Skip to main content
Top
Gepubliceerd in:

01-05-2012

Latent variable mixture models: a promising approach for the validation of patient reported outcomes

Auteurs: Richard Sawatzky, Pamela A. Ratner, Jacek A. Kopec, Bruno D. Zumbo

Gepubliceerd in: Quality of Life Research | Uitgave 4/2012

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Purpose

A fundamental assumption of patient-reported outcomes (PRO) measurement is that all individuals interpret questions about their health status in a consistent manner, such that a measurement model can be constructed that is equivalently applicable to all people in the target population. The related assumption of sample homogeneity has been assessed in various ways, including the many approaches to differential item functioning analysis.

Methods

This expository paper describes the use of latent variable mixture modeling (LVMM), in conjunction with item response theory (IRT), to examine: (a) whether a sample is homogeneous with respect to a unidimensional measurement model, (b) implications of sample heterogeneity with respect to model-predicted scores (theta), and (c) sources of sample heterogeneity. An example is provided using the 10 items of the Short-Form Health Status (SF-36®) physical functioning subscale with data from the Canadian Community Health Survey (2003) (N = 7,030 adults in Manitoba).

Results

The sample was not homogeneous with respect to a unidimensional measurement structure. Specification of three latent classes, to account for sample heterogeneity, resulted in significantly improved model fit. The latent classes were partially explained by demographic and health-related variables.

Conclusion

The illustrative analyses demonstrate the value of LVMM in revealing the potential implications of sample heterogeneity in the measurement of PROs.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Literatuur
1.
go back to reference van der Linden, W. J., & Hambleton, R. K. (1997). Handbook of modern item response theory. New York: Springer. van der Linden, W. J., & Hambleton, R. K. (1997). Handbook of modern item response theory. New York: Springer.
2.
go back to reference Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. New Jersey: Lawrence Erlbaum. Embretson, S. E., & Reise, S. P. (2000). Item response theory for psychologists. New Jersey: Lawrence Erlbaum.
3.
go back to reference Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991). Fundamentals of item response theory. London: Sage. Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991). Fundamentals of item response theory. London: Sage.
4.
go back to reference Streiner, D. L., & Norman, G. R. (2008). Health measurement scales: A practical guide to their development and use (4th ed.). Oxford: Oxford University Press. Streiner, D. L., & Norman, G. R. (2008). Health measurement scales: A practical guide to their development and use (4th ed.). Oxford: Oxford University Press.
5.
go back to reference Fayers, P., & Machin, D. (2007). Quality of life: The assessment, analysis and interpretation of patient-reported outcomes. Chichester, West Sussex: Wiley. Fayers, P., & Machin, D. (2007). Quality of life: The assessment, analysis and interpretation of patient-reported outcomes. Chichester, West Sussex: Wiley.
6.
go back to reference Zumbo, B. D. (2007). Validity: Foundational issues and statistical methodology. In C. R. Rao & S. Sinharay (Eds.), Handbook of statistics (vol. 26: Psychometrics) (pp. 45–79). Amsterdam: Elsevier Science. Zumbo, B. D. (2007). Validity: Foundational issues and statistical methodology. In C. R. Rao & S. Sinharay (Eds.), Handbook of statistics (vol. 26: Psychometrics) (pp. 45–79). Amsterdam: Elsevier Science.
7.
go back to reference Reise, S. P., & Gomel, J. N. (1995). Modeling qualitative variation within latent trait dimensions: Application of mixed-measurement to personality assessment. Multivariate Behavioral Research, 30, 341–358.CrossRef Reise, S. P., & Gomel, J. N. (1995). Modeling qualitative variation within latent trait dimensions: Application of mixed-measurement to personality assessment. Multivariate Behavioral Research, 30, 341–358.CrossRef
8.
go back to reference Zumbo, B. D. (2009). Validity as contextualized and pragmatic explanation, and its implications for validation practice. In R. W. Lissitz (Ed.), The concept of validity: Revisions, new directions and applications (pp. 65–82). Charlotte, NC: Information Age Publishing. Zumbo, B. D. (2009). Validity as contextualized and pragmatic explanation, and its implications for validation practice. In R. W. Lissitz (Ed.), The concept of validity: Revisions, new directions and applications (pp. 65–82). Charlotte, NC: Information Age Publishing.
9.
go back to reference Zumbo, B. D. (2007). Three generations of DIF analyses: Considering where it has been, where it is now, and where it is going. Language Assessment Quarterly, 4, 223–233. Zumbo, B. D. (2007). Three generations of DIF analyses: Considering where it has been, where it is now, and where it is going. Language Assessment Quarterly, 4, 223–233.
10.
go back to reference Sawatzky, R., Ratner, P. A., Johnson, J. L., Kopec, J., & Zumbo, B. D. (2009). Sample heterogeneity and the measurement structure of the Multidimensional Students’ Life Satisfaction Scale. Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, 94, 273–296. Sawatzky, R., Ratner, P. A., Johnson, J. L., Kopec, J., & Zumbo, B. D. (2009). Sample heterogeneity and the measurement structure of the Multidimensional Students’ Life Satisfaction Scale. Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, 94, 273–296.
11.
go back to reference Vandenberg, R. J., & Lance, C. E. (2000). A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. Organizational Research Methods, 3, 4–69.CrossRef Vandenberg, R. J., & Lance, C. E. (2000). A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organizational research. Organizational Research Methods, 3, 4–69.CrossRef
12.
go back to reference Byrne, B. M. (1998). Structural equation modeling with LISREL, PRELIS, and SIMPLIS: Basic concepts, applications, and programming. Mahwah, NJ: L. Erlbaum. Byrne, B. M. (1998). Structural equation modeling with LISREL, PRELIS, and SIMPLIS: Basic concepts, applications, and programming. Mahwah, NJ: L. Erlbaum.
13.
go back to reference Holland, P. W., & Thayer, D. T. (1988). Differential item functioning and the Mantel Haenszel procedure. In H. Wainer, H. I. Braun, & Educational Testing Service (Eds.), Test validity (pp. 129–145). Hillsdale, NJ: L. Erlbaum Associates. Holland, P. W., & Thayer, D. T. (1988). Differential item functioning and the Mantel Haenszel procedure. In H. Wainer, H. I. Braun, & Educational Testing Service (Eds.), Test validity (pp. 129–145). Hillsdale, NJ: L. Erlbaum Associates.
14.
go back to reference Swaminathan, H., & Rogers, H. J. (1990). Detecting differential item functioning using logistic regression procedures. Journal of Educational Measurement, 27, 361–370.CrossRef Swaminathan, H., & Rogers, H. J. (1990). Detecting differential item functioning using logistic regression procedures. Journal of Educational Measurement, 27, 361–370.CrossRef
15.
go back to reference Crane, P. K., Gibbons, L. E., Jolley, L., & van Belle, G. (2006). Differential item functioning analysis with ordinal logistic regression techniques. DIFdetect and difwithpar. Medical Care, 44(11 Suppl 3), S115–S123.PubMedCrossRef Crane, P. K., Gibbons, L. E., Jolley, L., & van Belle, G. (2006). Differential item functioning analysis with ordinal logistic regression techniques. DIFdetect and difwithpar. Medical Care, 44(11 Suppl 3), S115–S123.PubMedCrossRef
16.
go back to reference Zumbo, B. D. (1999). A handbook on the theory and methods of differential item functioning (DIF): Logistic regression modeling as a unitary framework for binary and Likert-type (ordinal) item scores. Ottawa, ON: Directorate of Human Resources Research and Evaluation, Department of National Defense. Zumbo, B. D. (1999). A handbook on the theory and methods of differential item functioning (DIF): Logistic regression modeling as a unitary framework for binary and Likert-type (ordinal) item scores. Ottawa, ON: Directorate of Human Resources Research and Evaluation, Department of National Defense.
17.
go back to reference Roussos, L., & Stout, W. (1996). A multidimensionality-based DIF analysis paradigm. Applied Psychological Measurement, 20, 355–371.CrossRef Roussos, L., & Stout, W. (1996). A multidimensionality-based DIF analysis paradigm. Applied Psychological Measurement, 20, 355–371.CrossRef
18.
go back to reference Shealy, R., & Stout, W. (1993). A model-based standardization approach that separates true bias/DIF from group ability differences and detects test bias/DTF as well as item bias/DIF. Psychometrika, 58, 159–194.CrossRef Shealy, R., & Stout, W. (1993). A model-based standardization approach that separates true bias/DIF from group ability differences and detects test bias/DTF as well as item bias/DIF. Psychometrika, 58, 159–194.CrossRef
19.
go back to reference Muthén, B., Kao, C.-F., & Burstein, L. (1991). Instructionally sensitive psychometrics: Application of a new IRT-based detection technique to mathematics achievement test items. Journal of Educational Measurement, 28, 1–22.CrossRef Muthén, B., Kao, C.-F., & Burstein, L. (1991). Instructionally sensitive psychometrics: Application of a new IRT-based detection technique to mathematics achievement test items. Journal of Educational Measurement, 28, 1–22.CrossRef
20.
go back to reference Steinberg, L., & Thissen, D. (2006). Using effect sizes for research reporting: Examples using item response theory to analyze differential item functioning. Psychological Methods, 11, 402–415.PubMedCrossRef Steinberg, L., & Thissen, D. (2006). Using effect sizes for research reporting: Examples using item response theory to analyze differential item functioning. Psychological Methods, 11, 402–415.PubMedCrossRef
21.
go back to reference Morales, L. S., Flowers, C., Gutierrez, P., Kleinman, M., & Teresi, J. A. (2006). Item and scale differential functioning of the Mini-Mental State Exam assessed using the differential item and test functioning (DFIT) framework. Medical Care, 44(11 Suppl 3), S143–S151.PubMedCrossRef Morales, L. S., Flowers, C., Gutierrez, P., Kleinman, M., & Teresi, J. A. (2006). Item and scale differential functioning of the Mini-Mental State Exam assessed using the differential item and test functioning (DFIT) framework. Medical Care, 44(11 Suppl 3), S143–S151.PubMedCrossRef
22.
go back to reference Cohen, A. S., & Bolt, D. M. (2005). A mixture model analysis of differential item functioning. Journal of Educational Measurement, 42, 133–148.CrossRef Cohen, A. S., & Bolt, D. M. (2005). A mixture model analysis of differential item functioning. Journal of Educational Measurement, 42, 133–148.CrossRef
23.
go back to reference De Ayala, R. J., Kim, S. H., Stapleton, L. M., & Dayton, C. M. (2002). Differential item functioning: A mixture distribution conceptualization. International Journal of Testing, 2, 243. De Ayala, R. J., Kim, S. H., Stapleton, L. M., & Dayton, C. M. (2002). Differential item functioning: A mixture distribution conceptualization. International Journal of Testing, 2, 243.
24.
go back to reference Samuelsen, K. M. (2008). Examining differential item functioning from a latent mixture perspective. In G. R. Hancock & K. M. Samuelsen (Eds.), Advances in latent variable mixture models (pp. 177–198). Charlotte, NC: Information Age Publishing. Samuelsen, K. M. (2008). Examining differential item functioning from a latent mixture perspective. In G. R. Hancock & K. M. Samuelsen (Eds.), Advances in latent variable mixture models (pp. 177–198). Charlotte, NC: Information Age Publishing.
25.
go back to reference Mislevy, R. J., Levy, R., Kroopnick, M., & Rutstein, D. (2008). Evidentiary foundations of mixture item response theory models. In G. R. Hancock & K. M. Samuelsen (Eds.), Advances in latent variable mixture models (pp. 149–176). Charlotte, NC: Information Age Publishing. Mislevy, R. J., Levy, R., Kroopnick, M., & Rutstein, D. (2008). Evidentiary foundations of mixture item response theory models. In G. R. Hancock & K. M. Samuelsen (Eds.), Advances in latent variable mixture models (pp. 149–176). Charlotte, NC: Information Age Publishing.
26.
go back to reference De Ayala, R. J. (2009). The theory and practice of item response theory. New York: Guilford Press. De Ayala, R. J. (2009). The theory and practice of item response theory. New York: Guilford Press.
27.
go back to reference Vermunt, J. K. (2001). The use of restricted latent class models for defining and testing nonparametric and parametric item response theory models. Applied Psychological Measurement, 25, 283–294.CrossRef Vermunt, J. K. (2001). The use of restricted latent class models for defining and testing nonparametric and parametric item response theory models. Applied Psychological Measurement, 25, 283–294.CrossRef
28.
go back to reference Rost, J. (1990). Rasch models in latent classes: An integration of two approaches to item analysis. Applied Psychological Measurement, 14, 271–282.CrossRef Rost, J. (1990). Rasch models in latent classes: An integration of two approaches to item analysis. Applied Psychological Measurement, 14, 271–282.CrossRef
29.
go back to reference Maij-de Meij, A. M., Kelderman, H., & van der Flier, H. (2010). Improvement in detection of differential item functioning using a mixture item response theory model. Multivariate Behavioral Research, 45(6), 975–999.CrossRef Maij-de Meij, A. M., Kelderman, H., & van der Flier, H. (2010). Improvement in detection of differential item functioning using a mixture item response theory model. Multivariate Behavioral Research, 45(6), 975–999.CrossRef
30.
go back to reference Muthén, B. (2008). Latent variables hybrids. In G. R. Hancock & K. M. Samuelsen (Eds.), Advances in latent variable mixture models (pp. 1–24). Charlotte, NC: Information Age Publishing. Muthén, B. (2008). Latent variables hybrids. In G. R. Hancock & K. M. Samuelsen (Eds.), Advances in latent variable mixture models (pp. 1–24). Charlotte, NC: Information Age Publishing.
31.
go back to reference Muthén, B. (2001). Latent variable mixture modeling. In G. A. Marcoulides & R. E. Schumacker (Eds.), New developments and techniques in structural equation modeling (pp. 1–33). Mahwah, NJ: Lawrence Erlbaum. Muthén, B. (2001). Latent variable mixture modeling. In G. A. Marcoulides & R. E. Schumacker (Eds.), New developments and techniques in structural equation modeling (pp. 1–33). Mahwah, NJ: Lawrence Erlbaum.
32.
go back to reference Muthén, B. (2002). Beyond SEM: General latent variable modeling. Behaviormetrika, 29(1), 81–117. Muthén, B. (2002). Beyond SEM: General latent variable modeling. Behaviormetrika, 29(1), 81–117.
33.
go back to reference Muthén, B., & Muthén, L. (2008). MPlus (version 5.2). Los Angeles, CA: Statmodel. Muthén, B., & Muthén, L. (2008). MPlus (version 5.2). Los Angeles, CA: Statmodel.
34.
go back to reference Lubke, G., & Muthén, B. (2005). Investigating population heterogeneity with factor mixture models. Psychological Methods, 10, 21–39.PubMedCrossRef Lubke, G., & Muthén, B. (2005). Investigating population heterogeneity with factor mixture models. Psychological Methods, 10, 21–39.PubMedCrossRef
35.
go back to reference von Davier, M., & Carstensen, C. H. (2007). Multivariate and mixture distribution Rasch models: Extensions and applications. New York, NY: Springer. von Davier, M., & Carstensen, C. H. (2007). Multivariate and mixture distribution Rasch models: Extensions and applications. New York, NY: Springer.
36.
go back to reference Bolt, D. M. (2000). A SIBTEST approach to testing DIF hypotheses using experimentally designed test items. Journal of Educational Measurement, 37, 307–327.CrossRef Bolt, D. M. (2000). A SIBTEST approach to testing DIF hypotheses using experimentally designed test items. Journal of Educational Measurement, 37, 307–327.CrossRef
37.
go back to reference Rost, J. (1991). A logistic mixture distribution model for polychotomous item responses. British Journal of Mathematical and Statistical Psychology, 44, 75–92.CrossRef Rost, J. (1991). A logistic mixture distribution model for polychotomous item responses. British Journal of Mathematical and Statistical Psychology, 44, 75–92.CrossRef
38.
go back to reference von Davier, M., & Yamamoto, K. (2007). Mixture-distribution and HYBRID Rasch models. In M. von Davier & C. H. Carstensen (Eds.), Multivariate and mixture distribution Rasch models: Extensions and applications (pp. 99–115). New York, NY: Springer Science + Business Media.CrossRef von Davier, M., & Yamamoto, K. (2007). Mixture-distribution and HYBRID Rasch models. In M. von Davier & C. H. Carstensen (Eds.), Multivariate and mixture distribution Rasch models: Extensions and applications (pp. 99–115). New York, NY: Springer Science + Business Media.CrossRef
39.
go back to reference Muthén, B., & Asparouhov, T. (2006). Item response mixture modeling: Application to tobacco dependence criteria. Addictive Behaviors, 31, 1050–1066.PubMedCrossRef Muthén, B., & Asparouhov, T. (2006). Item response mixture modeling: Application to tobacco dependence criteria. Addictive Behaviors, 31, 1050–1066.PubMedCrossRef
40.
go back to reference Kamata, A., & Bauer, D. J. (2008). A note on the relation between factor analytic and item response theory. Structural Equation Modeling: A Multidisciplinary Journal, 15, 136–153.CrossRef Kamata, A., & Bauer, D. J. (2008). A note on the relation between factor analytic and item response theory. Structural Equation Modeling: A Multidisciplinary Journal, 15, 136–153.CrossRef
41.
go back to reference Takane, Y., & de Leeuw, J. (1987). On the relationship between item response theory and factor analysis of discretized variables. Psychometrika, 52, 393–408.CrossRef Takane, Y., & de Leeuw, J. (1987). On the relationship between item response theory and factor analysis of discretized variables. Psychometrika, 52, 393–408.CrossRef
42.
go back to reference McDonald, R. P. (1999). Test theory: A unified treatment. Mahwah, NJ: L. Erlbaum Associates. McDonald, R. P. (1999). Test theory: A unified treatment. Mahwah, NJ: L. Erlbaum Associates.
43.
go back to reference Samejima, F. (1997). Graded response model. In W. J. Van Der Linden & R. K. Hambleton (Eds.), Handbook of modern item response theory (pp. 85–100). New York: Springer. Samejima, F. (1997). Graded response model. In W. J. Van Der Linden & R. K. Hambleton (Eds.), Handbook of modern item response theory (pp. 85–100). New York: Springer.
44.
go back to reference Reeve, B. B., Hays, R. D., Bjorner, J. B., Cook, K. F., Crane, P. K., Teresi, J. A., et al. (2007). Psychometric evaluation and calibration of health-related quality of life item banks: Plans for the patient-reported outcomes measurement information system (PROMIS). Medical Care, 45(5 Suppl 1), S22–S31.PubMedCrossRef Reeve, B. B., Hays, R. D., Bjorner, J. B., Cook, K. F., Crane, P. K., Teresi, J. A., et al. (2007). Psychometric evaluation and calibration of health-related quality of life item banks: Plans for the patient-reported outcomes measurement information system (PROMIS). Medical Care, 45(5 Suppl 1), S22–S31.PubMedCrossRef
45.
go back to reference McLachlan, G. J., & Peel, D. (2000). Finite mixture models. New York: Wiley.CrossRef McLachlan, G. J., & Peel, D. (2000). Finite mixture models. New York: Wiley.CrossRef
46.
go back to reference Hagenaars, J. A., & McCutcheon, A. L. (2002). Applied latent class analysis. Cambridge, NY: Cambridge University Press.CrossRef Hagenaars, J. A., & McCutcheon, A. L. (2002). Applied latent class analysis. Cambridge, NY: Cambridge University Press.CrossRef
47.
go back to reference Asparouhov, T., & Muthén, B. (2008). Multilevel mixture models. In G. R. Hancock & K. M. Samuelsen (Eds.), Advances in latent variable mixture models (pp. 27–51). Charlotte, NC: Information Age Publishing. Asparouhov, T., & Muthén, B. (2008). Multilevel mixture models. In G. R. Hancock & K. M. Samuelsen (Eds.), Advances in latent variable mixture models (pp. 27–51). Charlotte, NC: Information Age Publishing.
48.
go back to reference Chen, W. H., & Thissen, D. (1997). Local dependence indexes for item pairs using item response theory. Journal of Educational and Behavioral Statistics, 22, 265–289. Chen, W. H., & Thissen, D. (1997). Local dependence indexes for item pairs using item response theory. Journal of Educational and Behavioral Statistics, 22, 265–289.
49.
go back to reference Agresti, A. (2002). Categorical data analysis (2nd ed.). New York: Wiley-Interscience.CrossRef Agresti, A. (2002). Categorical data analysis (2nd ed.). New York: Wiley-Interscience.CrossRef
50.
go back to reference Sclove, S. L. (1987). Application of model-selection criteria to some problems in multivariate analysis. Psychometrika, 52, 333–343.CrossRef Sclove, S. L. (1987). Application of model-selection criteria to some problems in multivariate analysis. Psychometrika, 52, 333–343.CrossRef
51.
go back to reference Henson, J. M., Reise, S. P., & Kim, K. H. (2007). Detecting mixtures from structural model differences using latent variable mixture modeling: A comparison of relative model fit statistics. Structural Equation Modeling: A Multidisciplinary Journal, 14, 202–226.CrossRef Henson, J. M., Reise, S. P., & Kim, K. H. (2007). Detecting mixtures from structural model differences using latent variable mixture modeling: A comparison of relative model fit statistics. Structural Equation Modeling: A Multidisciplinary Journal, 14, 202–226.CrossRef
52.
go back to reference Yang, C. C. (2006). Evaluating latent class analysis models in qualitative phenotype identification. Computational Statistics & Data Analysis, 50, 1090–1104.CrossRef Yang, C. C. (2006). Evaluating latent class analysis models in qualitative phenotype identification. Computational Statistics & Data Analysis, 50, 1090–1104.CrossRef
53.
go back to reference Nylund, K. L., Asparoutiov, T., & Muthén, B. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling: A Multidisciplinary Journal, 14, 535–569.CrossRef Nylund, K. L., Asparoutiov, T., & Muthén, B. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling: A Multidisciplinary Journal, 14, 535–569.CrossRef
54.
go back to reference Li, F. M., Cohen, A. S., Kim, S. H., & Cho, S. J. (2009). Model selection methods for mixture dichotomous IRT models. Applied Psychological Measurement, 33, 353–373.CrossRef Li, F. M., Cohen, A. S., Kim, S. H., & Cho, S. J. (2009). Model selection methods for mixture dichotomous IRT models. Applied Psychological Measurement, 33, 353–373.CrossRef
55.
go back to reference Vuong, Q. H. (1989). Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica, 57, 307.CrossRef Vuong, Q. H. (1989). Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica, 57, 307.CrossRef
56.
go back to reference Lo, Y. T., Mendell, N. R., & Rubin, D. B. (2001). Testing the number of components in a normal mixture. Biometrika, 88, 767–778.CrossRef Lo, Y. T., Mendell, N. R., & Rubin, D. B. (2001). Testing the number of components in a normal mixture. Biometrika, 88, 767–778.CrossRef
57.
go back to reference Muthén, B., Brown, C. H., Masyn, K., Jo, B., Khoo, S. T., Yang, C. C., et al. (2002). General growth mixture modeling for randomized preventive interventions. Biostatistics, 3, 459–475.PubMedCrossRef Muthén, B., Brown, C. H., Masyn, K., Jo, B., Khoo, S. T., Yang, C. C., et al. (2002). General growth mixture modeling for randomized preventive interventions. Biostatistics, 3, 459–475.PubMedCrossRef
58.
go back to reference Lubke, G., & Muthén, B. (2007). Performance of factor mixture models as a function of model size, covariate effects, and class-specific parameters. Structural Equation Modeling: A Multidisciplinary Journal, 14, 26–47. Lubke, G., & Muthén, B. (2007). Performance of factor mixture models as a function of model size, covariate effects, and class-specific parameters. Structural Equation Modeling: A Multidisciplinary Journal, 14, 26–47.
59.
go back to reference Holland, P. W. (2007). A framework and history for score linking. In N. J. Dorans, M. Pommerich, & P. W. Holland (Eds.), Linking and aligning scores and scales (pp. 5–30). New York: Springer.CrossRef Holland, P. W. (2007). A framework and history for score linking. In N. J. Dorans, M. Pommerich, & P. W. Holland (Eds.), Linking and aligning scores and scales (pp. 5–30). New York: Springer.CrossRef
60.
go back to reference Kolen, M. J., & Brennan, R. L. (2004). Test equating, scaling, and linking: Methods and practices (2nd ed.). New York: Springer. Kolen, M. J., & Brennan, R. L. (2004). Test equating, scaling, and linking: Methods and practices (2nd ed.). New York: Springer.
61.
go back to reference Thomas, D. R., Zhu, P., Zumbo, B. D., & Dutta, S. (2008). On measuring the relative importance of explanatory variables in a logistic regression. Journal of Modern Applied Statistical Methods, 7, 21–38. Thomas, D. R., Zhu, P., Zumbo, B. D., & Dutta, S. (2008). On measuring the relative importance of explanatory variables in a logistic regression. Journal of Modern Applied Statistical Methods, 7, 21–38.
63.
go back to reference Maij-de Meij, A. M., Kelderman, H., & van der Flier, H. (2008). Fitting a mixture item response theory model to personality questionnaire data: Characterizing latent classes and investigating possibilities for improving prediction. Applied Psychological Measurement, 32, 611–631.CrossRef Maij-de Meij, A. M., Kelderman, H., & van der Flier, H. (2008). Fitting a mixture item response theory model to personality questionnaire data: Characterizing latent classes and investigating possibilities for improving prediction. Applied Psychological Measurement, 32, 611–631.CrossRef
64.
go back to reference Vermunt, J. K. (2010). Latent class modeling with covariates: Two improved three-step approaches. Political Analysis, 18(4), 450–469.CrossRef Vermunt, J. K. (2010). Latent class modeling with covariates: Two improved three-step approaches. Political Analysis, 18(4), 450–469.CrossRef
65.
go back to reference Tofighi, D., & Enders, C. K. (2008). Identifying the correct number of classes in growth mixture models. In G. R. Hancock & K. M. Samuelsen (Eds.), Advances in latent variable mixture models (pp. 317–342). Charlotte, NC: Information Age Publishing. Tofighi, D., & Enders, C. K. (2008). Identifying the correct number of classes in growth mixture models. In G. R. Hancock & K. M. Samuelsen (Eds.), Advances in latent variable mixture models (pp. 317–342). Charlotte, NC: Information Age Publishing.
66.
go back to reference Hosmer, D. W., & Lemeshow, S. (2000). Applied logistic regression (2nd ed.). New York: Wiley.CrossRef Hosmer, D. W., & Lemeshow, S. (2000). Applied logistic regression (2nd ed.). New York: Wiley.CrossRef
67.
go back to reference Bolck, A., Croon, M., & Hagenaars, J. (2004). Estimating latent structure models with categorical variables: One-step versus three-step estimators. Political Analysis, 12, 3–27.CrossRef Bolck, A., Croon, M., & Hagenaars, J. (2004). Estimating latent structure models with categorical variables: One-step versus three-step estimators. Political Analysis, 12, 3–27.CrossRef
68.
go back to reference Wang, C. P., Brown, C. H., & Bandeen-Roche, K. (2005). Residual diagnostics for growth mixture models: Examining the impact of a preventive intervention on multiple trajectories of aggressive behavior. Journal of the American Statistical Association, 100, 1054–1076.CrossRef Wang, C. P., Brown, C. H., & Bandeen-Roche, K. (2005). Residual diagnostics for growth mixture models: Examining the impact of a preventive intervention on multiple trajectories of aggressive behavior. Journal of the American Statistical Association, 100, 1054–1076.CrossRef
69.
go back to reference Bandeen-Roche, K., Miglioretti, D. L., Zeger, S. L., & Rathouz, P. J. (1997). Latent variable regression for multiple discrete outcomes. Journal of the American Statistical Association, 92(440), 1375–1386.CrossRef Bandeen-Roche, K., Miglioretti, D. L., Zeger, S. L., & Rathouz, P. J. (1997). Latent variable regression for multiple discrete outcomes. Journal of the American Statistical Association, 92(440), 1375–1386.CrossRef
71.
go back to reference Ware, J. E., Snow, K. K., Kosinski, M., & Gandek, B. (1993). SF-36 health survey: Manual and interpretation guide. Boston, MA: The Health Institute, New England Medical Center. Ware, J. E., Snow, K. K., Kosinski, M., & Gandek, B. (1993). SF-36 health survey: Manual and interpretation guide. Boston, MA: The Health Institute, New England Medical Center.
72.
go back to reference Canada, Statistics. (2005). Canadian Community Health Survey Cycle 2.1: User guide for the public use microdata file. Ottawa, ON: Statistics Canada: Health Statistics Division. Canada, Statistics. (2005). Canadian Community Health Survey Cycle 2.1: User guide for the public use microdata file. Ottawa, ON: Statistics Canada: Health Statistics Division.
73.
go back to reference Dayton, C. M. (1998). Latent class scaling analysis. Thousand Oaks, CA: Sage. Dayton, C. M. (1998). Latent class scaling analysis. Thousand Oaks, CA: Sage.
74.
go back to reference Finney, S. J., & DiStefano, C. (2006). Non-normal and categorical data in structural equation modeling. In G. R. Hancock & R. O. Mueller (Eds.), Structural equation modeling: A second course (pp. 269–314). Greenwich, CT: Information Age Publishing. Finney, S. J., & DiStefano, C. (2006). Non-normal and categorical data in structural equation modeling. In G. R. Hancock & R. O. Mueller (Eds.), Structural equation modeling: A second course (pp. 269–314). Greenwich, CT: Information Age Publishing.
75.
go back to reference Jöreskog, K. G. (1990). New developments in LISREL: Analysis of ordinal variables using polychoric correlations and weighted least squares. Quality & Quantity, 24, 387–404.CrossRef Jöreskog, K. G. (1990). New developments in LISREL: Analysis of ordinal variables using polychoric correlations and weighted least squares. Quality & Quantity, 24, 387–404.CrossRef
76.
go back to reference Jöreskog, K. G., & Moustaki, I. (2001). Factor analysis of ordinal variables: A comparison of three approaches. Multivariate Behavioral Research, 36, 347–387.CrossRef Jöreskog, K. G., & Moustaki, I. (2001). Factor analysis of ordinal variables: A comparison of three approaches. Multivariate Behavioral Research, 36, 347–387.CrossRef
77.
go back to reference Rigdon, E. E., & Ferguson, C. E., Jr. (1991). The performance of the polychoric correlation coefficient and selected fitting functions in confirmatory factor analysis with ordinal data. Journal of Marketing Research, 28, 491–497.CrossRef Rigdon, E. E., & Ferguson, C. E., Jr. (1991). The performance of the polychoric correlation coefficient and selected fitting functions in confirmatory factor analysis with ordinal data. Journal of Marketing Research, 28, 491–497.CrossRef
78.
go back to reference Lord, F. M. (1980). Applications of item response theory to practical testing problems. Hillsdale, NJ: L. Erlbaum Associates. Lord, F. M. (1980). Applications of item response theory to practical testing problems. Hillsdale, NJ: L. Erlbaum Associates.
79.
go back to reference Bauer, D. J., & Curran, P. J. (2004). The integration of continuous and discrete latent variable models: Potential problems and promising opportunities. Psychological Methods, 9, 3–29.PubMedCrossRef Bauer, D. J., & Curran, P. J. (2004). The integration of continuous and discrete latent variable models: Potential problems and promising opportunities. Psychological Methods, 9, 3–29.PubMedCrossRef
80.
go back to reference Canada, Statistics. (2005). Canadian Community Health Survey: Questionnaire for cycle 2.1. Ottawa, ON: Statistics Canada: Health Statistics Division. Canada, Statistics. (2005). Canadian Community Health Survey: Questionnaire for cycle 2.1. Ottawa, ON: Statistics Canada: Health Statistics Division.
Metagegevens
Titel
Latent variable mixture models: a promising approach for the validation of patient reported outcomes
Auteurs
Richard Sawatzky
Pamela A. Ratner
Jacek A. Kopec
Bruno D. Zumbo
Publicatiedatum
01-05-2012
Uitgeverij
Springer Netherlands
Gepubliceerd in
Quality of Life Research / Uitgave 4/2012
Print ISSN: 0962-9343
Elektronisch ISSN: 1573-2649
DOI
https://doi.org/10.1007/s11136-011-9976-6

Andere artikelen Uitgave 4/2012

Quality of Life Research 4/2012 Naar de uitgave