Skip to main content
Top
Gepubliceerd in:

01-02-2015 | Original Paper

Joint Analysis of Band-Specific Functional Connectivity and Signal Complexity in Autism

Auteurs: Yasser Ghanbari, Luke Bloy, J. Christopher Edgar, Lisa Blaskey, Ragini Verma, Timothy P. L. Roberts

Gepubliceerd in: Journal of Autism and Developmental Disorders | Uitgave 2/2015

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Examination of resting state brain activity using electrophysiological measures like complexity as well as functional connectivity is of growing interest in the study of autism spectrum disorders (ASD). The present paper jointly examined complexity and connectivity to obtain a more detailed characterization of resting state brain activity in ASD. Multi-scale entropy was computed to quantify the signal complexity, and synchronization likelihood was used to evaluate functional connectivity (FC), with node strength values providing a sensor-level measure of connectivity to facilitate comparisons with complexity. Sensor level analysis of complexity and connectivity was performed at different frequency bands computed from resting state MEG from 26 children with ASD and 22 typically developing controls (TD). Analyses revealed band-specific group differences in each measure that agreed with other functional studies in fMRI and EEG: higher complexity in TD than ASD, in frontal regions in the delta band and occipital-parietal regions in the alpha band, and lower complexity in TD than in ASD in delta (parietal regions), theta (central and temporal regions) and gamma (frontal-central boundary regions); increased short-range connectivity in ASD in the frontal lobe in the delta band and long-range connectivity in the temporal, parietal and occipital lobes in the alpha band. Finally, and perhaps most strikingly, group differences between ASD and TD in complexity and FC appear spatially complementary, such that where FC was elevated in ASD, complexity was reduced (and vice versa). The correlation of regional average complexity and connectivity node strength with symptom severity scores of ASD subjects supported the overall complementarity (with opposing sign) of connectivity and complexity measures, pointing to either diminished connectivity leading to elevated entropy due to poor inhibitory regulation or chaotic signals prohibiting effective measure of connectivity.
Bijlagen
Deze inhoud is alleen zichtbaar als je bent ingelogd en de juiste rechten hebt.
Literatuur
Deze inhoud is alleen zichtbaar als je bent ingelogd en de juiste rechten hebt.
Metagegevens
Titel
Joint Analysis of Band-Specific Functional Connectivity and Signal Complexity in Autism
Auteurs
Yasser Ghanbari
Luke Bloy
J. Christopher Edgar
Lisa Blaskey
Ragini Verma
Timothy P. L. Roberts
Publicatiedatum
01-02-2015
Uitgeverij
Springer US
Gepubliceerd in
Journal of Autism and Developmental Disorders / Uitgave 2/2015
Print ISSN: 0162-3257
Elektronisch ISSN: 1573-3432
DOI
https://doi.org/10.1007/s10803-013-1915-7