Skip to main content
Top
Gepubliceerd in: Psychological Research 4/2020

08-11-2018 | Original Article

Individual movement features during prism adaptation correlate with after-effects and interlimb transfer

Auteurs: Alix G. Renault, Hannah Lefumat, R. Chris Miall, Lionel Bringoux, Christophe Bourdin, Jean-Louis Vercher, Fabrice R. Sarlegna

Gepubliceerd in: Psychological Research | Uitgave 4/2020

Log in om toegang te krijgen
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Abstract

The human nervous system displays such plasticity that we can adapt our motor behavior to various changes in environmental or body properties. However, how sensorimotor adaptation generalizes to new situations and new effectors, and which factors influence the underlying mechanisms, remains unclear. Here we tested the general hypothesis that differences across participants can be exploited to uncover what drives interlimb transfer. Twenty healthy adults adapted to prismatic glasses while reaching to visual targets with their dominant arm. Classic adaptation and generalization across movement directions were observed but transfer to the non-dominant arm was not significant and inter-individual differences were substantial. Interlimb transfer resulted for some participants in a directional shift of non-dominant arm movements that was consistent with an encoding of visuomotor adaptation in extrinsic coordinates. For some other participants, transfer was consistent with an intrinsic coordinate system. Simple and multiple regression analyses showed that a few kinematic parameters such as peak acceleration (or peak velocity) and variability of movement direction were correlated with interlimb transfer. Low peak acceleration and low variability were related to extrinsic transfer, while high peak acceleration and high variability were related to intrinsic transfer. Motor variability was also positively correlated with the magnitude of the after-effect systematically observed on the dominant arm. Overall, these findings on unconstrained movements support the idea that individual movement features could be linked to the sensorimotor adaptation and its generalization. The study also suggests that distinct movement characteristics may be related to different coordinate frames of action representations in the nervous system.
Literatuur
go back to reference Alexander, M. S., Flodin, B. W., & Marigold, D. S. (2011). Prism adaptation and generalization during visually guided locomotor tasks. Journal of Neurophysiology, 106(2), 860–871.PubMedCrossRef Alexander, M. S., Flodin, B. W., & Marigold, D. S. (2011). Prism adaptation and generalization during visually guided locomotor tasks. Journal of Neurophysiology, 106(2), 860–871.PubMedCrossRef
go back to reference Berniker, M., Franklin, D. W., Flanagan, J. R., Wolpert, D. M., & Kording, K. (2014). Motor learning of novel dynamics is not represented in a single global coordinate system: Evaluation of mixed coordinate representations and local learning. Journal of Neurophysiology, 111(6), 1165–1182.PubMedCrossRef Berniker, M., Franklin, D. W., Flanagan, J. R., Wolpert, D. M., & Kording, K. (2014). Motor learning of novel dynamics is not represented in a single global coordinate system: Evaluation of mixed coordinate representations and local learning. Journal of Neurophysiology, 111(6), 1165–1182.PubMedCrossRef
go back to reference Brayanov, J. B., Press, D. Z., & Smith, M. A. (2012). Motor memory is encoded as a gain-field combination of intrinsic and extrinsic action representations. Journal of Neuroscience, 32(43), 14951–14965.PubMedCrossRef Brayanov, J. B., Press, D. Z., & Smith, M. A. (2012). Motor memory is encoded as a gain-field combination of intrinsic and extrinsic action representations. Journal of Neuroscience, 32(43), 14951–14965.PubMedCrossRef
go back to reference Carroll, T. J., Poh, E., & de Rugy, A. (2014). New visuomotor maps are immediately available to the opposite limb. Journal of Neurophysiology, 111(11), 2232–2243.PubMedCrossRef Carroll, T. J., Poh, E., & de Rugy, A. (2014). New visuomotor maps are immediately available to the opposite limb. Journal of Neurophysiology, 111(11), 2232–2243.PubMedCrossRef
go back to reference Choe, C. S., & Welch, R. B. (1974). Variables affecting the intermanual transfer and decay of prism adaptation. Journal of Experimental Psychology, 102(6), 1076.PubMedCrossRef Choe, C. S., & Welch, R. B. (1974). Variables affecting the intermanual transfer and decay of prism adaptation. Journal of Experimental Psychology, 102(6), 1076.PubMedCrossRef
go back to reference Cohen, M. M. (1967). Continuous versus terminal visual feedback in prism aftereffects. Perceptual and Motor Skills, 24(3), 1295–1302.PubMedCrossRef Cohen, M. M. (1967). Continuous versus terminal visual feedback in prism aftereffects. Perceptual and Motor Skills, 24(3), 1295–1302.PubMedCrossRef
go back to reference Cohen, M. M. (1973). Visual feedback, distribution of practice, and intermanual transfer of prism aftereffects. Perceptual and Motor Skills, 37(2), 599–609.PubMedCrossRef Cohen, M. M. (1973). Visual feedback, distribution of practice, and intermanual transfer of prism aftereffects. Perceptual and Motor Skills, 37(2), 599–609.PubMedCrossRef
go back to reference Criscimagna-Hemminger, S. E., Donchin, O., Gazzaniga, M. S., & Shadmehr, R. (2003). Learned dynamics of reaching movements generalize from dominant to nondominant arm. Journal of Neurophysiology, 89(1), 168–176.PubMedCrossRef Criscimagna-Hemminger, S. E., Donchin, O., Gazzaniga, M. S., & Shadmehr, R. (2003). Learned dynamics of reaching movements generalize from dominant to nondominant arm. Journal of Neurophysiology, 89(1), 168–176.PubMedCrossRef
go back to reference DiZio, P., & Lackner, J. R. (1995). Motor adaptation to Coriolis force perturbations of reaching movements: Endpoint but not trajectory adaptation transfers to the nonexposed arm. Journal of Neurophysiology, 74(4), 1787–1792.PubMedCrossRef DiZio, P., & Lackner, J. R. (1995). Motor adaptation to Coriolis force perturbations of reaching movements: Endpoint but not trajectory adaptation transfers to the nonexposed arm. Journal of Neurophysiology, 74(4), 1787–1792.PubMedCrossRef
go back to reference Donchin, O., Rabe, K., Diedrichsen, J., Lally, N., Schoch, B., Gizewski, E. R., & Timmann, D. (2012). Cerebellar regions involved in adaptation to force field and visuomotor perturbation. Journal of Neurophysiology, 107(1), 134–147.PubMedCrossRef Donchin, O., Rabe, K., Diedrichsen, J., Lally, N., Schoch, B., Gizewski, E. R., & Timmann, D. (2012). Cerebellar regions involved in adaptation to force field and visuomotor perturbation. Journal of Neurophysiology, 107(1), 134–147.PubMedCrossRef
go back to reference Franklin, D. W., Batchelor, A. V., & Wolpert, D. M. (2016). The sensorimotor system can sculpt behaviorally relevant representations for motor learning. eNeuro, 3(4), ENEURO-E0070.CrossRef Franklin, D. W., Batchelor, A. V., & Wolpert, D. M. (2016). The sensorimotor system can sculpt behaviorally relevant representations for motor learning. eNeuro, 3(4), ENEURO-E0070.CrossRef
go back to reference Galea, J. M., Miall, R. C., & Woolley, D. G. (2007). Asymmetric interlimb transfer of concurrent adaptation to opposing dynamic forces. Experimental Brain Research, 182(2), 267–273.PubMedPubMedCentralCrossRef Galea, J. M., Miall, R. C., & Woolley, D. G. (2007). Asymmetric interlimb transfer of concurrent adaptation to opposing dynamic forces. Experimental Brain Research, 182(2), 267–273.PubMedPubMedCentralCrossRef
go back to reference Gazzaniga, M. S., Ivry, R. B., & Mangun, G. R. (1998). Cognitive neuroscience: The biology of the mind. New York: WW Norton & Co. Gazzaniga, M. S., Ivry, R. B., & Mangun, G. R. (1998). Cognitive neuroscience: The biology of the mind. New York: WW Norton & Co.
go back to reference Ghahramani, Z., Wolpert, D. M., & Jordan, M. I. (1996). Generalization to local remappings of the visuomotor coordinate transformation. Journal of Neuroscience, 16(21), 7085–7096.PubMedCrossRef Ghahramani, Z., Wolpert, D. M., & Jordan, M. I. (1996). Generalization to local remappings of the visuomotor coordinate transformation. Journal of Neuroscience, 16(21), 7085–7096.PubMedCrossRef
go back to reference Haith, A., & Vijayakumar, S. (2009). Implications of different classes of sensorimotor disturbance for cerebellar-based motor learning models. Biological Cybernetics, 100(1), 81–95.PubMedCrossRef Haith, A., & Vijayakumar, S. (2009). Implications of different classes of sensorimotor disturbance for cerebellar-based motor learning models. Biological Cybernetics, 100(1), 81–95.PubMedCrossRef
go back to reference Hamilton, C. R. (1964). Intermanual transfer of adaptation to prisms. The American Journal of Psychology, 77(3), 457–462.PubMedCrossRef Hamilton, C. R. (1964). Intermanual transfer of adaptation to prisms. The American Journal of Psychology, 77(3), 457–462.PubMedCrossRef
go back to reference Harris, C. S. (1963). Adaptation to displaced vision: Visual, motor, or proprioceptive change? Science, 140(3568), 812–813.PubMedCrossRef Harris, C. S. (1963). Adaptation to displaced vision: Visual, motor, or proprioceptive change? Science, 140(3568), 812–813.PubMedCrossRef
go back to reference Hay, L., & Brouchon, M. (1972). Analysis of reorganization of visuomotor coordination in humans. Generalization of adaptation to prismatic deviation of the visual space. L’annee psychologique, 72(1), 25–38.PubMedCrossRef Hay, L., & Brouchon, M. (1972). Analysis of reorganization of visuomotor coordination in humans. Generalization of adaptation to prismatic deviation of the visual space. L’annee psychologique, 72(1), 25–38.PubMedCrossRef
go back to reference Held, R., & Freedman, S. J. (1963). Plasticity in human sensorimotor control. Science, 142(3591), 455–462.PubMedCrossRef Held, R., & Freedman, S. J. (1963). Plasticity in human sensorimotor control. Science, 142(3591), 455–462.PubMedCrossRef
go back to reference Herzfeld, D. J., & Shadmehr, R. (2014). Motor variability is not noise, but grist for the learning mill. Nature Neuroscience, 17(2), 149.PubMedCrossRef Herzfeld, D. J., & Shadmehr, R. (2014). Motor variability is not noise, but grist for the learning mill. Nature Neuroscience, 17(2), 149.PubMedCrossRef
go back to reference He, K., Liang, Y., Abdollahi, F., Bittmann, M. F., Kording, K., & Wei, K. (2016). The statistical determinants of the speed of motor learning. PLoS Computational Biology, 12(9), e1005023.PubMedPubMedCentralCrossRef He, K., Liang, Y., Abdollahi, F., Bittmann, M. F., Kording, K., & Wei, K. (2016). The statistical determinants of the speed of motor learning. PLoS Computational Biology, 12(9), e1005023.PubMedPubMedCentralCrossRef
go back to reference Joiner, W. M., Brayanov, J. B., & Smith, M. A. (2013). The training schedule affects the stability, not the magnitude, of the interlimb transfer of learned dynamics. Journal of Neurophysiology, 110(4), 984–998.PubMedPubMedCentralCrossRef Joiner, W. M., Brayanov, J. B., & Smith, M. A. (2013). The training schedule affects the stability, not the magnitude, of the interlimb transfer of learned dynamics. Journal of Neurophysiology, 110(4), 984–998.PubMedPubMedCentralCrossRef
go back to reference Kakei, S., Hoffman, D. S., & Strick, P. L. (1999). Muscle and movement representations in the primary motor cortex. Science, 285(5436), 2136–2139.PubMedCrossRef Kakei, S., Hoffman, D. S., & Strick, P. L. (1999). Muscle and movement representations in the primary motor cortex. Science, 285(5436), 2136–2139.PubMedCrossRef
go back to reference Kakei, S., Hoffman, D. S., & Strick, P. L. (2001). Direction of action is represented in the ventral premotor cortex. Nature Neuroscience, 4(10), 1020.PubMedCrossRef Kakei, S., Hoffman, D. S., & Strick, P. L. (2001). Direction of action is represented in the ventral premotor cortex. Nature Neuroscience, 4(10), 1020.PubMedCrossRef
go back to reference Kalil, R. E., & Freedman, S. J. (1966). Intermanual transfer of compensation for displaced vision. Perceptual and Motor Skills, 22(1), 123–126.PubMedCrossRef Kalil, R. E., & Freedman, S. J. (1966). Intermanual transfer of compensation for displaced vision. Perceptual and Motor Skills, 22(1), 123–126.PubMedCrossRef
go back to reference Kanai, R., & Rees, G. (2011). The structural basis of inter-individual differences in human behaviour and cognition. Nature Reviews Neuroscience, 12(4), 231.PubMedCrossRef Kanai, R., & Rees, G. (2011). The structural basis of inter-individual differences in human behaviour and cognition. Nature Reviews Neuroscience, 12(4), 231.PubMedCrossRef
go back to reference Kitazawa, S., Kimura, T., & Uka, T. (1997). Prism adaptation of reaching movements: Specificity for the velocity of reaching. Journal of Neuroscience, 17(4), 1481–1492.PubMedCrossRef Kitazawa, S., Kimura, T., & Uka, T. (1997). Prism adaptation of reaching movements: Specificity for the velocity of reaching. Journal of Neuroscience, 17(4), 1481–1492.PubMedCrossRef
go back to reference Krakauer, J. W., Mazzoni, P., Ghazizadeh, A., Ravindran, R., & Shadmehr, R. (2006). Generalization of motor learning depends on the history of prior action. PLoS Biology, 4(10), e316.PubMedPubMedCentralCrossRef Krakauer, J. W., Mazzoni, P., Ghazizadeh, A., Ravindran, R., & Shadmehr, R. (2006). Generalization of motor learning depends on the history of prior action. PLoS Biology, 4(10), e316.PubMedPubMedCentralCrossRef
go back to reference Krakauer, J. W., Pine, Z. M., Ghilardi, M.-F., & Ghez, C. (2000). Learning of visuomotor transformations for vectorial planning of reaching trajectories. Journal of Neuroscience, 20(23), 8916–8924.PubMedCrossRef Krakauer, J. W., Pine, Z. M., Ghilardi, M.-F., & Ghez, C. (2000). Learning of visuomotor transformations for vectorial planning of reaching trajectories. Journal of Neuroscience, 20(23), 8916–8924.PubMedCrossRef
go back to reference Lefumat, H. Z., Miall, R. C., Cole, J. D., Bringoux, L., Bourdin, C., Vercher, J.-L., & Sarlegna, F. R. (2016). Generalization of force-field adaptation in proprioceptively-deafferented subjects. Neuroscience Letters, 616, 160–165.PubMedCrossRef Lefumat, H. Z., Miall, R. C., Cole, J. D., Bringoux, L., Bourdin, C., Vercher, J.-L., & Sarlegna, F. R. (2016). Generalization of force-field adaptation in proprioceptively-deafferented subjects. Neuroscience Letters, 616, 160–165.PubMedCrossRef
go back to reference Lefumat, H. Z., Vercher, J.-L., Miall, R. C., Cole, J., Buloup, F., Bringoux, L., Bourdin, C., & Sarlegna, F. R. (2015). To transfer or not to transfer? Kinematics and laterality quotient predict interlimb transfer of motor learning. Journal of Neurophysiology, 114(5), 2764–2774.PubMedPubMedCentralCrossRef Lefumat, H. Z., Vercher, J.-L., Miall, R. C., Cole, J., Buloup, F., Bringoux, L., Bourdin, C., & Sarlegna, F. R. (2015). To transfer or not to transfer? Kinematics and laterality quotient predict interlimb transfer of motor learning. Journal of Neurophysiology, 114(5), 2764–2774.PubMedPubMedCentralCrossRef
go back to reference Malfait, N., & Ostry, D. J. (2004). Is interlimb transfer of force-field adaptation a cognitive response to the sudden introduction of load? Journal of Neuroscience, 24(37), 8084–8089.PubMedCrossRef Malfait, N., & Ostry, D. J. (2004). Is interlimb transfer of force-field adaptation a cognitive response to the sudden introduction of load? Journal of Neuroscience, 24(37), 8084–8089.PubMedCrossRef
go back to reference Malfait, N., Shiller, D. M., & Ostry, D. J. (2002). Transfer of motor learning across arm configurations. Journal of Neuroscience, 22(22), 9656–9660.PubMedCrossRef Malfait, N., Shiller, D. M., & Ostry, D. J. (2002). Transfer of motor learning across arm configurations. Journal of Neuroscience, 22(22), 9656–9660.PubMedCrossRef
go back to reference Martin, T. A., Keating, J. G., Goodkin, H. P., Bastian, A. J., & Thach, W. T. (1996). Throwing while looking through prisms: II. Specificity and storage of multiple gaze—throw calibrations. Brain, 119(4), 1199–1211.PubMedCrossRef Martin, T. A., Keating, J. G., Goodkin, H. P., Bastian, A. J., & Thach, W. T. (1996). Throwing while looking through prisms: II. Specificity and storage of multiple gaze—throw calibrations. Brain, 119(4), 1199–1211.PubMedCrossRef
go back to reference Mattar, A. A., & Ostry, D. J. (2010). Generalization of dynamics learning across changes in movement amplitude. Journal of Neurophysiology, 104(1), 426–438.PubMedPubMedCentralCrossRef Mattar, A. A., & Ostry, D. J. (2010). Generalization of dynamics learning across changes in movement amplitude. Journal of Neurophysiology, 104(1), 426–438.PubMedPubMedCentralCrossRef
go back to reference Mazzoni, P., Hristova, A., & Krakauer, J. W. (2007). Why don’t we move faster? Parkinson’s disease, movement vigor, and implicit motivation. Journal of Neuroscience, 27(27), 7105–7116.PubMedCrossRef Mazzoni, P., Hristova, A., & Krakauer, J. W. (2007). Why don’t we move faster? Parkinson’s disease, movement vigor, and implicit motivation. Journal of Neuroscience, 27(27), 7105–7116.PubMedCrossRef
go back to reference McDougle, S. D., Ivry, R. B., & Taylor, J. A. (2016). Taking aim at the cognitive side of learning in sensorimotor adaptation tasks. Trends in Cognitive Sciences, 20(7), 535–544.PubMedPubMedCentralCrossRef McDougle, S. D., Ivry, R. B., & Taylor, J. A. (2016). Taking aim at the cognitive side of learning in sensorimotor adaptation tasks. Trends in Cognitive Sciences, 20(7), 535–544.PubMedPubMedCentralCrossRef
go back to reference Michel, C., Pisella, L., Prablanc, C., Rode, G., & Rossetti, Y. (2007). Enhancing visuomotor adaptation by reducing error signals: Single-step (aware) versus multiple-step (unaware) exposure to wedge prisms. Journal of Cognitive Neuroscience, 19(2), 341–350.PubMedCrossRef Michel, C., Pisella, L., Prablanc, C., Rode, G., & Rossetti, Y. (2007). Enhancing visuomotor adaptation by reducing error signals: Single-step (aware) versus multiple-step (unaware) exposure to wedge prisms. Journal of Cognitive Neuroscience, 19(2), 341–350.PubMedCrossRef
go back to reference Morton, S. M., & Bastian, A. J. (2004). Prism adaptation during walking generalizes to reaching and requires the cerebellum. Journal of Neurophysiology, 92(4), 2497–2509.PubMedCrossRef Morton, S. M., & Bastian, A. J. (2004). Prism adaptation during walking generalizes to reaching and requires the cerebellum. Journal of Neurophysiology, 92(4), 2497–2509.PubMedCrossRef
go back to reference Mostafa, A. A., Salomonczyk, D., Cressman, E. K., & Henriques, D. Y. (2014). Intermanual transfer and proprioceptive recalibration following training with translated visual feedback of the hand. Experimental Brain Research, 232(6), 1639–1651.PubMedCrossRef Mostafa, A. A., Salomonczyk, D., Cressman, E. K., & Henriques, D. Y. (2014). Intermanual transfer and proprioceptive recalibration following training with translated visual feedback of the hand. Experimental Brain Research, 232(6), 1639–1651.PubMedCrossRef
go back to reference O’Shea, J., Gaveau, V., Kandel, M., Koga, K., Susami, K., Prablanc, C., & Rossetti, Y. (2014). Kinematic markers dissociate error correction from sensorimotor realignment during prism adaptation. Neuropsychologia, 55, 15–24.PubMedCrossRef O’Shea, J., Gaveau, V., Kandel, M., Koga, K., Susami, K., Prablanc, C., & Rossetti, Y. (2014). Kinematic markers dissociate error correction from sensorimotor realignment during prism adaptation. Neuropsychologia, 55, 15–24.PubMedCrossRef
go back to reference Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113.CrossRefPubMed Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113.CrossRefPubMed
go back to reference Parmar, P. N., Huang, F. C., & Patton, J. L. (2015). Evidence of multiple coordinate representations during generalization of motor learning. Experimental Brain Research, 233(1), 1–13.PubMedCrossRef Parmar, P. N., Huang, F. C., & Patton, J. L. (2015). Evidence of multiple coordinate representations during generalization of motor learning. Experimental Brain Research, 233(1), 1–13.PubMedCrossRef
go back to reference Pekny, S. E., Izawa, J., & Shadmehr, R. (2015). Reward-dependent modulation of movement variability. Journal of Neuroscience, 35(9), 4015–4024.PubMedCrossRef Pekny, S. E., Izawa, J., & Shadmehr, R. (2015). Reward-dependent modulation of movement variability. Journal of Neuroscience, 35(9), 4015–4024.PubMedCrossRef
go back to reference Redding, G. M., & Wallace, B. (1988). Components of prism adaptation in terminal and concurrent exposure: Organization of the eye-hand coordination loop. Perception & Psychophysics, 44(1), 59–68.CrossRef Redding, G. M., & Wallace, B. (1988). Components of prism adaptation in terminal and concurrent exposure: Organization of the eye-hand coordination loop. Perception & Psychophysics, 44(1), 59–68.CrossRef
go back to reference Redding, G. M., & Wallace, B. (2006). Generalization of prism adaptation. Journal of Experimental Psychology: Human Perception and Performance, 32(4), 1006.PubMed Redding, G. M., & Wallace, B. (2006). Generalization of prism adaptation. Journal of Experimental Psychology: Human Perception and Performance, 32(4), 1006.PubMed
go back to reference Reichenbach, A., Franklin, D. W., Zatka-Haas, P., & Diedrichsen, J. (2014). A dedicated binding mechanism for the visual control of movement. Current Biology, 24(7), 780–785.PubMedPubMedCentralCrossRef Reichenbach, A., Franklin, D. W., Zatka-Haas, P., & Diedrichsen, J. (2014). A dedicated binding mechanism for the visual control of movement. Current Biology, 24(7), 780–785.PubMedPubMedCentralCrossRef
go back to reference Reppert, T. R., Rigas, I., Herzfeld, D. J., Sedaghat-Nejad, E., Komogortsev, O., & Shadmehr, R. (2018). Movement vigor as a traitlike attribute of individuality. Journal of Neurophysiology, 120(2), 741–757.PubMedPubMedCentralCrossRef Reppert, T. R., Rigas, I., Herzfeld, D. J., Sedaghat-Nejad, E., Komogortsev, O., & Shadmehr, R. (2018). Movement vigor as a traitlike attribute of individuality. Journal of Neurophysiology, 120(2), 741–757.PubMedPubMedCentralCrossRef
go back to reference Rossetti, Y., Rode, G., Pisella, L., Farné, A., Li, L., Boisson, D., & Perenin, M.-T. (1998). Prism adaptation to a rightward optical deviation rehabilitates left hemispatial neglect. Nature, 395(6698), 166.PubMedCrossRef Rossetti, Y., Rode, G., Pisella, L., Farné, A., Li, L., Boisson, D., & Perenin, M.-T. (1998). Prism adaptation to a rightward optical deviation rehabilitates left hemispatial neglect. Nature, 395(6698), 166.PubMedCrossRef
go back to reference Sarlegna, F. R., & Bernier, P. M. (2010). On the link between sensorimotor adaptation and sensory recalibration. Journal of Neuroscience, 30(35), 11555–11557.PubMedCrossRef Sarlegna, F. R., & Bernier, P. M. (2010). On the link between sensorimotor adaptation and sensory recalibration. Journal of Neuroscience, 30(35), 11555–11557.PubMedCrossRef
go back to reference Sarlegna, F. R., Gauthier, G. M., & Blouin, J. (2007). Influence of feedback modality on sensorimotor adaptation: Contribution of visual, kinesthetic, and verbal cues. Journal of Motor Behavior, 39(4), 247–258.PubMedCrossRef Sarlegna, F. R., Gauthier, G. M., & Blouin, J. (2007). Influence of feedback modality on sensorimotor adaptation: Contribution of visual, kinesthetic, and verbal cues. Journal of Motor Behavior, 39(4), 247–258.PubMedCrossRef
go back to reference Sarlegna, F. R., & Mutha, P. K. (2015). The influence of visual target information on the online control of movements. Vision Research, 110, 144–154.PubMedCrossRef Sarlegna, F. R., & Mutha, P. K. (2015). The influence of visual target information on the online control of movements. Vision Research, 110, 144–154.PubMedCrossRef
go back to reference Seidler, R. D., Mulavara, A. P., Bloomberg, J. J., & Peters, B. T. (2015). Individual predictors of sensorimotor adaptability. Frontiers in Systems Neuroscience, 9, 100.PubMedPubMedCentralCrossRef Seidler, R. D., Mulavara, A. P., Bloomberg, J. J., & Peters, B. T. (2015). Individual predictors of sensorimotor adaptability. Frontiers in Systems Neuroscience, 9, 100.PubMedPubMedCentralCrossRef
go back to reference Smith, M. A., Ghazizadeh, A., & Shadmehr, R. (2006). Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biology, 4(6), e179.PubMedPubMedCentralCrossRef Smith, M. A., Ghazizadeh, A., & Shadmehr, R. (2006). Interacting adaptive processes with different timescales underlie short-term motor learning. PLoS Biology, 4(6), e179.PubMedPubMedCentralCrossRef
go back to reference Stockinger, C., Thürer, B., Focke, A., & Stein, T. (2015). Intermanual transfer characteristics of dynamic learning: Direction, coordinate frame, and consolidation of interlimb generalization. Journal of Neurophysiology, 114(6), 3166–3176.PubMedPubMedCentralCrossRef Stockinger, C., Thürer, B., Focke, A., & Stein, T. (2015). Intermanual transfer characteristics of dynamic learning: Direction, coordinate frame, and consolidation of interlimb generalization. Journal of Neurophysiology, 114(6), 3166–3176.PubMedPubMedCentralCrossRef
go back to reference Stratton, G. M. (1896). Some preliminary experiments on vision without inversion of the retinal image. Psychological Review, 3(6), 611.CrossRef Stratton, G. M. (1896). Some preliminary experiments on vision without inversion of the retinal image. Psychological Review, 3(6), 611.CrossRef
go back to reference Sun, Z. Y., Pinel, P., Rivière, D., Moreno, A., Dehaene, S., & Mangin, J.-F. (2016). Linking morphological and functional variability in hand movement and silent reading. Brain Structure and Function, 221(7), 3361–3371.PubMedCrossRef Sun, Z. Y., Pinel, P., Rivière, D., Moreno, A., Dehaene, S., & Mangin, J.-F. (2016). Linking morphological and functional variability in hand movement and silent reading. Brain Structure and Function, 221(7), 3361–3371.PubMedCrossRef
go back to reference Tanaka, H., & Sejnowski, T. J. (2013). Computing reaching dynamics in motor cortex with Cartesian spatial coordinates. Journal of Neurophysiology, 109(4), 1182–1201.PubMedCrossRef Tanaka, H., & Sejnowski, T. J. (2013). Computing reaching dynamics in motor cortex with Cartesian spatial coordinates. Journal of Neurophysiology, 109(4), 1182–1201.PubMedCrossRef
go back to reference Taub, E., & Goldberg, I. A. (1973). Prism adaptation: Control of intermanual transfer by distribution of practice. Science, 180(4087), 755–757.PubMedCrossRef Taub, E., & Goldberg, I. A. (1973). Prism adaptation: Control of intermanual transfer by distribution of practice. Science, 180(4087), 755–757.PubMedCrossRef
go back to reference Taylor, J. A., Wojaczynski, G. J., & Ivry, R. B. (2011). Trial-by-trial analysis of intermanual transfer during visuomotor adaptation. Journal of Neurophysiology, 106(6), 3157–3172.PubMedPubMedCentralCrossRef Taylor, J. A., Wojaczynski, G. J., & Ivry, R. B. (2011). Trial-by-trial analysis of intermanual transfer during visuomotor adaptation. Journal of Neurophysiology, 106(6), 3157–3172.PubMedPubMedCentralCrossRef
go back to reference ten Donkelaar, H. J., Lammens, M., Wesseling, P., Hori, A., Keyser, A., & Rotteveel, J. (2004). Development and malformations of the human pyramidal tract. Journal of Neurology, 251(12), 1429–1442.PubMedCrossRef ten Donkelaar, H. J., Lammens, M., Wesseling, P., Hori, A., Keyser, A., & Rotteveel, J. (2004). Development and malformations of the human pyramidal tract. Journal of Neurology, 251(12), 1429–1442.PubMedCrossRef
go back to reference Therrien, A. S., Wolpert, D. M., & Bastian, A. J. (2016). Effective reinforcement learning following cerebellar damage requires a balance between exploration and motor noise. Brain, 139(1), 101–114.PubMedCrossRef Therrien, A. S., Wolpert, D. M., & Bastian, A. J. (2016). Effective reinforcement learning following cerebellar damage requires a balance between exploration and motor noise. Brain, 139(1), 101–114.PubMedCrossRef
go back to reference Vangheluwe, S., Suy, E., Wenderoth, N., & Swinnen, S. P. (2006). Learning and transfer of bimanual multifrequency patterns: Effector-independent and effector-specific levels of movement representation. Experimental Brain Research, 170(4), 543–554.PubMedCrossRef Vangheluwe, S., Suy, E., Wenderoth, N., & Swinnen, S. P. (2006). Learning and transfer of bimanual multifrequency patterns: Effector-independent and effector-specific levels of movement representation. Experimental Brain Research, 170(4), 543–554.PubMedCrossRef
go back to reference Von Helmholtz, H. (1867). Handbuch der physiologischen Optik, vol. 9. New York: Voss. Von Helmholtz, H. (1867). Handbuch der physiologischen Optik, vol. 9. New York: Voss.
go back to reference Wallace, B., & Redding, G. M. (1979). Additivity in prism adaptation as manifested in intermanual and interocular transfer. Perception and Psychophysics, 25(2), 133–136.PubMedCrossRef Wallace, B., & Redding, G. M. (1979). Additivity in prism adaptation as manifested in intermanual and interocular transfer. Perception and Psychophysics, 25(2), 133–136.PubMedCrossRef
go back to reference Wei, K., & Kording, K. (2009). Relevance of error: What drives motor adaptation? Journal of Neurophysiology, 101(2), 655–664.PubMedCrossRef Wei, K., & Kording, K. (2009). Relevance of error: What drives motor adaptation? Journal of Neurophysiology, 101(2), 655–664.PubMedCrossRef
go back to reference Wiestler, T., Waters-Metenier, S., & Diedrichsen, J. (2014). Effector-independent motor sequence representations exist in extrinsic and intrinsic reference frames. Journal of Neuroscience, 34(14), 5054–5064.PubMedCrossRef Wiestler, T., Waters-Metenier, S., & Diedrichsen, J. (2014). Effector-independent motor sequence representations exist in extrinsic and intrinsic reference frames. Journal of Neuroscience, 34(14), 5054–5064.PubMedCrossRef
go back to reference Wolpert, D. M., Diedrichsen, J., & Flanagan, J. R. (2011). Principles of sensorimotor learning. Nature Reviews Neuroscience, 12(12), 739.PubMedCrossRef Wolpert, D. M., Diedrichsen, J., & Flanagan, J. R. (2011). Principles of sensorimotor learning. Nature Reviews Neuroscience, 12(12), 739.PubMedCrossRef
go back to reference Wu, H. G., Miyamoto, Y. R., Castro, L. N. G., Ölveczky, B. P., & Smith, M. A. (2014). Temporal structure of motor variability is dynamically regulated and predicts motor learning ability. Nature Neuroscience, 17(2), 312.PubMedPubMedCentralCrossRef Wu, H. G., Miyamoto, Y. R., Castro, L. N. G., Ölveczky, B. P., & Smith, M. A. (2014). Temporal structure of motor variability is dynamically regulated and predicts motor learning ability. Nature Neuroscience, 17(2), 312.PubMedPubMedCentralCrossRef
Metagegevens
Titel
Individual movement features during prism adaptation correlate with after-effects and interlimb transfer
Auteurs
Alix G. Renault
Hannah Lefumat
R. Chris Miall
Lionel Bringoux
Christophe Bourdin
Jean-Louis Vercher
Fabrice R. Sarlegna
Publicatiedatum
08-11-2018
Uitgeverij
Springer Berlin Heidelberg
Gepubliceerd in
Psychological Research / Uitgave 4/2020
Print ISSN: 0340-0727
Elektronisch ISSN: 1430-2772
DOI
https://doi.org/10.1007/s00426-018-1110-8

Andere artikelen Uitgave 4/2020

Psychological Research 4/2020 Naar de uitgave