rats. Biol Neonate 2001; 80(1):81–87.

    PubMed  CAS  Google Scholar 

  94. Mallard EC, Rehn A, Rees S et al. Ventriculomegaly and reduced hippocampal volume following intrauterine growth-restriction: Implications for the aetiology of schizophrenia. Schizophr Res 1999; 40(1):11–21.

    PubMed  CAS  Google Scholar 

  95. Dieni S, Rees S. Dendritic morphology is altered in hippocampal neurons following prenatal compromise. J Neurobiol 2003; 55(1):41–52.

    PubMed  Google Scholar 

  96. Baud O, Daire JL, Dalmaz Y et al. Gestational hypoxia induces white matter damage in neonatal rats: A new model of periventricular leukomalacia. Brain Pathol 2004; 14(1):1–10.

    PubMed  Google Scholar 

  97. Kohlhauser C, Mosgoller W, Hoger H et al. Myelination deficits in brain of rats following perinatal asphyxia. Life Sci 2000; 67(19):2355–2368.

    PubMed  CAS  Google Scholar 

  98. Bennet L, Quaedackers JS, Guan J et al. Chronically evolving white matter and cortical cell loss after asphyxia in the mid-gestation sheep fetus are mediated by caspase-dependent apoptotic mechanisms. Pediatr Res 2003; 53(4):347A.

    Google Scholar 

  99. Cao Y, Gunn AJ, Bennet L et al. Insulin-like growth factor (IGF)-1 suppresses oligodendrocyte caspase-3 activation and increases glial proliferation after ischemia in near-term fetal sheep. J. Cereb Blood Flow Metab 2003; 23(6):739–747.

    CAS  Google Scholar 

  100. Guan J, Bennet L, George S et al. Insulin-like growth factor-1 reduces postischemic white matter injury in fetal sheep. J Cereb Blood Flow Metab 2001; 21(5):493–502.

    PubMed  CAS  Google Scholar 

  101. Ikeda T, Murata Y, Quilligan EJ et al. Physiologic and histologic changes in near-term fetal lambs exposed to asphyxia by partial umbilical cord occlusion. Am J Obstet Gynecol 1998; 178(1 Pt 1):24–32.

    PubMed  CAS  Google Scholar 

  102. Boog G. Obstetrical complications and subsequent schizophrenia in adolescent and young adult offsprings: Is there a relationship? Eur J Obstet Gynecol Reprod Biol 2004; 114(2):130–136.

    PubMed  Google Scholar 

  103. Cannon TD, van Erp TG, Rosso IM et al. Fetal hypoxia and structural brain abnormalities in schizophrenic patients, their siblings, and controls. Arch Gen Psychiatry 2002; 59(1):35–41.

    PubMed  Google Scholar 

  104. Van Erp TG, Saleh PA, Rosso IM et al. Contributions of genetic risk and fetal hypoxia to hippocampal volume in patients with schizophrenia or schizoaffective disorder, their unaffected siblings, and healthy unrelated volunteers. Am J Psychiatry 2002; 159(9):1514–1520.

    PubMed  Google Scholar 

  105. Torrey EF. Are we overestimating the genetic contribution to schizophrenia? Schizophr Bull 1992; 18(2):159–170.

    PubMed  CAS  Google Scholar 

  106. Walker E, Downey G, Caspi A. Twin studies of psychopathology: Why do the concordance rates vary? Schizophr Res 1991; 5(3):211–221.

    PubMed  CAS  Google Scholar 

  107. Pharoah PO. Errors in birth registrations and coding of twins and higher order multiples. Twin Res 2002; 5(4):270–272.

    PubMed  Google Scholar 

  108. Machin G. Placentation in multiple births. Twin Res 2001; 4(3):150–155.

    PubMed  CAS  Google Scholar 

  109. Suddath RL, Christison GW, Torrey EF et al. Anatomical abnormalities in the brains of monozygotic twins discordant for schizophrenia. N Engl J Med 1990; 322(12):789–794.

    PubMed  CAS  Google Scholar 

  110. Pharoah PO. Neurological outcome in twins. Semin Neonatol 2002; 7(3):223–230.

    PubMed  CAS  Google Scholar 

  111. Pharoah PO, Price TS, Plomin R. Cerebral palsy in twins: A national study. Arch Dis Child Fetal Neonatal Ed 2002; 87(2):F122–124.

    PubMed  CAS  Google Scholar 

  112. Adegbite AL, Castille S, Ward S et al. Neuromorbidity in preterm twins in relation to chorionicity and discordant birth weight. Am J Obstet Gynecol 2004; 190(1):156–163.

    PubMed  Google Scholar 

  113. Laplaza FJ, Root L, Tassanawipas A et al. Cerebral palsy in twins. Dev Med Child Neurol 1992; 34(12):1053–1063.

    PubMed  CAS  Google Scholar 

  114. Glinianaia SV, Pharoah PO, Wright C et al. Fetal or infant death in twin pregnancy: Neurodevelopmental consequence for the survivor. Arch Dis Child Fetal Neonatal Ed 2002; 86(1):F9–15.

    PubMed  CAS  Google Scholar 

  115. Smith GN, Flynn SW, McCarthy N et al. Low birthweight in schizophrenia: Prematurity or poor fetal growth? Schizophr Res 2001; 47(2–3):177–184.

    PubMed  CAS  Google Scholar 

  116. Petterson B, Nelson KB, Watson L et al. Twins, triplets, and cerebral palsy in births in Western Australia in the 1980s. Bmj 1993; 307(6914):1239–1243.

    PubMed  CAS  Google Scholar 

  117. Grether JK, Nelson KB, Cummins SK. Twinning and cerebral palsy: Experience in four northern California counties, births 1983 through 1985. Pediatrics 1993; 92(6):854–858.

    PubMed  CAS  Google Scholar 

  118. Dube J, Dodds L, Armson BA. Does chorionicity or zygosity predict adverse perinatal outcomes in twins? Am J Obstet Gynecol 2002; 186(3):579–583.

    PubMed  Google Scholar 

  119. Benirschke K. The biology of the twinning process: How placentation influences outcome. Semin Perinatol 1995; 19(5):342–350.

    PubMed  CAS  Google Scholar 

  120. Lewi L, Van Schoubroeck D, Gratacos E et al. Monochorionic diamniotic twins: Complications and management options. Curr Opin Obstet Gynecol 2003; 15(2):177–194.

    PubMed  Google Scholar 

  121. Bejar R, Vigliocco G, Gramajo H et al. Antenatal origin of neurologic damage in newborn infants. II. Multiple gestations. Am J Obstet Gynecol 1990; 162(5):1230–1236.

    PubMed  CAS  Google Scholar 

  122. Larroche JC, Girard N, Narcy F et al. Abnormal cortical plate (polymicrogyria), heterotopias and brain damage in monozygous twins. Biol Neonate 1994; 65(6):343–352.

    PubMed  CAS  Google Scholar 

  123. Davis JO, Phelps JA, Bracha HS. Prenatal development of monozygotic twins and concordance for schizophrenia. Schizophr Bull 1995; 21(3):357–366.

    PubMed  CAS  Google Scholar 

  124. Sokol DK, Moore CA, Rose RJ et al. Intrapair differences in personality and cognitive ability among young monozygotic twins distinguished by chorion type. Behav Genet 1995; 25(5):457–466.

    PubMed  CAS  Google Scholar 

  125. Riese ML. Effects of chorion type on neonatal temperament differences in monozygotic twin pairs. Behav Genet 1999; 29(2):87–94.

    PubMed  CAS  Google Scholar 

  126. Wichers MC, Danckaerts M, Van Gestel S et al. Chorion type and twin similarity for child psychiatric symptoms. Arch Gen Psychiatry 2002; 59(6):562–564.

    PubMed  Google Scholar 

  127. Pasamanick B, Rogers ME, Lilienfeld AM. Pregnancy experience and the development of behavior disorders in children. Am J Psychiatry 1956; 112(8):613–618.

    PubMed  CAS  Google Scholar 

  128. Wahlbeck K, Forsen T, Osmond C et al. Association of schizophrenia with low maternal body mass index, small size at birth, and thinness during childhood. Arch Gen Psychiatry 2001; 58(1):48–52.

    PubMed  CAS  Google Scholar 

  129. Morgane PJ, Mokler DJ, Galler JR. Effects of prenatal protein malnutrition on the hippocampal formation. Neurosci Biobehav Rev 2002; 26(4):471–483.

    PubMed  CAS  Google Scholar 

  130. Ozanne SE, Fernandez-Twinn D, Hales CN. Fetal growth and adult diseases. Semin Perinatol 2004; 28(1):81–87.

    PubMed  Google Scholar 

  131. Turton P, Hughes P, Bolton H et al. Incidence and demographic correlates of eating disorder symptoms in a pregnant population. Int J Eat Disord 1999; 26(4):448–452.

    PubMed  CAS  Google Scholar 

  132. Morgane PJ, Austin-LaFrance R, Bronzino J et al. Prenatal malnutrition and development of the brain. Neurosci Biobehav Rev 1993; 17(1):91–128.

    PubMed  CAS  Google Scholar 

  133. Steiger JL, Alexander MJ, Galler JR et al. Effects of prenatal malnutrition on GABAA receptor alpha1, alpha3 and beta2 mRNA levels. Neuroreport 2003; 14(13):1731–1735.

    PubMed  CAS  Google Scholar 

  134. Carmichael SL, Shaw GM, Schaffer DM et al. Dieting behaviors and risk of neural tube defects. Am J Epidemiol 2003; 158(12):1127–1131.

    PubMed  Google Scholar 

  135. Mattson MP, Shea TB. Folate and homocysteine metabolism in neural plasticity and neurodegenerative disorders. Trends Neurosci 2003; 26(3):137–146.

    PubMed  CAS  Google Scholar 

  136. McGrath J. Hypothesis: Is low prenatal vitamin D a risk-modifying factor for schizophrenia? Schizophr Res 1999; 40(3):173–177.

    PubMed  CAS  Google Scholar 

  137. Craciunescu CN, Brown EC, Mar MH et al. Folic acid deficiency during late gestation decreases progenitor cell proliferation and increases apoptosis in fetal mouse brain. J Nutr 2004; 134(1):162–166.

    PubMed  CAS  Google Scholar 

  138. Bajoria R, Sooranna SR, Ward S et al. Placental transport rather than maternal concentration of amino acids regulates fetal growth in monochorionic twins: Implications for fetal origin hypothesis. Am J Obstet Gynecol 2001; 185(5):1239–1246.

    PubMed  CAS  Google Scholar 

  139. Coyle JT, Tsai G, Goff D. Converging evidence of NMDA receptor hypofunction in the pathophysiology of schizophrenia. Ann NY Acad Sci 2003; 1003:318–327.

    PubMed  CAS  Google Scholar 

  140. Almeida SS, Tonkiss J, Galler JR. Prenatal protein malnutrition affects the social interactions of juvenile rats. Physiol Behav 1996; 60(1):197–201.

    PubMed  CAS  Google Scholar 

  141. Almeida SS, Tonkiss J, Galler JR. Prenatal protein malnutrition affects exploratory behavior of female rats in the elevated plus-maze test. Physiol Behav 1996; 60(2):675–680.

    PubMed  CAS  Google Scholar 

  142. Datta S, Patterson EH, Vincitore M et al. Prenatal protein malnourished rats show changes in sleep/wake behavior as adults. J Sleep Res 2000; 9(1):71–79.

    PubMed  CAS  Google Scholar 

  143. Boivin DB. Influence of sleep-wake and circadian rhythm disturbances in psychiatric disorders. J Psychiatry Neurosci 2000; 25(5):446–458.

    PubMed  CAS  Google Scholar 

  144. Gunnell D, Rasmussen F, Fouskakis D et al. Patterns of fetal and childhood growth and the development of psychosis in young males: A cohort study. Am J Epidemiol 2003; 158(4):291–300.

    PubMed  Google Scholar 

  145. Hoek HW, Susser E, Buck KA et al. Schizoid personality disorder after prenatal exposure to famine. Am J Psychiatry 1996; 153(12):1637–1639.

    PubMed  CAS  Google Scholar 

  146. Susser E, Hoek HW, Brown A. Neurodevelopmental disorders after prenatal famine: The story of the Dutch Famine Study. Am J Epidemiol 1998; 147(3):213–216.

    PubMed  CAS  Google Scholar 

  147. Brown AS, van Os J, Driessens C et al. Further evidence of relation between prenatal famine and major affective disorder. Am J Psychiatry 2000; 157(2):190–195.

    PubMed  CAS  Google Scholar 

  148. Davies G, Welham J, Chant D et al. A systematic review and meta-analysis of Northern Hemisphere season of birth studies in schizophrenia. Schizophr Bull 2003; 29(3):587–593.

    PubMed  Google Scholar 

  149. Brown AS, Hooton J, Schaefer CA et al. Elevated maternal interleukin-8 levels and risk of schizophrenia in adult offspring. Am J Psychiatry 2004; 161(5):889–895.

    PubMed  Google Scholar 

  150. Gilmore JH, Fredrik Jarskog L, Vadlamudi S et al. Prenatal infection and risk for schizophrenia: IL-1beta, IL-6, and TNFalpha inhibit cortical neuron dendrite development. Neuropsychopharmacology 2004.

    Google Scholar 

  151. Baena RC, Busto R, Dietrich WD et al. Hyperthermia delayed by 24 hours aggravates neuronal damage in rat hippocampus following global ischemia. Neurology 1997; 48(3):768–773.

    PubMed  CAS  Google Scholar 

  152. Kim Y, Busto R, Dietrich WD et al. Delayed postischemic hyperthermia in awake rats worsens the histopathological outcome of transient focal cerebral ischemia. Stroke 1996; 27(12):2274–2280, discussion 2281.

    PubMed  CAS  Google Scholar 

  153. Laptook AR, Corbett RJ. The effects of temperature on hypoxic-ischemic brain injury. Clin Perinatol 2002; 29(4):623–649, vi.

    PubMed  Google Scholar 

  154. Dalitz P, Harding R, Rees SM et al. Prolonged reductions in placental blood flow and cerebral oxygen delivery in preterm fetal sheep exposed to endotoxin: Possible factors in white matter injury after acute infection. J Soc Gynecol Investig 2003; 10(5):283–290.

    PubMed  CAS  Google Scholar 

  155. Duncan JR, Cock ML, Scheerlinck JP et al. White matter injury after repeated endotoxin exposure in the preterm ovine fetus. Pediatr Res 2002; 52(6):941–949.

    PubMed  CAS  Google Scholar 

  156. Mallard C, Welin AK, Peebles D et al. White matter injury following systemic endotoxemia or asphyxia in the fetal sheep. Neurochem Res 2003; 28(2):215–223.

    PubMed  CAS  Google Scholar 

  157. Davis JO, Phelps JA. Twins with schizophrenia: Genes or germs? Schizophr Bull 1995; 21(1):13–18.

    PubMed  CAS  Google Scholar 

  158. Phung DT, Blickstein I, Goldman RD et al. The northwestern twin chorionicity study: I. discordant inflammatory findings that are related to chorionicity in presenting versus nonpresenting twins. Am J Obstet Gynecol 2002; 186(5):1041–1045.

    PubMed  Google Scholar 

  159. Bartzokis G, Beckson M, Lu PH et al. Age-related changes in frontal and temporal lobe volumes in men: A magnetic resonance imaging study. Arch Gen Psychiatry 2001; 58(5):461–465.

    PubMed  CAS  Google Scholar 

  160. Bartzokis G. Schizophrenia: Breakdown in the well-regulated lifelong process of brain development and maturation. Neuropsychopharmacology 2002; 27(4):672–683.

    PubMed  Google Scholar 

  161. Benes FM, Turtle M, Khan Y et al. Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Arch Gen Psychiatry 1994; 51(6):477–484.

    PubMed  CAS  Google Scholar 

  162. Barres BA, Barde Y. Neuronal and glial cell biology. Curr Opin Neurobiol 2000; 10(5):642–648.

    PubMed  CAS  Google Scholar 

  163. Broadie K. Axon pruning: An active role for glial cells. Curr Biol 2004; 14(8):R302–304.

    PubMed  CAS  Google Scholar 

  164. Gilmore JH, van Tol J, Kliewer MA et al. Mild ventriculomegaly detected in utero with ultrasound: Clinical associations and implications for schizophrenia. Schizophr Res 1998; 33(3):133–140.

    PubMed  CAS  Google Scholar 

  165. Kinney HC, Back SA. Human oligodendroglial development: Relationship to periventricular leukomalacia. Semin Pediatr Neurol 1998; 5(3):180–189.

    PubMed  CAS  Google Scholar 

  166. Perlman JM. White matter injury in the preterm infant: An important determination of abnormal neurodevelopment outcome. Early Hum Dev 1998; 53(2):99–120.

    PubMed  CAS  Google Scholar 

  167. Inder TE, Volpe JJ. Mechanisms of perinatal brain injury. Semin Neonatol 2000; 5(1):3–16.

    PubMed  CAS  Google Scholar 

  168. Peterson BS. Brain imaging studies of the anatomical and functional consequences of preterm birth for human brain development. Ann NY Acad Sci 2003; 1008:219–237.

    PubMed  Google Scholar 

  169. Peterson BS, Vohr B, Staib LH et al. Regional brain volume abnormalities and long-term cognitive outcome in preterm infants. Jama 2000; 284(15):1939–1947.

    PubMed  CAS  Google Scholar 

  170. Ajayi-Obe M, Saeed N, Cowan FM et al. Reduced development of cerebral cortex in extremely preterm infants. Lancet 2000; 356(9236):1162–1163.

    PubMed  CAS  Google Scholar 

  171. Marin-Padilla M. Developmental neuropathology and impact of perinatal brain damage. II: White matter lesions of the neocortex. J Neuropathol Exp Neurol 1997; 56(3):219–235.

    PubMed  CAS  Google Scholar 

  172. Ment LR, Vohr B, Allan W et al. The etiology and outcome of cerebral ventriculomegaly at term in very low birth weight preterm infants. Pediatrics 1999; 104(2 Pt 1):243–248.

    PubMed  CAS  Google Scholar 

  173. Ichiki M, Kunugi H, Takei N et al. Intra-uterine physical growth in schizophrenia: Evidence confirming excess of premature birth. Psychol Med 2000; 30(3):597–604.

    PubMed  CAS  Google Scholar 

  174. Wang LW, Huang CC, Yeh TF. Major brain lesions detected on sonographic screening of apparently normal term neonates. Neuroradiology 2004; 46(5):368–373.

    PubMed  CAS  Google Scholar 

  175. Filippi CG, Ulug AM, Deck MD et al. Developmental delay in children: Assessment with proton MR spectroscopy. AJNR Am J Neuroradiol 2002; 23(5):882–888.

    PubMed  Google Scholar 

  176. Harbord MG, Finn JP, Hall-Craggs MA et al. Myelination patterns on magnetic resonance of children with developmental delay. Dev Med Child Neurol 1990; 32(4):295–303.

    PubMed  CAS  Google Scholar 

  177. James AC, Crow TJ, Renowden S et al. Is the course of brain development in schizophrenia delayed? Evidence from onsets in adolescence. Schizophr Res 1999; 40(1):1–10.

    PubMed  CAS  Google Scholar 

  178. White T, Andreasen NC, Nopoulos P et al. Gyrification abnormalities in childhood-and adolescent-onset schizophrenia. Biol Psychiatry 2003; 54(4):418–426.

    PubMed  Google Scholar 

  179. Yucel M, Stuart GW, Maruff P et al. Paracingulate morphologic differences in males with established schizophrenia: A magnetic resonance imaging morphometric study. Biol Psychiatry 2002; 52(1):15–23.

    PubMed  Google Scholar 

  180. Waddington JL, Lane A, Scully P et al. Early cerebro-craniofacial dysmorphogenesis in schizophrenia: A lifetime trajectory model from neurodevelopmental basis to ‘neuroprogressive’ process. J Psychiatr Res 1999; 33(6):477–489.

    PubMed  CAS  Google Scholar 

  181. Gourion D, Goldberger C, Bourdel MC et al. Minor physical anomalies in patients with schizophrenia and their parents: Prevalence and pattern of craniofacial abnormalities. Psychiatry Res 2004; 125(1):21–28.

    PubMed  Google Scholar 

  182. Trixler M, Tenyi T, Csabi G et al. Minor physical anomalies in schizophrenia and bipolar affective disorder. Schizophr Res 2001; 52(3):195–201.

    PubMed  CAS  Google Scholar 

  183. Tenyi T, Trixler M, Csabi G et al. Minor physical anomalies in nonfamilial unipolar recurrent major depression. J Affect Disord 2004; 79(1–3):259–262.

    PubMed  Google Scholar 

  184. Rice D, Barone Jr S. Critical periods of vulnerability for the developing nervous system: Evidence from humans and animal models. Environ Health Perspect 2000; 108(Suppl 3):511–533.

    PubMed  Google Scholar 

  185. Goldberg JL, Barres BA. The relationship between neuronal survival and regeneration. Annu Rev Neurosci 2000; 23:579–612.

    PubMed  CAS  Google Scholar 

  186. Johnston MV. Clinical disorders of brain plasticity. Brain Dev 2004; 26(2):73–80.

    PubMed  Google Scholar 

  187. Zahir N, Weaver VM. Death in the third dimension: Apoptosis regulation and tissue architecture. Curr Opin Genet Dev 2004; 14(1):71–80.

    PubMed  CAS  Google Scholar 

  188. Davies AM. Regulation of neuronal survival and death by extracellular signals during development. EMBO J 2003; 22(11):2537–2545.

    PubMed  CAS  Google Scholar 

  189. Raff MC, Barres BA, Burne JF et al. Programmed cell death and the control of cell survival. Philos Trans R Soc Lond B Biol Sci 1994; 345(1313):265–268.

    PubMed  CAS  Google Scholar 

  190. Guan J, Bennet L, Gluckman PD et al. Insulin-like growth factor-1 and post-ischemic brain injury. Prog Neurobiol 2003; 70(6):443–462.

    PubMed  CAS  Google Scholar 

  191. Gunnell D, Holly JM. Do insulin-like growth factors underlie associations of birth complications, fetal and preadult growth with schizophrenia? Schizophr Res 2004; 67(2–3):309–311.

    PubMed  CAS  Google Scholar 

  192. Thompson PM, Vidal C, Giedd JN et al. Mapping adolescent brain change reveals dynamic wave of accelerated gray matter loss in very early-onset schizophrenia. Proc Natl Acad Sci USA 2001; 98(20):11650–11655.

    PubMed  CAS  Google Scholar 

  193. Cannon TD, Thompson PM, van Erp TG et al. Cortex mapping reveals regionally specific patterns of genetic and disease-specific gray-matter deficits in twins discordant for schizophrenia. Proc Natl Acad Sci USA 2002; 99(5):3228–3233.

    PubMed  CAS  Google Scholar 

  194. Jarskog LF, Selinger ES, Lieberman JA et al. Apoptotic proteins in the temporal cortex in schizophrenia: High Bax/Bcl-2 ratio without caspase-3 activation. Am J Psychiatry 2004; 161(1):109–115.

    PubMed  Google Scholar 

  195. Harris LW, Sharp T, Gartlon J et al. Long-term behavioural, molecular and morphological effects of neonatal NMDA receptor antagonism. Eur J Neurosci 2003; 18(6):1706–1710.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Bennet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Bennet, L., Gunn, A.J. (2006). The Fetal Origins of Adult Mental Illness. In: Wintour, E.M., Owens, J.A. (eds) Early Life Origins of Health and Disease. Advances in Experimental Medicine and Biology, vol 573. Springer, Boston, MA. https://doi.org/10.1007/0-387-32632-4_17

Download citation

Publish with us

Policies and ethics