Skip to main content
Top
Gepubliceerd in:

29-02-2016 | Original Article

Influence of finger and mouth action observation on random number generation: an instance of embodied cognition for abstract concepts

Auteurs: Stéphane Grade, Arnaud Badets, Mauro Pesenti

Gepubliceerd in: Psychological Research | Uitgave 3/2017

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

Numerical magnitude and specific grasping action processing have been shown to interfere with each other because some aspects of numerical meaning may be grounded in sensorimotor transformation mechanisms linked to finger grip control. However, how specific these interactions are to grasping actions is still unknown. The present study tested the specificity of the number–grip relationship by investigating how the observation of different closing–opening stimuli that might or not refer to prehension-releasing actions was able to influence a random number generation task. Participants had to randomly produce numbers after they observed action stimuli representing either closure or aperture of the fingers, the hand or the mouth, or a colour change used as a control condition. Random number generation was influenced by the prior presentation of finger grip actions, whereby observing a closing finger grip led participants to produce small rather than large numbers, whereas observing an opening finger grip led them to produce large rather than small numbers. Hand actions had reduced or no influence on number production; mouth action influence was restricted to opening, with an overproduction of large numbers. Finally, colour changes did not influence number generation. These results show that some characteristics of observed finger, hand and mouth grip actions automatically prime number magnitude, with the strongest effect for finger grasping. The findings are discussed in terms of the functional and neural mechanisms shared between hand actions and number processing, but also between hand and mouth actions. The present study provides converging evidence that part of number semantics is grounded in sensory-motor mechanisms.
Bijlagen
Alleen toegankelijk voor geautoriseerde gebruikers
Voetnoten
1
This fourth analysis was limited to the investigation of the proportion of ascending or descending responses compared to the previous one. Two elements were not included in this analysis: it did not take into account the magnitude of the difference between two numbers consecutively produced (i.e., numerical distance), and it was limited to responses occurring after the production of 5 or 6. Two additional analyses were conducted in order to take into account (1) the numerical distance and (2) the overall descending/ascending expected probability based on the actual productions of each participant, which was then compared to the actual proportion of observed increase/decrease. These two sets of analyses confirmed the results of the current analyses: they can be found in the Supplementary Material section of the present article.
 
2
As suggested by an anonymous reviewer on a previous version of this article, it is not uncommon to use a conventional gesture involving the index finger and the thumb to refer to small magnitudes or distances (e.g., "the bullet passed this close to my head").
 
Literatuur
go back to reference Andres, M., Davare, M., Pesenti, M., Olivier, E., & Seron, X. (2004). Number magnitude and grip aperture interaction. Neuroreport, 15(18), 2773–2777.PubMed Andres, M., Davare, M., Pesenti, M., Olivier, E., & Seron, X. (2004). Number magnitude and grip aperture interaction. Neuroreport, 15(18), 2773–2777.PubMed
go back to reference Andres, M., Michaux, N., & Pesenti, M. (2012). Common substrate for mental arithmetic and finger representation in the parietal cortex. Neuroimage, 62, 1520–1528.CrossRefPubMed Andres, M., Michaux, N., & Pesenti, M. (2012). Common substrate for mental arithmetic and finger representation in the parietal cortex. Neuroimage, 62, 1520–1528.CrossRefPubMed
go back to reference Andres, M., Olivier, E., & Badets, A. (2008a). Actions, words, and numbers: a motor contribution to semantic processing? Current Directions in Psychological Science, 17(5), 313–317.CrossRef Andres, M., Olivier, E., & Badets, A. (2008a). Actions, words, and numbers: a motor contribution to semantic processing? Current Directions in Psychological Science, 17(5), 313–317.CrossRef
go back to reference Andres, M., Ostry, D. J., Nicol, F., & Paus, T. (2008b). Time course of number magnitude interference during grasping. Cortex, 44(4), 414–419.CrossRefPubMed Andres, M., Ostry, D. J., Nicol, F., & Paus, T. (2008b). Time course of number magnitude interference during grasping. Cortex, 44(4), 414–419.CrossRefPubMed
go back to reference Baddeley, A. D. (1966). The capacity for generating information by randomization. The Quarterly Journal of Experimental Psychology, 18, 119–129.CrossRefPubMed Baddeley, A. D. (1966). The capacity for generating information by randomization. The Quarterly Journal of Experimental Psychology, 18, 119–129.CrossRefPubMed
go back to reference Badets, A., Andres, M., Di Luca, S., & Pesenti, M. (2007). Number magnitude potentiates action judgements. Experimental Brain Research, 180(3), 525–534.CrossRefPubMed Badets, A., Andres, M., Di Luca, S., & Pesenti, M. (2007). Number magnitude potentiates action judgements. Experimental Brain Research, 180(3), 525–534.CrossRefPubMed
go back to reference Badets, A., Bidet-Ildei, C., & Pesenti, M. (2015). Influence of biological kinematics on abstract concept processing. Quarterly Journal of Experimental Psychology, 68(3), 608–618.CrossRef Badets, A., Bidet-Ildei, C., & Pesenti, M. (2015). Influence of biological kinematics on abstract concept processing. Quarterly Journal of Experimental Psychology, 68(3), 608–618.CrossRef
go back to reference Badets, A., Bouquet, C., Ric, F., & Pesenti, M. (2012). Number generation bias after action observation. Experimental Brain Research, 221(1), 43–49.CrossRefPubMed Badets, A., Bouquet, C., Ric, F., & Pesenti, M. (2012). Number generation bias after action observation. Experimental Brain Research, 221(1), 43–49.CrossRefPubMed
go back to reference Badets, A., Koch, I., & Toussaint, L. (2013). Role of an ideomotor mechanism in number processing. Experimental Psychology, 60, 34–43.CrossRefPubMed Badets, A., Koch, I., & Toussaint, L. (2013). Role of an ideomotor mechanism in number processing. Experimental Psychology, 60, 34–43.CrossRefPubMed
go back to reference Badets, A., & Pesenti, M. (2010). Creating number semantics through finger movement perception. Cognition, 115(1), 46–53.CrossRefPubMed Badets, A., & Pesenti, M. (2010). Creating number semantics through finger movement perception. Cognition, 115(1), 46–53.CrossRefPubMed
go back to reference Badets, A., & Pesenti, M. (2011). Finger-number interaction: an ideomotor account. Experimental Psychology, 58(4), 287–292.CrossRefPubMed Badets, A., & Pesenti, M. (2011). Finger-number interaction: an ideomotor account. Experimental Psychology, 58(4), 287–292.CrossRefPubMed
go back to reference Barsalou, L. W. (2010). Grounded cognition: past, present, and future. Topics in Cognitive Science, 2(4), 716–724.CrossRefPubMed Barsalou, L. W. (2010). Grounded cognition: past, present, and future. Topics in Cognitive Science, 2(4), 716–724.CrossRefPubMed
go back to reference Buccino, G., Riggio, L., Melli, G., Binkofski, F., Gallese, V., & Rizzolatti, G. (2005). Listening to action-related sentences modulates the activity of the motor system: a combined TMS and behavioral study. Cognitive Brain Research, 24(3), 355–363.CrossRefPubMed Buccino, G., Riggio, L., Melli, G., Binkofski, F., Gallese, V., & Rizzolatti, G. (2005). Listening to action-related sentences modulates the activity of the motor system: a combined TMS and behavioral study. Cognitive Brain Research, 24(3), 355–363.CrossRefPubMed
go back to reference Bueti, D., & Walsh, V. (2009). The parietal cortex and the representation of time, space, number and other magnitudes. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 364(1525), 1831–1840.CrossRefPubMedPubMedCentral Bueti, D., & Walsh, V. (2009). The parietal cortex and the representation of time, space, number and other magnitudes. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 364(1525), 1831–1840.CrossRefPubMedPubMedCentral
go back to reference Chiou, R. Y.-C., Chang, E. C., Tzeng, O. J.-L., & Wu, D. H. (2009). The common magnitude code underlying numerical and size processing for action but not for perception. Experimental Brain Research, 194(4), 553–562.CrossRefPubMed Chiou, R. Y.-C., Chang, E. C., Tzeng, O. J.-L., & Wu, D. H. (2009). The common magnitude code underlying numerical and size processing for action but not for perception. Experimental Brain Research, 194(4), 553–562.CrossRefPubMed
go back to reference Chiou, R. Y.-C., Wu, D. H., Tzeng, O. J.-L., Hung, D. L., & Chang, E. C. (2012). Relative size of numerical magnitude induces a size-contrast effect on the grip scaling of reach-to-grasp movements. Cortex, 48(8), 1043–1051.CrossRefPubMed Chiou, R. Y.-C., Wu, D. H., Tzeng, O. J.-L., Hung, D. L., & Chang, E. C. (2012). Relative size of numerical magnitude induces a size-contrast effect on the grip scaling of reach-to-grasp movements. Cortex, 48(8), 1043–1051.CrossRefPubMed
go back to reference Culham, J. C., & Valyear, K. F. (2006). Human parietal cortex in action. Current Opinion in Neurobiology, 16(2), 205–212.CrossRefPubMed Culham, J. C., & Valyear, K. F. (2006). Human parietal cortex in action. Current Opinion in Neurobiology, 16(2), 205–212.CrossRefPubMed
go back to reference Ehrsson, H. H., Fagergren, E., & Forssberg, H. (2001). Differential fronto-parietal activation depending on force used in a precision grip task: an fMRI study. Journal of Neurophysiology, 85(6), 2613–2623.PubMed Ehrsson, H. H., Fagergren, E., & Forssberg, H. (2001). Differential fronto-parietal activation depending on force used in a precision grip task: an fMRI study. Journal of Neurophysiology, 85(6), 2613–2623.PubMed
go back to reference Fias, W., Lammertyn, J., Reynvoet, B., Dupont, P., & Orban, G. (2003). Parietal representation of symbolic and nonsymbolic magnitude. Journal of Cognitive Neuroscience, 15(1), 47–56.CrossRefPubMed Fias, W., Lammertyn, J., Reynvoet, B., Dupont, P., & Orban, G. (2003). Parietal representation of symbolic and nonsymbolic magnitude. Journal of Cognitive Neuroscience, 15(1), 47–56.CrossRefPubMed
go back to reference Freund, H. J. (2001). The parietal lobe as a sensorimotor interface: a perspective from clinical and neuroimaging data. NeuroImage, 14(1 Pt 2), S142–S146.CrossRefPubMed Freund, H. J. (2001). The parietal lobe as a sensorimotor interface: a perspective from clinical and neuroimaging data. NeuroImage, 14(1 Pt 2), S142–S146.CrossRefPubMed
go back to reference Genovesio, A., Tsujimoto, S., & Wise, S. P. (2012). Encoding goals but not abstract magnitude in the primate prefrontal cortex. Neuron, 74(4), 656–662.CrossRefPubMedPubMedCentral Genovesio, A., Tsujimoto, S., & Wise, S. P. (2012). Encoding goals but not abstract magnitude in the primate prefrontal cortex. Neuron, 74(4), 656–662.CrossRefPubMedPubMedCentral
go back to reference Gentilucci, M., Benuzzi, F., Gangitano, M., & Grimaldi, S. (2001). Grasp with hand and mouth: a kinematic study on healthy subjects. Journal of Neurophysiology, 86, 1685–1699.PubMed Gentilucci, M., Benuzzi, F., Gangitano, M., & Grimaldi, S. (2001). Grasp with hand and mouth: a kinematic study on healthy subjects. Journal of Neurophysiology, 86, 1685–1699.PubMed
go back to reference Gentilucci, M., & Corballis, M. C. (2006). From manual gesture to speech: a gradual transition. Neuroscience and Biobehavioral Reviews, 30(7), 949–960.CrossRefPubMed Gentilucci, M., & Corballis, M. C. (2006). From manual gesture to speech: a gradual transition. Neuroscience and Biobehavioral Reviews, 30(7), 949–960.CrossRefPubMed
go back to reference Gentilucci, M., Dalla Volta, R., & Gianelli, C. (2008). When the hands speak. Journal of Physiology Paris, 102(1–3), 21–30.CrossRef Gentilucci, M., Dalla Volta, R., & Gianelli, C. (2008). When the hands speak. Journal of Physiology Paris, 102(1–3), 21–30.CrossRef
go back to reference Gentilucci, M., & Gangitano, M. (1998). Influence of automatic word reading on motor control. European Journal of Neurocience, 10, 752–756.CrossRef Gentilucci, M., & Gangitano, M. (1998). Influence of automatic word reading on motor control. European Journal of Neurocience, 10, 752–756.CrossRef
go back to reference Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton-Mifflin. Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton-Mifflin.
go back to reference Glover, S., & Dixon, P. (2002). Semantics affect the planning but not control of grasping. Experimental Brain Research, 146(3), 383–387.CrossRefPubMed Glover, S., & Dixon, P. (2002). Semantics affect the planning but not control of grasping. Experimental Brain Research, 146(3), 383–387.CrossRefPubMed
go back to reference Glover, S., Rosenbaum, D. A., Graham, J., & Dixon, P. (2004). Grasping the meaning of words. Experimental Brain Research, 154(1), 103–108.CrossRefPubMed Glover, S., Rosenbaum, D. A., Graham, J., & Dixon, P. (2004). Grasping the meaning of words. Experimental Brain Research, 154(1), 103–108.CrossRefPubMed
go back to reference Grade, S., Lefèvre, N., & Pesenti, M. (2013). Influence of left-right vs. up-down gaze observation on random number generation. Experimental Psychology, 60(2), 122–130.CrossRefPubMed Grade, S., Lefèvre, N., & Pesenti, M. (2013). Influence of left-right vs. up-down gaze observation on random number generation. Experimental Psychology, 60(2), 122–130.CrossRefPubMed
go back to reference Grèzes, J., & Decety, J. (2001). Functional anatomy of execution, mental simulation, observation, and verb generation of actions: a meta-analysis. Human Brain Mapping, 12(1), 1–19.CrossRefPubMed Grèzes, J., & Decety, J. (2001). Functional anatomy of execution, mental simulation, observation, and verb generation of actions: a meta-analysis. Human Brain Mapping, 12(1), 1–19.CrossRefPubMed
go back to reference Hartmann, M., Grabherr, L., & Mast, F. W. (2011). Moving along the mental number line: interactions between whole-body motion and numerical cognition. Journal of Experimental Psychology: Human Perception and Performance, 38(6), 1416–1427.PubMed Hartmann, M., Grabherr, L., & Mast, F. W. (2011). Moving along the mental number line: interactions between whole-body motion and numerical cognition. Journal of Experimental Psychology: Human Perception and Performance, 38(6), 1416–1427.PubMed
go back to reference Lindemann, O., Abolafia, J. M., Girardi, G., & Bekkering, H. (2007). Getting a grip on numbers: numerical magnitude priming in object grasping. Journal of Experimental Psychology Human Perception and Performance, 33(6), 1400–1409.CrossRefPubMed Lindemann, O., Abolafia, J. M., Girardi, G., & Bekkering, H. (2007). Getting a grip on numbers: numerical magnitude priming in object grasping. Journal of Experimental Psychology Human Perception and Performance, 33(6), 1400–1409.CrossRefPubMed
go back to reference Loetscher, T., Bockisch, C. J., Nicholls, M. E. R., & Brugger, P. (2010). Eye position predicts what number you have in mind. Current Biology, 20(6), R264–R265.CrossRefPubMed Loetscher, T., Bockisch, C. J., Nicholls, M. E. R., & Brugger, P. (2010). Eye position predicts what number you have in mind. Current Biology, 20(6), R264–R265.CrossRefPubMed
go back to reference Loetscher, T., & Brugger, P. (2007). Exploring number space by random digit generation. Experimental Brain Researc, 180(4), 655–665.CrossRef Loetscher, T., & Brugger, P. (2007). Exploring number space by random digit generation. Experimental Brain Researc, 180(4), 655–665.CrossRef
go back to reference Loetscher, T., Schwarz, U., & Schubiger, M. (2008). Head turns bias the brain’s internal random generator. Current Biology, 18(2), 60–62.CrossRef Loetscher, T., Schwarz, U., & Schubiger, M. (2008). Head turns bias the brain’s internal random generator. Current Biology, 18(2), 60–62.CrossRef
go back to reference Macuga, K. L., & Frey, S. H. (2012). Neural representations involved in observed, imagined, and imitated actions are dissociable and hierarchically organized. Neuroimage, 59(3), 2798–2807.CrossRefPubMed Macuga, K. L., & Frey, S. H. (2012). Neural representations involved in observed, imagined, and imitated actions are dissociable and hierarchically organized. Neuroimage, 59(3), 2798–2807.CrossRefPubMed
go back to reference Michaux, N., Pesenti, M., Badets, A., Di Luca, S., & Andres, M. (2010). Let us redeploy attention to sensorimotor experience. Behavioral and Brain Sciences, 33(4), 283–284.CrossRef Michaux, N., Pesenti, M., Badets, A., Di Luca, S., & Andres, M. (2010). Let us redeploy attention to sensorimotor experience. Behavioral and Brain Sciences, 33(4), 283–284.CrossRef
go back to reference Milner, A. D., & Goodale, M. A. (1995). The visual brain in action (Vol. 27). Oxford: Oxford University Press. Milner, A. D., & Goodale, M. A. (1995). The visual brain in action (Vol. 27). Oxford: Oxford University Press.
go back to reference Moretto, G., & di Pellegrino, G. (2008). Grasping numbers. Experimental Brain Research, 188(4), 505–515.CrossRefPubMed Moretto, G., & di Pellegrino, G. (2008). Grasping numbers. Experimental Brain Research, 188(4), 505–515.CrossRefPubMed
go back to reference Nieder, A., Freedman, D. J., & Miller, E. K. (2002). Representation of the quantity of visual items in the primate prefrontal cortex. Science, 297, 1708–1711.CrossRefPubMed Nieder, A., Freedman, D. J., & Miller, E. K. (2002). Representation of the quantity of visual items in the primate prefrontal cortex. Science, 297, 1708–1711.CrossRefPubMed
go back to reference Paget, R. (1930). Human speech: some observations, experiments and conclusions as to the nature, origin, purpose and possible improvement of human speech. London: Kegan Paul, Trench, Trubner & Co. Paget, R. (1930). Human speech: some observations, experiments and conclusions as to the nature, origin, purpose and possible improvement of human speech. London: Kegan Paul, Trench, Trubner & Co.
go back to reference Pesenti, M., Thioux, M., Seron, X., & De Volder, a. (2000). Neuroanatomical substrates of arabic number processing, numerical comparison, and simple addition: a PET study. Journal of Cognitive Neuroscience, 12(3), 461–479.CrossRefPubMed Pesenti, M., Thioux, M., Seron, X., & De Volder, a. (2000). Neuroanatomical substrates of arabic number processing, numerical comparison, and simple addition: a PET study. Journal of Cognitive Neuroscience, 12(3), 461–479.CrossRefPubMed
go back to reference Pinel, P., Piazza, M., Le Bihan, D., & Dehaene, S. (2004). Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments. Neuron, 41(6), 983–993.CrossRefPubMed Pinel, P., Piazza, M., Le Bihan, D., & Dehaene, S. (2004). Distributed and overlapping cerebral representations of number, size, and luminance during comparative judgments. Neuron, 41(6), 983–993.CrossRefPubMed
go back to reference Pulvermüller, F., Hauk, O., Nikulin, V. V., & Ilmoniemi, R. J. (2005). Functional links between motor and language systems. The European Journal of Neuroscience, 21(3), 793–797.CrossRefPubMed Pulvermüller, F., Hauk, O., Nikulin, V. V., & Ilmoniemi, R. J. (2005). Functional links between motor and language systems. The European Journal of Neuroscience, 21(3), 793–797.CrossRefPubMed
go back to reference Ranzini, M., Lugli, L., Anelli, F., Carbone, R., Nicoletti, R., & Borghi, A. M. (2011). Graspable objects shape number processing. Frontiers in Human Neuroscience, 5(December), 147.PubMedPubMedCentral Ranzini, M., Lugli, L., Anelli, F., Carbone, R., Nicoletti, R., & Borghi, A. M. (2011). Graspable objects shape number processing. Frontiers in Human Neuroscience, 5(December), 147.PubMedPubMedCentral
go back to reference Rizzolatti, G., & Arbib, M. A. (1998). Language within our grasp. Trends in Neurosciences, 21(5), 188–194.CrossRefPubMed Rizzolatti, G., & Arbib, M. A. (1998). Language within our grasp. Trends in Neurosciences, 21(5), 188–194.CrossRefPubMed
go back to reference Santens, S., Roggeman, C., Fias, W., & Verguts, T. (2010). Number processing pathways in human parietal cortex. Cerebral Cortex (New York, N.Y.: 1991), 20(1), 77–88.CrossRef Santens, S., Roggeman, C., Fias, W., & Verguts, T. (2010). Number processing pathways in human parietal cortex. Cerebral Cortex (New York, N.Y.: 1991), 20(1), 77–88.CrossRef
go back to reference Schneider, W., Eschmann, A., & Zuccolotto, A. (2002). E-Prime reference guide. Pittsburgh: Psychology Software Tools. Schneider, W., Eschmann, A., & Zuccolotto, A. (2002). E-Prime reference guide. Pittsburgh: Psychology Software Tools.
go back to reference Simon, O., Mangin, J. F., Cohen, L., Le Bihan, D., & Dehaene, S. (2002). Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron, 33(3), 475–487.CrossRefPubMed Simon, O., Mangin, J. F., Cohen, L., Le Bihan, D., & Dehaene, S. (2002). Topographical layout of hand, eye, calculation, and language-related areas in the human parietal lobe. Neuron, 33(3), 475–487.CrossRefPubMed
go back to reference Stoianov, I., Genovesio, A., & Pezzulo, G. (2016). Prefrontal goal codes emerge as latent states in probabilistic value learning. Journal of Cognitive Neuroscience. Stoianov, I., Genovesio, A., & Pezzulo, G. (2016). Prefrontal goal codes emerge as latent states in probabilistic value learning. Journal of Cognitive Neuroscience.
go back to reference Tschentscher, N., Hauk, O., Fischer, M. H., & Pulvermüller, F. (2012). You can count on the motor cortex: finger counting habits modulate motor cortex activation evoked by numbers. Neuroimage, 59(4), 1–10.CrossRef Tschentscher, N., Hauk, O., Fischer, M. H., & Pulvermüller, F. (2012). You can count on the motor cortex: finger counting habits modulate motor cortex activation evoked by numbers. Neuroimage, 59(4), 1–10.CrossRef
go back to reference Van der Linden, M., Beerten, A., & Pesenti, M. (1998). Age-related differences in random generation. Brain and Cognition, 38, 1–16.CrossRefPubMed Van der Linden, M., Beerten, A., & Pesenti, M. (1998). Age-related differences in random generation. Brain and Cognition, 38, 1–16.CrossRefPubMed
go back to reference Walsh, V. (2003). A theory of magnitude: common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7(11), 483–488.CrossRefPubMed Walsh, V. (2003). A theory of magnitude: common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7(11), 483–488.CrossRefPubMed
go back to reference Williams, J., Pearce, A. J., Loporto, M., Morris, T., & Holmes, P. S. (2012). The relationship between corticospinal excitability during motor imagery and motor imagery ability. Behavioural Brain Research, 226(2), 369–375.CrossRefPubMed Williams, J., Pearce, A. J., Loporto, M., Morris, T., & Holmes, P. S. (2012). The relationship between corticospinal excitability during motor imagery and motor imagery ability. Behavioural Brain Research, 226(2), 369–375.CrossRefPubMed
go back to reference Witt, J. K., Kemmerer, D., Linkenauger, S., & Culham, J. (2010). A functional role for motor simulation in identifying tools. Psychological Science, 21(9), 1215–1219.CrossRefPubMed Witt, J. K., Kemmerer, D., Linkenauger, S., & Culham, J. (2010). A functional role for motor simulation in identifying tools. Psychological Science, 21(9), 1215–1219.CrossRefPubMed
go back to reference Wood, G., & Fischer, M. H. (2008). Numbers, space, and action–from finger counting to the mental number line and beyond. Cortex, 44(4), 353–358.CrossRefPubMed Wood, G., & Fischer, M. H. (2008). Numbers, space, and action–from finger counting to the mental number line and beyond. Cortex, 44(4), 353–358.CrossRefPubMed
Metagegevens
Titel
Influence of finger and mouth action observation on random number generation: an instance of embodied cognition for abstract concepts
Auteurs
Stéphane Grade
Arnaud Badets
Mauro Pesenti
Publicatiedatum
29-02-2016
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 3/2017
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-016-0760-7

Andere artikelen Uitgave 3/2017

Psychological Research 3/2017 Naar de uitgave