Social neurodevelopmental imbalance models posit that peer presence causes heightened adolescent risk-taking (Somerville, et al.
2011; Steinberg
2008). Whereas social neurodevelopmental imbalance models suggest that such peer presence effects particularly occur during early adolescence (e.g., Crone and Dahl
2012; Somerville et al.
2010), evolutionary theory suggests that these effects would be most pronounced in males (Wilson and Daly
1985). However, the small but growing number of experimental studies on peer presence effects in adolescent risky decision making showed mixed findings, and the vast majority of such studies did not test for the above-described gender and adolescent phase moderation effects. By taking such gender and adolescent phase moderation effects into account, the current article aimed to add to the literature about what is known about peer presence effects, and to potentially reconcile the mixed findings (study one). Furthermore, the current article assessed whether the employed laboratory risky decision-making task (i.e., the stoplight game) is meaningful for understanding real-word adolescent risk behavior (study two).
Study One
Results of study one showed that peer presence generally did not lead to an increase in adolescent risky decision making, which contradicts the peer presence hypothesis of social neurodevelopmental imbalance models. However, there was an interaction effect between gender and peer presence on risky decision making. Follow-up post hoc analyses showed that whereas boys’ and girls’ risk-taking in the alone condition did not significantly differ, in the peer condition boys significantly took more risks than girls. Moreover, whereas same-sex peers have an increasing effect on boys’ risk-taking, same-sex peers have a diminishing effect on girls’ risk-taking. These gender moderation effects of the influence of peer presence on risk-taking are in line with evolutionary perspectives. In accordance with the current findings, one of the few experimental risk-taking studies that investigated gender differences also did not find a peer presence effect for risky decision making on the stoplight game when boys and girls were combined (Kretsch and Harden
2014). Unlike the current study, Kretsch and Harden (
2014) did not investigate a moderating role of gender in peer effects, however. Nevertheless, the gender by peer presence moderation effect on experimental risk-taking is similar to the findings of another experimental study—also conducted in The Netherlands—that found that adolescent boys engaged in more risk-taking than adolescent girls in a condition wherein they completed a risky task together with peers, but not when they completed the same risky task alone (de Boer et al.
2017). Hence this finding led the authors to conclude that males appear to be more susceptible to peer influence on risk-taking compared to females (de Boer et al.
2017).
As for the theoretical framework, considering that no general peer presence effect was found, could imply that the social neurodevelopmental imbalance model might be most meaningful for adolescent boys’ heightened risk-taking in the presence of peers, but not for girls. This assertion is consistent with the
sociobiological theory of male competitiveness (Wilson and Daly
1985) and other evolutionary perspectives on factors that influence males’ reproductive success through enhancing social reputation and dominance (Ellis et al.
2012). In line with these perspectives, the current findings perhaps suggest that since males associate their fitness with being successful in risky “competitive” situations
1, the adolescent males (versus females) in the current study likely felt more pressured in the presence of their same-sex peers to engage in risks in order to maintain or enhance their reputation. Such peer pressure could have been transferred both verbally (directly) or non-verbally (indirectly/subtle) (e.g., Defoe et al.
2018; Wilson and Daly
1985). Equally possible is that both boys and girls encourage risk-taking, however girls are more capable of suppressing or resisting peer pressure than boys are. It should be noted however, that in the current study same-sex peers had an increasing effect on boys’ risk-taking, whereas same-sex peers had a diminishing effect on girls’ risk-taking. Thus perhaps the girls’ triad primarily consisted of pressure
discouraging risk-taking whereas the boys’ triad consisted primarily of pressure
encouraging risk-taking. In any case, in correlational studies, adolescent girls report more resistance to peer influence than do adolescent boys on self-report measures of peer resistance (Steinberg and Monahan
2007), and peers have been shown to have more negative influences on boys’ risk-taking compared to girls’ risk-taking (Mears et al.
1998; Piquero et al.
2005). Thus these correlational results are consistent with the current results that show a gender moderation effect of peer influence on risk-taking.
Taken together, consistent with
evolutionary perspectives on why males take more risks and the aforementioned past correlational studies, the present results could suggest that whether peer presence sensitizes adolescents to rewards leading to risk-taking and/or whether this sensitization to respond to the rewarding aspect of risk-taking behaviors further undermines self-regulation capacities (e.g., resistance to peer influence) (Albert et al.
2013), might further be modulated by gender. However, this effect existed using just one type of risky decision-making task (driving task), and although such effects were also found on the BART (de Boer et al.
2017), it is worthwhile for future studies to explore whether these moderation effects are also found for other types of risky decision-making tasks. Finally, peer presence effects might also be modulated by the abovementioned social mechanisms (e.g., peer pressure or peer norms). Thus future studies could further explore whether social learning perspectives could be relevant for understanding peer presence effects on risk-taking.
Next, inspired by social neurodevelopmental imbalance models it was expected that particularly early adolescents would be most susceptible to peer presence effects on risk-taking. However, no age moderation effects of peer presence existed in the current study. Perhaps, the age discrepancy between early adolescents and mid-adolescents was not large enough to capture such effects. For example, a comparison between early versus mid-late adolescents would have been a more pronounced difference in adolescent phase and could have provided more power for identifying adolescent phase moderation effects in peer presence effects on risk-taking (see e.g., Steinberg and Monahan
2007). Future studies could explore this possibility with a sample with wider age ranges.
Study Two
Study two demonstrated that the above-described results of study one are meaningful for understanding real-word adolescent risk-taking behaviors. Namely, overall performance on the stoplight game predicted risky traffic behavior, alcohol use and delinquency in adolescents, and these linkages were found above and beyond effects of sensation-seeking, age, and gender. The stoplight game is a simulated risky driving task, thus it is to be expected that performance on this task predicted self-reported real-world risky traffic behavior—and this speaks to its criterion validity. With regard to alcohol use, the current findings are more or less consistent with Kim-Spoon et al. (
2016). However, that study included older (i.e., late) adolescents, and the present results further suggest that the significant link found in that study from performance on the stoplight game to a composite score of smoking, alcohol and marijuana, might be primarily driven by alcohol use. All things considered, the current findings suggest that perhaps the decision-making processes that are at play during completion of the stoplight game, are the same underlying processes that contribute to real-world risky traffic behavior, alcohol use and delinquency in adolescents.
Strengths, Limitations, Implications and Future Directions
Several limitations should be considered when interpreting the current findings. Namely, although the current study only focused on two basic potential moderators of the peer presence effect on risk-taking, there are multitudes of other relevant factors that could moderate the peer presence effect. For example, a recent review on laboratory risk-taking suggests that the peer presence might particularly lead to heightened risk-taking, when peers are deviant (Defoe et al.
2019). The deviant peer presence effect has even been captured in the few experimental studies that investigated it (see: Paternoster et al.
2013; Mercer et al.
2018). Hence, it is recommended that future studies investigate the peer presence effect, but to also consider using diverse alone and peer paradigms when doing so. For example, peer paradigms in which risk-taking is encouraged versus discouraged (i.e., negative versus positive peer pressure) or paradigms wherein close friends versus mere peers are used, could increase the understanding of
when peer presence increases or decreases risk-taking. Paradigms wherein peer pressure is present, and wherein close friends are used could also be ecologically stronger (but see de Boer et al.
2017), and thus might mirror real-world risk-taking scenario’s better than the current employed paradigms.
Relatedly, studies in more natural settings could be additionally informative compared to the laboratory settings (i.e., classroom settings) used in the current study. For example, it cannot be concluded for certain whether the findings in the current laboratory settings could be transferred to settings in the real-world (e.g., at a party) where risk-taking behaviors typically occur. Nevertheless, the current study also examined self-reported real-world risk behaviors, and it has further showed that performance on the stoplight game in a laboratory setting is related to real-world risk behaviors above and beyond significant effects of sensation-seeking. Thus, the current study provides some new insights into the predictive power of a laboratory task on multiple self-reported real-world risk-taking behaviors in adolescents, and therefore adds to the literature in a significant way as criterion validity is not typically assessed in experimental studies. However, when interpreting the results readers should keep in mind that the effect sizes were modest.