Skip to main content
Top
Gepubliceerd in:

21-08-2021 | Original Article

Integration of visual landmark cues in spatial memory

Auteurs: Phillip M. Newman, Timothy P. McNamara

Gepubliceerd in: Psychological Research | Uitgave 5/2022

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Over the past two decades, much research has been conducted to investigate whether humans are optimal when integrating sensory cues during spatial memory and navigational tasks. Although this work has consistently demonstrated optimal integration of visual cues (e.g., landmarks) with body-based cues (e.g., path integration) during human navigation, little work has investigated how cues of the same sensory type are integrated in spatial memory. A few recent studies have reported mixed results, with some showing very little benefit to having access to more than one landmark, and others showing that multiple landmarks can be optimally integrated in spatial memory. In the current study, we employed a combination of immersive and non-immersive virtual reality spatial memory tasks to test adult humans’ ability to integrate multiple landmark cues across six experiments. Our results showed that optimal integration of multiple landmark cues depends on the difficulty of the task, and that the presence of multiple landmarks can elicit an additional latent cue when estimating locations from a ground-level perspective, but not an aerial perspective.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Voetnoten
1
Mou and Spetch (2013) showed that landmark cues can interfere with each other when presented simultaneously. In other words, landmarks contribute more individually when presented alone versus together, which would serve to underpredict optimal response variability during both-cue trials. Thus, all landmarks were displayed during the learning phase across all trial types to maintain consistency of potential interference.
 
2
Variance reduction in the both-cue condition is not the only means to assess cue integration. Other studies (e.g., Du et al., 2017; Spetch et al., 1997) have employed expansion (conflict) trials in which the configuration of the landmarks is expanded along one or both dimensions. Expansion trials allow the experimenter to observe the weights that participants give to either cue, which can then be compared to the optimal weights predicted from relative cue reliability. Here, we did not employ such trials as the virtual space was constrained by the physical walls of the room. Bias in responding during expansion trials potentiate hazards of bumping into the walls of the room, and warning people before collision would confound the results by causing them to stop preemptively. We did not introduce expansion trials during the non-immersive Experiments 3–6 to maintain consistency in the basic design throughout.
 
3
It is not possible to measure variable bias with only one response per target location, so constant bias must be assumed (if there is bias). The results are identical whether the standard deviation is computed relative to the aligned target locations or the mean response location.
 
4
The authors thank two anonymous reviewers for these alternative interpretations of the data.
 
5
Although the standing position at the start of encoding and the standing position at retrieval were not identical in Experiment 3, undergoing a small translational shift forward or backward, such shifts might not have been large enough to fully disrupt the egocentric bearing. For example, large degrees of cue conflict are often required before the participant becomes consciously aware of the conflict (e.g., Zhao & Warren, 2015b). Thus, large translations in ground-level perspectives between encoding and retrieval might be necessary to fully disrupt an egocentric bearing.
 
Literatuur
go back to reference Alais, D., & Burr, D. (2004). The ventriloquist effect results from near-optimal bimodal integration. Current Biology, 14, 257–262.PubMedCrossRef Alais, D., & Burr, D. (2004). The ventriloquist effect results from near-optimal bimodal integration. Current Biology, 14, 257–262.PubMedCrossRef
go back to reference Bates, S. L., & Wolbers, T. (2014). How cognitive aging affects multisensory integration of navigational cues. Neurobiology of Aging, 35(12), 2761–2769.PubMedCrossRef Bates, S. L., & Wolbers, T. (2014). How cognitive aging affects multisensory integration of navigational cues. Neurobiology of Aging, 35(12), 2761–2769.PubMedCrossRef
go back to reference Battaglia, P. W., Jacobs, R. A., & Aslin, R. N. (2003). Bayesian integration of visual and auditory signals for spatial localization. Optical Society of America, 20(7), 1391–1397.CrossRef Battaglia, P. W., Jacobs, R. A., & Aslin, R. N. (2003). Bayesian integration of visual and auditory signals for spatial localization. Optical Society of America, 20(7), 1391–1397.CrossRef
go back to reference Biegler, R., & Morris, R. G. M. (1999). Blocking in the spatial domain with arrays of discrete landmarks. Journal of Experimental Psychology, 25(3), 334–351.PubMed Biegler, R., & Morris, R. G. M. (1999). Blocking in the spatial domain with arrays of discrete landmarks. Journal of Experimental Psychology, 25(3), 334–351.PubMed
go back to reference Boot, W. R., Kramer, A. F., Simons, D. J., Fabioni, M., & Gratton, G. (2008). The effect of video game playing on attention, memory, and executive control. Acta Psychologica, 129, 387–398.PubMedCrossRef Boot, W. R., Kramer, A. F., Simons, D. J., Fabioni, M., & Gratton, G. (2008). The effect of video game playing on attention, memory, and executive control. Acta Psychologica, 129, 387–398.PubMedCrossRef
go back to reference Burgess, N. (2008). Spatial cognition and the brain. Annals of the New York Academy of Sciences, 1124, 77–97.PubMedCrossRef Burgess, N. (2008). Spatial cognition and the brain. Annals of the New York Academy of Sciences, 1124, 77–97.PubMedCrossRef
go back to reference Butler, J. S., Smith, S. T., Campos, J. L., & Bülthoff, H. H. (2010). Bayesian integration of visual and vestibular signals for heading. Journal of Vision, 10(11), 1–13.CrossRef Butler, J. S., Smith, S. T., Campos, J. L., & Bülthoff, H. H. (2010). Bayesian integration of visual and vestibular signals for heading. Journal of Vision, 10(11), 1–13.CrossRef
go back to reference Chamizo, V. D. (2003). Acquisition of knowledge about spatial location: Assessing the generality of the mechanism of learning. The Quarterly Journal of Experimental Psychology, 56B(1), 102–113.CrossRef Chamizo, V. D. (2003). Acquisition of knowledge about spatial location: Assessing the generality of the mechanism of learning. The Quarterly Journal of Experimental Psychology, 56B(1), 102–113.CrossRef
go back to reference Chamizo, V. D., Sterio, D., & Mackintosh, N. J. (1985). Blocking and overshadowing between intra-maze and extra-maze cues: A test of the independence of locale and guidance learning. The Quarterly Journal of Experimental Psychology, 37B, 235–253.CrossRef Chamizo, V. D., Sterio, D., & Mackintosh, N. J. (1985). Blocking and overshadowing between intra-maze and extra-maze cues: A test of the independence of locale and guidance learning. The Quarterly Journal of Experimental Psychology, 37B, 235–253.CrossRef
go back to reference Chen, X., McNamara, T. P., Kelly, J. W., & Wolbers, T. (2017). Cue combination in human spatial navigation. Cognitive Psychology, 95, 105–144.PubMedCrossRef Chen, X., McNamara, T. P., Kelly, J. W., & Wolbers, T. (2017). Cue combination in human spatial navigation. Cognitive Psychology, 95, 105–144.PubMedCrossRef
go back to reference Cheng, K., Shettleworth, S. J., Huttenlocher, J., & Rieser, J. J. (2007). Bayesian integration of spatial information. Psychological Bulletin, 133(4), 625–637.PubMedCrossRef Cheng, K., Shettleworth, S. J., Huttenlocher, J., & Rieser, J. J. (2007). Bayesian integration of spatial information. Psychological Bulletin, 133(4), 625–637.PubMedCrossRef
go back to reference DeLoache, J. S. (1989). Young children’s understanding of the correspondence between a scale model and a larger space. Cognitive Development, 4, 121–139.CrossRef DeLoache, J. S. (1989). Young children’s understanding of the correspondence between a scale model and a larger space. Cognitive Development, 4, 121–139.CrossRef
go back to reference Du, Y., McMillan, N., Madan, C. R., Spetch, M. L., & Mou, W. (2017). Cue integration in spatial search for jointly learned landmarks but not for separately learned landmarks. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(12), 1857–1871.PubMed Du, Y., McMillan, N., Madan, C. R., Spetch, M. L., & Mou, W. (2017). Cue integration in spatial search for jointly learned landmarks but not for separately learned landmarks. Journal of Experimental Psychology: Learning, Memory, and Cognition, 43(12), 1857–1871.PubMed
go back to reference Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415(6870), 429–433.PubMedCrossRef Ernst, M. O., & Banks, M. S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature, 415(6870), 429–433.PubMedCrossRef
go back to reference Fetsch, C. R., Pouget, A., DeAngelis, G. C., & Angelaki, D. E. (2012). Neural correlates of reliability-based cue weighting during multisensory integration. Nature Neuroscience, 15(1), 146–154.CrossRef Fetsch, C. R., Pouget, A., DeAngelis, G. C., & Angelaki, D. E. (2012). Neural correlates of reliability-based cue weighting during multisensory integration. Nature Neuroscience, 15(1), 146–154.CrossRef
go back to reference Fetsch, C. R., Turner, A. H., DeAngelis, G. C., & Angelaki, D. E. (2009). Dynamic reweighting of visual and vestibular cues during self-motion perception. The Journal of Neuroscience, 29(49), 15601–15612.PubMedPubMedCentralCrossRef Fetsch, C. R., Turner, A. H., DeAngelis, G. C., & Angelaki, D. E. (2009). Dynamic reweighting of visual and vestibular cues during self-motion perception. The Journal of Neuroscience, 29(49), 15601–15612.PubMedPubMedCentralCrossRef
go back to reference Frissen, I., Campos, J. L., Souman, J. L., & Ernst, M. O. (2011). Integration of vestibular and proprioceptive signals for spatial updating. Experimental Brain Research, 212(2), 163–176.PubMedCrossRef Frissen, I., Campos, J. L., Souman, J. L., & Ernst, M. O. (2011). Integration of vestibular and proprioceptive signals for spatial updating. Experimental Brain Research, 212(2), 163–176.PubMedCrossRef
go back to reference Girshick, A. R., & Banks, M. S. (2009). Probabilistic combination of slant information: Weighted averaging and robustness as optimal percepts. Journal of Vision, 9(9), 1–20.PubMedCrossRef Girshick, A. R., & Banks, M. S. (2009). Probabilistic combination of slant information: Weighted averaging and robustness as optimal percepts. Journal of Vision, 9(9), 1–20.PubMedCrossRef
go back to reference Hamilton, D. A., & Sutherland, R. J. (1999). Blocking in human place learning: Evidence from virtual navigation. Psychobiology, 27(4), 453–461.CrossRef Hamilton, D. A., & Sutherland, R. J. (1999). Blocking in human place learning: Evidence from virtual navigation. Psychobiology, 27(4), 453–461.CrossRef
go back to reference Jacobs, R. A. (1999). Optimal integration of texture and motion cues to depth. Vision Research, 39, 3621–3629.PubMedCrossRef Jacobs, R. A. (1999). Optimal integration of texture and motion cues to depth. Vision Research, 39, 3621–3629.PubMedCrossRef
go back to reference Jacobs, W. J., Laurance, H. E., & Thomas, K. G. F. (1997). Place learning in virtual space I: Acquisition, overshadowing, and transfer. Learning and Motivation, 28, 521–541.CrossRef Jacobs, W. J., Laurance, H. E., & Thomas, K. G. F. (1997). Place learning in virtual space I: Acquisition, overshadowing, and transfer. Learning and Motivation, 28, 521–541.CrossRef
go back to reference Jacobs, W. J., Thomas, K. G. F., Laurence, H. E., & Nadel, L. (1998). Place learning in virtual space II: Topographical relations as one dimension of stimulus control. Learning and Motivation, 29, 288–308.CrossRef Jacobs, W. J., Thomas, K. G. F., Laurence, H. E., & Nadel, L. (1998). Place learning in virtual space II: Topographical relations as one dimension of stimulus control. Learning and Motivation, 29, 288–308.CrossRef
go back to reference Jarosz, A. F., & Wiley, J. (2014). What are the odds? A practical guide to computing and reporting Bayes factors. Journal of Problem Solving, 7, 2–9.CrossRef Jarosz, A. F., & Wiley, J. (2014). What are the odds? A practical guide to computing and reporting Bayes factors. Journal of Problem Solving, 7, 2–9.CrossRef
go back to reference Klatzky, R. L. (1998). Allocentric and egocentric spatial representations: Definitions, distinctions, and interconnections. In C. Freksa, C. Habel, & K. F. Wender (Eds.), Spatial cognition—An interdisciplinary approach to representation and processing of spatial knowledge (pp. 1–17). Berlin: Springer. Klatzky, R. L. (1998). Allocentric and egocentric spatial representations: Definitions, distinctions, and interconnections. In C. Freksa, C. Habel, & K. F. Wender (Eds.), Spatial cognition—An interdisciplinary approach to representation and processing of spatial knowledge (pp. 1–17). Berlin: Springer.
go back to reference McNamara, T. P. (1986). Mental representations of spatial relations. Cognitive Psychology, 18, 87–121.PubMedCrossRef McNamara, T. P. (1986). Mental representations of spatial relations. Cognitive Psychology, 18, 87–121.PubMedCrossRef
go back to reference Mou, W., & McNamara, T. P. (2002). Intrinsic frames of reference in spatial memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(1), 162–170.PubMed Mou, W., & McNamara, T. P. (2002). Intrinsic frames of reference in spatial memory. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(1), 162–170.PubMed
go back to reference Mou, W., & Spetch, M. L. (2013). Object location memory: Integration and competition between multiple context objects but not between observers’ body and context objects. Cognition, 126(2), 181–197.PubMedCrossRef Mou, W., & Spetch, M. L. (2013). Object location memory: Integration and competition between multiple context objects but not between observers’ body and context objects. Cognition, 126(2), 181–197.PubMedCrossRef
go back to reference Münzer, S., Lörch, L., & Frankenstein, J. (2020). Wayfinding and acquisition of spatial knowledge with navigation assistance. Journal of Experimental Psychology: Applied, 26(1), 73–88.PubMed Münzer, S., Lörch, L., & Frankenstein, J. (2020). Wayfinding and acquisition of spatial knowledge with navigation assistance. Journal of Experimental Psychology: Applied, 26(1), 73–88.PubMed
go back to reference Nardini, M., Jones, P., Bedford, R., & Braddick, O. (2008). Development of cue integration in human navigation. Current Biology, 18, 689–693.PubMedCrossRef Nardini, M., Jones, P., Bedford, R., & Braddick, O. (2008). Development of cue integration in human navigation. Current Biology, 18, 689–693.PubMedCrossRef
go back to reference Nardini, M., Thomas, R. L., Knowland, V. C. P., Braddick, O. J., & Atkinson, J. (2009). A viewpoint-independent process for spatial reorientation. Cognition, 112, 241–248.PubMedCrossRef Nardini, M., Thomas, R. L., Knowland, V. C. P., Braddick, O. J., & Atkinson, J. (2009). A viewpoint-independent process for spatial reorientation. Cognition, 112, 241–248.PubMedCrossRef
go back to reference Newman, P. M., & McNamara, T. P. (2021). A comparison of methods of assessing cue combination during navigation. Behavior Research Methods, 53(1), 390–398.PubMedCrossRef Newman, P. M., & McNamara, T. P. (2021). A comparison of methods of assessing cue combination during navigation. Behavior Research Methods, 53(1), 390–398.PubMedCrossRef
go back to reference Oruç, I., Maloney, L. T., & Landy, M. S. (2003). Weighted linear cue combination with possibly correlated error. Vision Research, 43, 2451–2468.PubMedCrossRef Oruç, I., Maloney, L. T., & Landy, M. S. (2003). Weighted linear cue combination with possibly correlated error. Vision Research, 43, 2451–2468.PubMedCrossRef
go back to reference Petrini, K., Caradonna, A., Foster, C., Burgess, N., & Nardini, M. (2016). How vision and self-motion combine or compete during path reproduction changes with age. Scientific Reports, 6, 29163.PubMedPubMedCentralCrossRef Petrini, K., Caradonna, A., Foster, C., Burgess, N., & Nardini, M. (2016). How vision and self-motion combine or compete during path reproduction changes with age. Scientific Reports, 6, 29163.PubMedPubMedCentralCrossRef
go back to reference Philbeck, J. W., & O’Leary, S. (2005). Remembered landmarks enhance the precision of path integration. Psicológica, 26, 7–24. Philbeck, J. W., & O’Leary, S. (2005). Remembered landmarks enhance the precision of path integration. Psicológica, 26, 7–24.
go back to reference Ratliff, K. R., & Newcombe, N. S. (2008). Reorienting when cues conflict: Evidence for an adaptive combination view. Psychological Science, 19, 1301–1307.PubMedCrossRef Ratliff, K. R., & Newcombe, N. S. (2008). Reorienting when cues conflict: Evidence for an adaptive combination view. Psychological Science, 19, 1301–1307.PubMedCrossRef
go back to reference Rodrigo, T., Arall, M., & Chamizo, V. D. (2005). Blocking and unblocking in a navigation task. Psicológica, 26, 229–241. Rodrigo, T., Arall, M., & Chamizo, V. D. (2005). Blocking and unblocking in a navigation task. Psicológica, 26, 229–241.
go back to reference Rohde, M., van Dam, L. C. J., & Ernst, M. O. (2016). Statistically optimal multisensory cue integration: A practical tutorial. Multisensory Research, 29, 279–317.PubMedCrossRef Rohde, M., van Dam, L. C. J., & Ernst, M. O. (2016). Statistically optimal multisensory cue integration: A practical tutorial. Multisensory Research, 29, 279–317.PubMedCrossRef
go back to reference Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16(2), 225–237.CrossRef Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16(2), 225–237.CrossRef
go back to reference Sánchez-Moreno, J., Rodrigo, T., & Chamizo, V. D. (1999). Overshadowing in the spatial domain. Animal Learning and Behavior, 27(4), 391–398.CrossRef Sánchez-Moreno, J., Rodrigo, T., & Chamizo, V. D. (1999). Overshadowing in the spatial domain. Animal Learning and Behavior, 27(4), 391–398.CrossRef
go back to reference Shettleworth, S. J., & Sutton, J. E. (2005). Multiple systems for spatial learning: Dead reckoning and beacon homing in rats. Journal of Experimental Psychology: Animal Behavior Processes, 31(2), 125–141.PubMed Shettleworth, S. J., & Sutton, J. E. (2005). Multiple systems for spatial learning: Dead reckoning and beacon homing in rats. Journal of Experimental Psychology: Animal Behavior Processes, 31(2), 125–141.PubMed
go back to reference Spetch, M. L., Cheng, K., & MacDonald, S. E. (1996). Learning the configuration of a landmark array: I. Touch-screen studies with pigeons and humans. Journal of Comparative Psychology, 110(1), 55–68.PubMedCrossRef Spetch, M. L., Cheng, K., & MacDonald, S. E. (1996). Learning the configuration of a landmark array: I. Touch-screen studies with pigeons and humans. Journal of Comparative Psychology, 110(1), 55–68.PubMedCrossRef
go back to reference Spetch, M. L., Cheng, K., MacDonald, S. E., Linkenhoker, B. A., Kelly, M. D., & Doerkson, S. R. (1997). Use of landmark configuration in pigeons and humans: II. Generality across search tasks. Journal of Comparative Psychology, 111(1), 14–24.CrossRef Spetch, M. L., Cheng, K., MacDonald, S. E., Linkenhoker, B. A., Kelly, M. D., & Doerkson, S. R. (1997). Use of landmark configuration in pigeons and humans: II. Generality across search tasks. Journal of Comparative Psychology, 111(1), 14–24.CrossRef
go back to reference Stevens, A., & Coupe, P. (1978). Distortions in judged spatial relations. Cognitive Psychology, 10, 422–437.PubMedCrossRef Stevens, A., & Coupe, P. (1978). Distortions in judged spatial relations. Cognitive Psychology, 10, 422–437.PubMedCrossRef
go back to reference Tcheang, L., Bulthoff, H. H., & Burgess, N. (2011). Visual influence on path integration in darkness indicates a multimodal representation of large-scale space. Proceedings of the National Academy of Sciences of the United States of America, 108(3), 1152–1157.PubMedPubMedCentralCrossRef Tcheang, L., Bulthoff, H. H., & Burgess, N. (2011). Visual influence on path integration in darkness indicates a multimodal representation of large-scale space. Proceedings of the National Academy of Sciences of the United States of America, 108(3), 1152–1157.PubMedPubMedCentralCrossRef
go back to reference Tulving, E., & Thomas, D. M. (1973). Encoding specificity and retrieval processes in episodic memory. Psychological Review, 80(5), 352–373.CrossRef Tulving, E., & Thomas, D. M. (1973). Encoding specificity and retrieval processes in episodic memory. Psychological Review, 80(5), 352–373.CrossRef
go back to reference Twyman, A. D., Holden, M. P., & Newcombe, N. S. (2018). First direct evidence of cue integration in reorientation: A new paradigm. Cognitive Science, 42, 923–936.PubMedCrossRef Twyman, A. D., Holden, M. P., & Newcombe, N. S. (2018). First direct evidence of cue integration in reorientation: A new paradigm. Cognitive Science, 42, 923–936.PubMedCrossRef
go back to reference Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139(2), 352–402.PubMedCrossRef Uttal, D. H., Meadow, N. G., Tipton, E., Hand, L. L., Alden, A. R., Warren, C., & Newcombe, N. (2013). The malleability of spatial skills: A meta-analysis of training studies. Psychological Bulletin, 139(2), 352–402.PubMedCrossRef
go back to reference Wang, L., & Mou, W. (2020). Effect of room size on geometry and features cue preference during reorientation: Modulating encoding strength or cue weighting. Quarterly Journal of Experimental Psychology, 73(2), 225–238.CrossRef Wang, L., & Mou, W. (2020). Effect of room size on geometry and features cue preference during reorientation: Modulating encoding strength or cue weighting. Quarterly Journal of Experimental Psychology, 73(2), 225–238.CrossRef
go back to reference Wang, L., Mou, W., & Dixon, P. (2018). Cue interaction between buildings and street configurations during reorientation in familiar and unfamiliar outdoor environments. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44(4), 631.PubMed Wang, L., Mou, W., & Dixon, P. (2018). Cue interaction between buildings and street configurations during reorientation in familiar and unfamiliar outdoor environments. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44(4), 631.PubMed
go back to reference Xiao, C., Mou, W., & McNamara, T. P. (2009). Use of self-to-object and object-to-object spatial relations in locomotion. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(5), 1137–1147.PubMed Xiao, C., Mou, W., & McNamara, T. P. (2009). Use of self-to-object and object-to-object spatial relations in locomotion. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(5), 1137–1147.PubMed
go back to reference Xu, Y., Regier, T., & Newcombe, N. S. (2017). An adaptive cue combination model of human spatial orientation. Cognition, 163, 56–66.PubMedCrossRef Xu, Y., Regier, T., & Newcombe, N. S. (2017). An adaptive cue combination model of human spatial orientation. Cognition, 163, 56–66.PubMedCrossRef
go back to reference Zhang, L., Mou, W., Lei, X., & Du, Y. (2020). Cue combination used to update the navigator’s self-localization, not the home location. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46(12), 2314–2339.PubMed Zhang, L., Mou, W., Lei, X., & Du, Y. (2020). Cue combination used to update the navigator’s self-localization, not the home location. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46(12), 2314–2339.PubMed
go back to reference Zhao, M., & Warren, W. H. (2015a). Environmental stability modulates the role of path integration in human navigation. Cognition, 142, 96–109.PubMedCrossRef Zhao, M., & Warren, W. H. (2015a). Environmental stability modulates the role of path integration in human navigation. Cognition, 142, 96–109.PubMedCrossRef
go back to reference Zhao, M., & Warren, W. H. (2015b). How you get there from here: Interaction of visual landmarks and path integration in human navigation. Psychological Science, 26(6), 915–924.PubMedCrossRef Zhao, M., & Warren, W. H. (2015b). How you get there from here: Interaction of visual landmarks and path integration in human navigation. Psychological Science, 26(6), 915–924.PubMedCrossRef
Metagegevens
Titel
Integration of visual landmark cues in spatial memory
Auteurs
Phillip M. Newman
Timothy P. McNamara
Publicatiedatum
21-08-2021
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 5/2022
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-021-01581-8

Andere artikelen Uitgave 5/2022

Psychological Research 5/2022 Naar de uitgave