Skip to main content
Top
Gepubliceerd in: Psychological Research 3/2010

01-05-2010 | Original Article

Is there a structural limit to ‘branch’ recursively between more than two tasks?

Auteurs: Urs Heilbronner, Stefan Pollmann

Gepubliceerd in: Psychological Research | Uitgave 3/2010

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

The term ‘branching’ refers to processes needed for successful reuptake of a task after interruption by another task. Based on a model of human prefrontal cognitive architecture, it has been postulated that people cannot branch recursively between more than two tasks due to a capacity limit built into the cognitive architecture (Koechlin and Hyafil in Science 318:594–598, 2007). As an alternative to a structural limit for recursive branching between more than two tasks we put forward the hypothesis that working memory capacity is the limiting factor in recursive branching. We tested this hypothesis by independently varying working memory load and number of recursive branching steps. Successful branching between up to four tasks was observed, as long as working memory load was kept low. Our data, thus, do not support the proposition of a structural limit to recursive branching beyond two tasks. Instead, they suggest that working memory capacity limit is the most important factor that limits the capacity for branching. We further observed that the requirement to retain task sets and task contents additively contributed to the difficulty of recursive branching. In a broader context, our data thus support working memory models that conceptualize working memory and executive functions not as separate modules, but as tightly interactive processes.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Literatuur
go back to reference Atkinson, R. C., & Shiffrin, R. M. (1971). The control of short-term memory. Scientific American, 25, 82–90.CrossRef Atkinson, R. C., & Shiffrin, R. M. (1971). The control of short-term memory. Scientific American, 25, 82–90.CrossRef
go back to reference Cavanagh, J. P. (1972). Relation between the immediate memory span and the memory search rate. Psychological Review, 79, 525–530.CrossRef Cavanagh, J. P. (1972). Relation between the immediate memory span and the memory search rate. Psychological Review, 79, 525–530.CrossRef
go back to reference Cowan, N. (1999). An embedded-process model of working memory. In A. Miyake & P. Shah (Eds.), Models of working memory (pp. 28–61). New York: Cambridge University Press. Cowan, N. (1999). An embedded-process model of working memory. In A. Miyake & P. Shah (Eds.), Models of working memory (pp. 28–61). New York: Cambridge University Press.
go back to reference Cowan, N. (2001). The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87–114.CrossRefPubMed Cowan, N. (2001). The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24(1), 87–114.CrossRefPubMed
go back to reference Geller, A. S., Schlefer, I. K., Sederberg, P. B., Jacobs, J., & Kahana, M. J. (2007). PyEPL: a cross platform experiment-programming library. Behavior Research Methods, 39, 950–958.PubMed Geller, A. S., Schlefer, I. K., Sederberg, P. B., Jacobs, J., & Kahana, M. J. (2007). PyEPL: a cross platform experiment-programming library. Behavior Research Methods, 39, 950–958.PubMed
go back to reference Hazy, T. E., Frank, M. J., & O’Reilly, R. C. (2006). Banishing the homunculus: making working memory work. Neuroscience, 139, 105–118.CrossRefPubMed Hazy, T. E., Frank, M. J., & O’Reilly, R. C. (2006). Banishing the homunculus: making working memory work. Neuroscience, 139, 105–118.CrossRefPubMed
go back to reference Henderson, L. (1972). Spatial and verbal codes and the capacity of STM. The Quarterly Journal of Experimental Psychology, 24(4), 485–495.CrossRefPubMed Henderson, L. (1972). Spatial and verbal codes and the capacity of STM. The Quarterly Journal of Experimental Psychology, 24(4), 485–495.CrossRefPubMed
go back to reference Ihaka, R., & Gentleman, R. (1996). R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5(3), 299–314.CrossRef Ihaka, R., & Gentleman, R. (1996). R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5(3), 299–314.CrossRef
go back to reference Johnson, N. L. (1949). Systems of frequency curves generated by methods of translation. Biometrika, 36(1/2), 149–176.CrossRefPubMed Johnson, N. L. (1949). Systems of frequency curves generated by methods of translation. Biometrika, 36(1/2), 149–176.CrossRefPubMed
go back to reference Koechlin, E., Basso, G., Pietrini, P., Panzer, S., & Grafman, J. (1999). The role of the anterior prefrontal cortex in human cognition. Nature, 399, 148–151.CrossRefPubMed Koechlin, E., Basso, G., Pietrini, P., Panzer, S., & Grafman, J. (1999). The role of the anterior prefrontal cortex in human cognition. Nature, 399, 148–151.CrossRefPubMed
go back to reference Koechlin, E., & Hyafil, A. (2007). Anterior prefrontal function and the limits of human decision-making. Science, 318, 594–598.CrossRefPubMed Koechlin, E., & Hyafil, A. (2007). Anterior prefrontal function and the limits of human decision-making. Science, 318, 594–598.CrossRefPubMed
go back to reference Koechlin, E., Ody, C., & Kouneiher, F. (2003). The architecture of cognitive control in the human prefrontal cortex. Science, 302, 1181–1185.CrossRefPubMed Koechlin, E., Ody, C., & Kouneiher, F. (2003). The architecture of cognitive control in the human prefrontal cortex. Science, 302, 1181–1185.CrossRefPubMed
go back to reference Koechlin, E., & Summerfield, C. (2007). An information theoretical approach to prefrontal executive function. Trends in Cognitive Sciences, 11, 229–235.CrossRefPubMed Koechlin, E., & Summerfield, C. (2007). An information theoretical approach to prefrontal executive function. Trends in Cognitive Sciences, 11, 229–235.CrossRefPubMed
go back to reference Lisman, J. E., & Idiart, M. A. P. (1995). Storage of 7 ± 2 short-term memories in oscillatory subcycles. Science, 267, 1512–1515.CrossRefPubMed Lisman, J. E., & Idiart, M. A. P. (1995). Storage of 7 ± 2 short-term memories in oscillatory subcycles. Science, 267, 1512–1515.CrossRefPubMed
go back to reference Lovett, M. C., Reder, L. M., & Lebiere, C. (1999). Modeling working memory in a unified architecture: An ACT-R-perspective. In A. Miyake & P. Shah (Eds.), Models of working memory (pp. 135–182). New York: Cambridge University Press. Lovett, M. C., Reder, L. M., & Lebiere, C. (1999). Modeling working memory in a unified architecture: An ACT-R-perspective. In A. Miyake & P. Shah (Eds.), Models of working memory (pp. 135–182). New York: Cambridge University Press.
go back to reference Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279–281.CrossRefPubMed Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279–281.CrossRefPubMed
go back to reference Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological Review, 63, 81–97.CrossRefPubMed Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological Review, 63, 81–97.CrossRefPubMed
Metagegevens
Titel
Is there a structural limit to ‘branch’ recursively between more than two tasks?
Auteurs
Urs Heilbronner
Stefan Pollmann
Publicatiedatum
01-05-2010
Uitgeverij
Springer-Verlag
Gepubliceerd in
Psychological Research / Uitgave 3/2010
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-009-0249-8

Andere artikelen Uitgave 3/2010

Psychological Research 3/2010 Naar de uitgave