TODO: Skip to main content
Top

Open Access 06-05-2025

Independent Impacts of Maltreatment and Amygdala Volume on Worsening Callous-Unemotional Traits in High-Risk Youths

Auteurs: Kathryn Berluti, Steven W. Kasparek, Joseph S. Venticinque, Katie A. McLaughlin, Abigail A. Marsh

Gepubliceerd in: Research on Child and Adolescent Psychopathology

share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail
insite
ZOEKEN

Abstract

Callous-unemotional traits are a major risk factor for aggression and other externalizing behaviors. These traits frequently co-occur with maltreatment exposure, and both of these variables have been independently linked to changes in amygdala structure and function. However, relatively little research has explored how trauma exposure and amygdala structure and function combine to shape callous-unemotional traits. We assessed maltreatment exposure and callous-unemotional traits at two timepoints in children and adolescents who were aged 8–16 years at baseline (54.37% Male, 45.63% Female). We also used magnetic resonance imaging (MRI) to assess amygdala volume and activation in a subset of these youths at baseline (N = 161) and 18 months later (N = 117) using both linear and non-linear approaches. At baseline, maltreatment exposure and callous-unemotional traits were both independently associated with reduced right and left amygdala volume. Lower amygdala volume at baseline and maltreatment exposure independently predicted increases in callous-unemotional traits 18 months later. However, the effect of maltreatment on callous-unemotional traits was not mediated by amygdala volume. We find that accounting for maltreatment and amygdala volume, but not amygdala activation, improves the prediction of future callous-unemotional trait severity. These findings provide the first longitudinal evidence that maltreatment and lower amygdala volume independently predict worsening callous-unemotional traits in high-risk youths.
Opmerkingen

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1007/​s10802-025-01329-7.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Youth externalizing behavior problems such as aggression are considered a global public health problem (World Health Organization, 2015). Among the most robust individual-level predictors of externalizing behaviors in youths are callous-unemotional traits—which include an uncaring disposition and reduced empathy, guilt, and remorse (Frick, 2012). Youths with these traits exhibit elevated aggression (Helseth et al., 2015), delinquency (e.g., theft, vandalism), and risk for conduct problems (Frick, 2012). These traits typically emerge in early childhood, with significant inter-individual variability observed in how they change over time (Fanti et al., 2017; Masi et al., 2018; Muratori et al., 2016). Some neurodevelopmental evidence links both increased callous-unemotional traits and externalizing behaviors to changes in the structure and function of the amygdala (Cardinale et al., 2019; Fanti et al., 2020; Gao et al., 2024; Lozier et al., 2014; Viding et al., 2012). Specifically, in youths with callous-unemotional traits, reduced volume and activation of the amygdala have been linked to reinforcement insensitivity, reduced empathic responsiveness, and heightened proactive aggression (Blair et al., 2018; Cardinale et al., 2019; Lozier et al., 2014). However, despite these findings, mechanisms that contribute to the emergence and persistence of callous-unemotional traits remain poorly understood.
Understanding of the developmental course of callous-unemotional traits is complicated by the fact that children with these traits are often exposed to numerous forms of adversity, such as harsh parenting, maltreatment, and violence, which are known risk factors for externalizing disorders (Afifi et al., 2009; Carliner et al., 2017; Fong et al., 2019). Youths with higher levels of callous-unemotional traits are exposed to more violence even relative to other youths with conduct problems, and this exposure in turn predicts more severe outcomes (Howard et al., 2012; Kahn et al., 2013). Some evidence suggests adverse experiences contribute to heterogeneity among youths with callous-unemotional traits (Jiang et al., 2024; Kimonis, 2023; Robertson et al., 2023; Todorov et al., 2023). Specifically, a primary low-anxiety subtype of callous-unemotional youths may be distinguishable from a secondary high-anxiety subtype characterized by higher levels of adverse experiences (Craig et al., 2021). Cross-sectional research suggests these subtypes may be distinguished by differences in amygdala reactivity to neutral male faces (Fanti et al., 2020) and resting-state connectivity between the left amygdala and left thalamus (Dugré & Potvin, 2023). However, no prior research has tracked how baseline maltreatment in combination with amygdala structural and functional variables predict changes over time in callous-unemotional traits.
The amygdala is a subcortical structure that is critical to coordinating responses to threats, learning in response to punishment, and generating adaptive social responses including prosocial motivation and behavior across species (Adolphs, 2008; Blair, 2008; Marsh, 2018). Given all of these functions are impaired in youths with callous-unemotional traits, atypical structural and functional development of the amygdala has long been thought to underlie the emergence and progression of these traits (Blair, 2008). Accordingly, callous-unemotional traits have been linked to both reduced amygdala volume (Cardinale et al., 2019; Viding et al., 2012), most recently in a recent large ENIGMA consortium study (Gao et al., 2024), as well as reduced amygdala activation in response to social stimuli and fear-relevant cues (e.g., Cardinale et al., 2018; Fanti et al., 2020; Lozier et al., 2014; Viding et al., 2012). Whether and how exposure to maltreatment may mediate or moderate these associations is not yet clear, however.
Specifically, it remains unclear if maltreatment leads to more severe callous-unemotional traits through its effects on amygdala development (Kahn et al., 2013), or if the effects of maltreatment are separate from the developmental effects of the amygdala on callous-unemotional traits. Neuroimaging research has also linked childhood maltreatment to reduced amygdala volume (Mclaughlin et al., 2019). This suggests the possibility that maltreatment could mediate increases in callous-unemotional traits through its effects on the structure of the amygdala. But whereas callous-unemotional traits are typically linked to reduced amygdala responsiveness to threat (Fanti et al., 2020; Lozier et al., 2014; Viding et al., 2012), exposure to childhood trauma has been associated with heightened amygdala responses to threat (Hein & Monk, 2017; McCrory et al., 2017; Mclaughlin et al., 2019). It has thus been proposed that exposure to trauma may moderate the relationship between callous-unemotional traits and amygdala response to fearful expressions (Fanti et al., 2020; Meffert et al., 2018). Consistent with this possibility, youths with callous-unemotional traits and maltreatment exposure (who may have secondary callous-unemotional traits) show increased physiological anxiety and startle (Dackis et al., 2015; Kimonis et al., 2012).
One potential impediment to understanding associations among callous-unemotional traits, maltreatment, and neurodevelopment of the amygdala is neuroimaging studies’ frequent reliance on cross-sectional samples (e.g., Fanti et al., 2020; Jiang et al., 2024; Meffert et al., 2018), which preclude the ability to determine whether, for example, changes in callous-unemotional traits over time can be predicted by prior maltreatment exposure and/or amygdala functional and structural variables at baseline. A second potential impediment is frequent use of exclusively linear models despite evidence of non-linear relationships between callous-unemotional traits and neurodevelopmental outcomes such as fearfulness (Cardinale et al., 2021) and delinquency (Markowitz et al., 2015), such that variation in observed associations across studies could reflect different patterns of associations depending on the severity of callous-unemotional traits in a sample.
To address these gaps, we assessed callous-unemotional traits and amygdala structure and function at two timepoints in youths who varied in exposure to maltreatment. We predicted that, at baseline, callous-unemotional traits would be associated with reduced amygdala volume and activation in response to fearful faces, in line with prior findings. We also predicted that prior maltreatment would in part account for these associations, specifically, that maltreatment exposure would partially mediate the association between callous-unemotional traits and amygdala volume, and would moderate the association between callous-unemotional traits and amygdala activation. Finally, we assessed two competing hypotheses: whether maltreatment exposure and amygdala volume and functional activation independently predicted changes in callous-unemotional traits over time, or whether the association of maltreatment and callous-unemotional traits was mediated by amygdala structure. Following evidence of non-linear associations between callous-unemotional traits and various neurodevelopmental outcomes (Cardinale et al., 2021; Markowitz et al., 2015; Walker et al., 2020), we tested both first and second order (non-linear) polynomial models for each predicted association.
In summary, the overarching goals of the present study were first, to test the prediction that callous-unemotional traits are related to reduced amygdala structure and function, both cross-sectionally and over time. Second, we aimed to test the contribution of maltreatment to those relationships. Our final goal was to assess evidence for two alternate mechanistic pathways: whether maltreatment exposure and amygdala volume and functional activation independently predict changes in callous-unemotional traits, or whether the association of maltreatment with callous-unemotional traits are mediated by amygdala structure.

Methods and Materials

Participants

Participants were 161 children and adolescents ages 8–17 recruited from the Seattle, Washington area. Youth and caregivers were recruited at schools, after-school and prevention programs, adoption programs, food banks, shelters, parenting programs, medical clinics, and the general community in Seattle between January 2015 and June 2017. Recruitment efforts aimed to create a sample with variation in exposure to violence and maltreatment. Therefore, youth were recruited from neighborhoods with high levels of violent crime, clinics that served a predominantly low-SES catchment area, and agencies that work with families who have been victims of violence (e.g., domestic violence shelters, programs for parents mandated to receive intervention by Child Protective Services). Exposure to maltreatment and other inclusion and exclusion criteria were assessed during the first study visit, including exposure to physical or sexual abuse or direct witnessing of domestic violence. For all participants, exclusion criteria included IQ < 75 (measured using the WASI–II; Wechsler, 2011), presence of a pervasive developmental disorder, active psychotic symptoms or mania, active substance misuse and other safety concerns (e.g., imminent suicidality), or failure to complete relevant screening measures during the first visit. Participants who completed the magnetic resonance imaging (MRI) reported no contradictions to scanning (i.e., braces, claustrophobia). Due to attrition and 11 participants who were excluded from further MRI analysis due to excess head motion or failure to respond to an attention check, 117 youth completed the 18-month follow-up visit. All guardians provided written informed consent and youth provided written assent prior to testing. All procedures were approved by the University of Washington Institutional Review Board. Clinical and demographic information for all study participants is reported in Table 1.
Table 1
Demographic information for the MRI only sample
 
MRI sample (n = 161)
 
Mean
S.D.
Min
Max
Skewness
Kurtosis
Demographic variables
      
Age, M(SD)
12.64
2.67
8
17.25
0.1
1.72
IQ
110.9
14.94
75
145
-0.15
2.43
Gender, %
      
 Male
52.17%,
     
 Female
47.83%
     
Race/ethnicity, %
      
 Asian, non-Hispanic
10.76%
     
 African American, non-Hispanic
24.05%
     
 White, Hispanic
9.49%
     
 White, non-Hispanic
43.67%
     
 Other
12.03%
     
Clinical Measures
      
 Callous-Unemotional Traits
0 0.41
0.29
0
1.3
0.79
0.25
 Internalizing (T-score)
56.83
12.19
33
87
0.24
2.6
 Externalizing (T-score)
53.36
11.7
33
81
0.22
2.38
 Maltreatment History, % With History
54.04%
     
 Brain Volume Estimates
      
 L amygdala
1848.85
290.66
1046
2607.9
0.36
3.12
 R amygdala
2006.29
311.81
1464.4
3035.4
0.63
3.33
Note: N = 161. Demographic information of MRI sample. R = right; L = left
Data from this sample related to risk for general psychopathology in children exposed to violence have been previously published (Weissman et al., 2020). No analyses related to callous-unemotional traits have been previously published.

Procedures

Participants completed study procedures across two time points. In the initial visit, measures of exposure to maltreatment and callous-unemotional traits were administered and baseline structural and functional MRI data were collected (n = 161). Participants returned for a follow-up visit approximately 18 months later and completed measures related to maltreatment and psychopathology (n = 117).
Maltreatment Exposure. Following our previous work (Weissman et al., 2020), maltreatment history was assessed using a multi-informant, multi method approach. Both parent and child reports were used to determine exposure to maltreatment as a function of experiencing interpersonal violence, including physical or sexual abuse. Witnessing domestic violence and experiencing emotional abuse were assessed by child report only, as caregivers are generally not considered valid reporters on emotional abuse, as emotional abuse is assessed in relation to caregiver behaviors. Thus, it is standard to assess these experiences from the child’s perspective only. Additionally, we were primarily concerned with domestic violence events that were directly observed by the child participant that would constitute a traumatic event for the child. Details of maltreatment measures and scoring procedures can be found in the online supplemental materials. A total of 100 youth (38.6%) experienced physical or sexual abuse, 82 youth (31.7%) experienced emotional abuse, and 99 youth (38.2%) witnessed domestic violence. Youth were dichotomously classified as either having or never having experiencing maltreatment (Herrenkohl et al., 2019).
Callous-unemotional traits. Following approaches used in recent work (Hawes et al., 2020a, b), callous-unemotional traits were calculated using items drawn from the Child Behavior Checklist (CBCL) (Achenbach & Edelbrock, 1983), and Youth Self-Report (YSR) (Achenbach, 1987), that index core features of callous-unemotional traits. Items were included that correspond to callous (e.g., ‘mean to others’, ‘lack of guilt’), uncaring (e.g., ‘doesn’t finish things’, ‘poor schoolwork’) and unemotional (e.g., ‘fearful’) constructs (Table 2) (Frick, 2004). Responses to all items were collected using a 3-point scale: 2 = “very often true”, 1 = “somewhat true”, 0 = “not true”. Because the CBCL and YSR do not contain identical items, a max scoring approach could not be used (Frick, 2004). Item selection is further discussed in the online supplemental materials.
Table 2
Factor loadings based on an exploratory factor analysis with items from the YSR and CBCL
 
Callous- unemotional
Reporter
CBCL
  
 4. Fails to finish things he or she starts
0.61
− 0.28
 16. Cruelty, bullying, or meanness to others
0.45
− 0.47
 26. Doesn’t feel guilty after misbehaving
0.64
− 0.37
 61. Poor schoolwork
0.66
− 0.09
 94. Teases a lot
0.60
− 0.50
YSR
  
 4. I fail to finish things that I start
0.46
0.30
16. I am mean to others
0.53
0.53
 26. I don’t feel guilty after doing something I shouldn’t
0.37
0.36
 61. My school work is poor
0.44
0.34
 94. I tease a lot
0.40
0.68
Note: N = 248. Factor 1 corresponding to callous-unemotional traits and factor 2 representing reporter (i.e., parent/guardian or youth)
To produce a unidimensional callous-unemotional scale, inter-item correlations were calculated and items with mean inter-item correlation values between r = 0.15–0.5 were retained (Clark & Watson, 1995). Selected items were entered into an exploratory factor analysis and visual inspection of the scree plot indicated the presence of two factors with first and second eigenvalues of λ = 2.74 and λ = 1.75 respectively (Fig. 1). Further inspection of factor structure using Horn’s parallel analysis confirmed both factors had eigenvalues greater than the simulated data, indicating these eigenvalues scored above chance (Hayton et al., 2004; Horn, 1965). Investigation of factor loadings indicated the first factor loadings were capturing callous-unemotional traits and the second were capturing the survey reporter (i.e. parent or youth), thus the scale was treated as unidimensional (Table 2).
Fig. 1
Parallel analysis of the callous-unemotional items. Simulated data mean eigenvalues from 100 random iterations are plotted in blue. Adjusted eigenvalues accounting for the sample size are plotted in black, unadjusted eigenvalues are plotted in red. All eigenvalues are from an unrotated factor analysis
The final scale consisted of 10 items. Internal consistency of items was good (α = 0.70) and average interitem correlations were acceptable (Clark & Watson, 1995). Scores were calculated using the same items for participants with complete item data at follow-up (N = 183) and internal consistency was again good (α = 0.74). Final items were averaged to create a callous-unemotional score. External validity was supported by robust bivariate relationships between callous-unemotional scores and conduct problems scores (r = 0.67, df = 232, p < 0.001) (after removing callous-unemotional items from this scale), oppositional defiant scale scores (r = 0.62, df = 232, p < 0.001), and attention deficit scores (r = 0.62, df = 232, p < 0.001) (again, after removing callous-unemotional items from this scale). Additional details on item selection and scale validation are reported in Methods in the online supplement.
Callous-unemotional scores at baseline (M = 0.42, SD = 0.31, skewness = 0.9, kurtosis = 3.59) (follow-up: M = 0.39, SD = 0.31, skewness = 0.9, kurtosis = 3.17) translated to mean untransformed baseline scores of 4.2 (SD = 3.1) 21% of the maximum possible value (POMP). This value is only slightly below the empirically derived POMP scores that Kemp and colleagues (2023) suggest as a cutoff between low and high scorers in community samples using the ICU (29–33%). The mean CBCL-Externalizing t-score for youths in the upper half of our callous-unemotional distribution was 68.6, with t-scores of 65–69 typically considered borderline and 70 being the clinical cutoff. Together these data suggest our sample includes sufficient “high scorers” to test our hypotheses. Because callous-unemotional scores deviated from normalcy, scores were log transformed (baseline: M = 0.33, SD = 0.21, skewness = 0.4, kurtosis = 2.62; follow-up: M = 0.31, SD = 0.21, skewness = 0.46, kurtosis = 2.37).

Imaging

fMRI task. During fMRI scanning participants completed two runs of a task in which they viewed fearful, calm, or scrambled facial expressions (Tottenham et al., 2002). Scrambled facial expressions were used rather than calm expressions because of concerns that children exposed to violence may interpret even these expressions as more threatening (Lozier et al., 2014; Pollak et al., 2000). Each run contained nine 18-second blocks. Each block was comprised of 36 trials (300 ms) of a single emotion type displayed by 36 different actors who varied in gender and race. Each image was followed by a 200ms fixation. The order of emotion blocks was pseudo-randomized so that no emotion block occurred twice in a row and blocks were separated by three inter-trial interval blocks. A visual attention check occurred once per run where participants pressed a button when a cartoon character was displayed. See findings from Weissman et al., 2020 (Supplementary Fig. 1) for the basic effects associated with this task.
Image acquisition. Using a 3T Phillips Achieva scanner with a 32-channel coil in the University of Washington Integrated Brain Imaging Center we collected high-resolution anatomical images (176 axial slices; 2530ms repetition time; 3.5ms echo time; 1mm3 voxels; 7° flip angle; 256 × 256 mm field of view). An echo-planar imaging (EPI) sequence (37 3 mm slices parallel to the AC-PC line; 2s repetition time; 25ms echo time; 79° flip angle; 0.6 mm inner slice gap; 76 × 74 matrix; 3mm3 voxels; 224 × 224 mm field of view) was used to collect Functional T2*-weighted images. The first 4 images at the start of each scan were discarded. All functional volumes were registered to the subject’s anatomical grid collected during each session via the high-resolution T1-weighted anatomical scan and preprocessed (see online supplement).
Left and right amygdala regions of interest (ROIs) were created using the Harvard Oxford subcortical probabilistic structural atlas (50% threshold). Mean scores were calculated for each contrast of interest in both ROIs in subject anatomical space. We extracted the contrast indexing responses to fearful versus scrambled facial expressions (Weissman et al., 2020). Information on the relationship between amygdala volume and amygdala response to fearful facial expression are reported in the online supplement (Supplementary Table 3).

Data Analysis

We first used a linear regression analysis to examine associations between callous-unemotional traits and maltreatment history and baseline amygdala volume and activation. Baseline amygdala volume and functional BOLD activation were regressed on mean-centered total log-transformed callous-unemotional traits scores. Exposure to maltreatment was included as a predictor variable in relevant analyses. All analyses included gender and age as covariates (Falcón et al., 2021; Frick & Kemp, 2021) and a second-order polynomial was used in all models to estimate non-linear relationships. We next examined longitudinal relationships using residualized change models to assess whether changes in callous-unemotional traits across an 18-month period can be predicted from baseline functional or structural imaging data and/or maltreatment exposure. Models included age and gender covariates as well as baseline callous-unemotional trait scores, such that all other beta coefficients reflect changes in callous-unemotional trait scores from baseline. All analyses are reported, and values are not corrected for multiple comparisons across independent regression analysis. Correlations between study variables are presented in Supplemental Table 1.
All data were analyzed in Python using the statsmodel package (version 0.13.5) except for mediation analyses which were conducted in R using the mediation package (version 4.5.0).

Results

Baseline Associations among Amygdala Volume, Callous-Unemotional Traits, and Maltreatment

Supporting our prediction that callous-unemotional traits are associated with reduced amygdala volume, we found higher baseline callous-unemotional traits were associated with linear reductions in volume in both left and right amygdala. Each 1% increase in callous-unemotional traits corresponded to a 0.49 mm3 reduction in both left and right amygdala volume (Table 3). We also found that in left amygdala a second-order polynomial better fit the relationship between callous-unemotional traits and amygdala volume, indicating that the negative relationship between callous-unemotional traits and left amygdala volume was strongest at low levels of severity but its slope decreases as severity increases (Table 3; Fig. 2). In right amygdala, the linear association between volume and callous-unemotional traits remained the best-fitting model. We also found a linear bivariate association between callous-unemotional traits and maltreatment exposure at baseline (r = 0.35, p < 0.01) (Supplementary Table 1).
Table 3
Models predicting amygdala volume using callous-unemotional traits (n = 148)
Left amygdala
Right amygdala
 
b
s.e.
p
b
s.e.
p
Amygdala Volume
Callous-Unemotional Traits
      
 Callous-Unemotional Traits
-48.71
22.57
0.033
-48.84
23.36
0.038
 Gender
-200.92
45.71
< 0.001
-273
47.32
< 0.001
 Age
52.22
22.66
0.023
45.73
23.46
0.053
Second Order Polynomial
      
 Callous-Unemotional Traits
-63.79
23.0
0.006
-57.3
24.16
0.019
 Gender
-183.91
45.44
< 0.001
-263.46
47.75
< 0.001
 Age
51.03
22.27
0.023
45.05
23.40
0.056
 Callous-Unemotional Traits^2
46.97
19.0
0.015
26.35
19.94
0.188
Callous-Unemotional Traits and Maltreatment Exposure
 Callous-Unemotional Traits
-8.92
26.73
0.739
-15.66
27.91
0.576
 Maltreatment Exposure
-141.1
53.27
0.009
-117.68
55.61
0.036
 Gender
-179.61
45.5
< 0.001
-255.23
47.51
< 0.001
 Age
53.42
22.21
0.017
46.73
23.18
0.046
Second Order Polynomial
      
 Callous-Unemotional Traits
-24.44
27.01
0.367
-24.27
28.63
0.398
 Maltreatment Exposure
-138.35
52.35
0.009
-116.15
55.5
0.038
 Gender
-163.39
45.19
< 0.001
-246.23
47.91
< 0.001
 Age
52.23
21.83
0.018
46.06
23.14
0.048
 Callous-Unemotional Traits^2
45.92
18.60
0.015
25.47
19.72
0.198
Fig. 2
Marginal means plots excluding bins with less than 10 participants
In partial support of our second prediction that maltreatment exposure accounts for the association between callous-unemotional traits and amygdala volume, we found that maltreatment exposure was also associated with lower volume in both left and right amygdala. Notably, when maltreatment and callous-unemotional traits were modeled simultaneously, the linear relationship between callous-unemotional traits and both right and left amygdala volume was eliminated. However, the non-linear relationship between callous-unemotional traits and left (but not right amygdala) volume persisted, with stronger associations again observed between amygdala volume and callous-unemotional traits at lower severity levels (Table 3; Fig. 2).

Baseline Associations Between Amygdala Activation, Callous-Unemotional Traits, and Maltreatment

In support of the prediction that callous-unemotional traits are associated with reduced amygdala activation we found, at baseline, increased callous-unemotional traits were associated with linear reductions in right, but not left, amygdala activation when viewing fearful expressions. A non-linear relationship between callous-unemotional traits and right amygdala response to fearful expressions was again observed, with stronger associations between activation and callous-unemotional traits observed at lower severity levels (Table 4; Fig. 2). No non-linear relationship was observed for left amygdala activation.
Table 4
Models predicting amygdala volume using amygdala response to fearful expressions (contrast: fear > scrambled faces) (n=147)
Left amygdala
Right amygdala
 
b
s.e.
p
b
s.e.
p
Amygdala Response to Fearful Expressions
Callous-Unemotional Traits
      
 Callous-Unemotional Traits
-0.15
0.09
0.098
-0.18
0.09
0.044
 Gender
0.07
0.18
0.70
-0.02
0.18
0.915
 Age
0.06
0.09
0.493
0.10
0.09
0.247
Second Order Polynomial
      
 Callous-Unemotional Traits
-0.17
0.09
0.06
-0.23
0.09
0.011
 Gender
0.10
0.18
0.586
0.04
0.18
0.82
 Age
0.06
0.09
0.518
0.10
0.09
0.27
 Callous-Unemotional Traits^2
0.09
0.08
0.25
0.18
0.08
0.019
Callous-Unemotional Traits and Maltreatment Exposure
 Callous-Unemotional Traits
-0.55
0.55
0.312
-0.57
0.55
0.298
 Maltreatment Exposure
-0.14
0.21
0.525
-0.24
0.21
0.262
 Gender
0.09
0.18
0.618
0.02
0.18
0.913
 Age
0.06
0.09
0.48
0.11
0.09
0.232
Second Order Polynomial
      
 Callous-Unemotional Traits
-0.55
0.55
0.312
-0.85
0.55
0.126
 Maltreatment Exposure
-0.14
0.21
0.525
-0.24
0.21
0.265
 Gender
0.09
0.18
0.618
0.08
0.18
0.667
 Age
0.06
0.09
0.505
0.10
0.09
0.256
 Callous-Unemotional Traits^2
0.09
0.08
0.253
0.18
0.08
0.02
By contrast, no relationship was observed at baseline between maltreatment exposure and left or right amygdala activation. Unlike our structural findings, when maltreatment was included in our models, neither maltreatment nor callous-unemotional traits showed linear associations with responses to fearful expressions in left or right amygdala. However, in these models a non-linear relationship again emerged between amygdala activation and callous-unemotional traits in right but not left amygdala (Table 4; Fig. 2).
We also conducted exploratory analyses in an effort to approximately replicate prior findings (Meffert et al., 2018) that trauma exposure moderates the relationship between callous-unemotional traits and amygdala responses to fearful expressions. These analyses found no support for the prediction that maltreatment exposure moderates the association between callous-unemotional traits and activation in left (b = − 0.13, p = 0.22) or right (b = − 0.05, p = 0.70) amygdala. (Supplementary Table 4).

Predicting Changes in Callous-Unemotional Traits

After establishing associations between both callous-unemotional traits and maltreatment exposure and amygdala outcomes at baseline, we next used residualized change models to test our prediction that both baseline amygdala structure and function would predict changes in callous-unemotional traits across an 18-month period. Results indicated that lower left (but not right) amygdala volume at baseline is associated with linear increases in callous-unemotional traits over time (Table 5). When considering non-linear relationships, we found reduced left (but not right) amygdala volume at baseline again predicted greater increases in callous-unemotional traits (Table 5; Fig. 2).
Table 5
Residualized change models of changes in callous-unemotional traits across an 18-month period associated with baseline amygdala structure and function, and maltreatment exposure
Left amygdala
Right amygdala
 
b
s.e.
p
b
s.e.
p
Residualized Change Models
      
Callous-Unemotional Traits
      
 Amygdala Volume
-8.9E− 5
5.0E− 5
0.077
-6.7E− 5
4.5E− 5
0.141
 Gender
-0.03
0.03
0.241
-0.03
0.03
0.247
 Age
0.01
0.01
0.568
0.01
0.01
0.626
 Baseline Callous-Unemotional Traits
0.69
0.07
< 0.001
0.69
0.07
< 0.001
Second Order Polynomial
      
 Amygdala Volume
0.001
0.00
0.026
3.0E− 4
0.00
0.448
 Gender
-0.02
0.03
0.505
-0.03
0.03
0.262
 Age (in years)
0.01
0.01
0.546
0.01
0.01
0.582
 Baseline Callous-Unemotional Traits
0.71
0.07
< 0.001
0.69
0.07
< 0.001
 Amygdala Volume^2
-3.0E− 7
1.2E− 7
0.015
-9.2E− 8
9.9E− 8
0.355
Callous-Unemotional Traits and Maltreatment Exposure
 Amygdala Volume
-5.7E− 5
5.2E− 5
0.271
-4.5E− 5
4.6E− 5
0.323
 Gender
-0.04
0.03
0.203
-0.04
0.03
0.198
 Age (in years)
0.01
0.01
0.672
0.01
0.01
0.71
 Baseline Callous-Unemotional Traits
0.60
0.08
< 0.001
0.59
0.08
< 0.001
 Maltreatment Exposure
0.07
0.03
0.041
0.07
0.03
0.027
Second Order Polynomial
      
 Amygdala Volume
0.001
0.00
0.029
4.0E− 4
0.00
0.277
 Gender
-0.02
0.03
0.434
-0.04
0.03
0.21
 Age
0.01
0.01
0.643
0.01
0.01
0.654
 Baseline Callous-Unemotional Traits
0.63
0.08
< 0.001
0.59
0.08
< 0.001
 Maltreatment Exposure
0.06
0.03
0.055
0.08
0.03
0.02
 Amygdala Volume^2
-2.8E− 7
1.2E− 7
0.02
-1.2E− 7
9.7E− 8
0.229
We next included maltreatment exposure in our models and found that maltreatment exposure was also associated with increases in callous-unemotional traits at follow-up. When the non-linear relationship between baseline amygdala volume and changes in callous-unemotional traits was modeled while also controlling for baseline maltreatment we found reduced left (but not right) amygdala volume at baseline predicted increases in callous-unemotional traits at follow-up (Table 5; Fig. 2). However, in this model maltreatment did not predict callous-unemotional traits at follow-up.
We next employed a bootstrap-mediation analysis with 1000 simulations to assess if the relationship between maltreatment and increased callous-unemotional traits at follow-up was mediated by left amygdala volume. Age, gender, and baseline callous-unemotional trait scores were included as covariates. Results indicated that left amygdala volume did not mediate the relationship between maltreatment exposure and changes in callous-unemotional traits (bias-corrected 95% CI, − 0.008 to 0.03).
Analyses including amygdala activation parameters found neither linear nor non-linear bivariate associations between baseline functional activation and changes in callous-unemotional traits (see online supplement, Supplementary Table 3).

Discussion

We investigated cross-section and longitudinal associations of callous-unemotional traits in a diverse sample of children and adolescents with high levels of maltreatment exposure. To our knowledge, this is the first study to simultaneously consider interrelationships among four variables known to be robustly associated with externalizing behavior in children and adolescents: callous-unemotional traits, amygdala structure, amygdala response to fearful faces, and maltreatment exposure. We find for the first time that maltreatment and amygdala structure and activation variables are associated with callous-unemotional traits at baseline, and in combination, can longitudinally predict changes in callous-unemotional traits over the course of 18 months. Baseline amygdala volume and maltreatment exposure were most strongly related to increased callous-unemotional traits 18 months later. Importantly, however, the association between maltreatment and increases in callous-unemotional traits was not mediated by amygdala structure or function. Instead, we found support for the alternate hypothesis that maltreatment exposure and amygdala volume and functional activation independently predicted changes in callous-unemotional traits. We identified these effects using a large single-site sample. These findings may be consequential for understanding the etiology of externalizing disorders, which are the most prevalent mental health concern among school-aged children in North America, with 6–17% meeting criteria for a disruptive behavior disorder (Danielson et al., 2021).
As we hypothesized, and consistent with prior work, callous-unemotional traits were linearly associated with lower amygdala volume (Cardinale et al., 2019; Gao et al., 2024) and activation in response to fearful expressions (Lozier et al., 2014; Viding et al., 2012) at baseline—although this is the first study to confirm both findings in a single sample. Our findings also yielded several novel insights. One is that non-linear models may better capture the relationship between callous-unemotional traits and both structural and functional outcomes, suggesting that the relationship between callous-unemotional traits and neurodevelopmental outcomes varies as a function of symptom severity. Thus, variation in amygdala structure and functional activation may not usefully discriminate among children with higher levels of callous-unemotional traits. In addition, we found support for our second hypothesis, which was that linear associations between callous-unemotional traits and both the structure and function of the amygdala were eliminated by including maltreatment as a covariate. Non-linear relationships persisted, however, which largely reflected the strongest associations between callous-unemotional traits and reduced amygdala volume and activation at lower levels of callous-unemotional traits (Howard et al., 2012).
These findings have implications for understanding the etiology of callous-unemotional traits. We focused on the amygdala in our analyses following robust prior evidence linking atypical development in this structure to callous-unemotional traits, maltreatment exposure, and externalizing behavior (Lozier et al., 2014; McCrory et al., 2017; Mclaughlin et al., 2019; Viding et al., 2012). Our results confirm prior findings that maltreatment is associated with reduced amygdala volume and predicts worsening callous-unemotional traits over time. We also found that smaller amygdala volume at baseline predicts worsening callous-unemotional traits over time. However, we did not find these two risk factors to be related. This suggests that simply reducing maltreatment exposure is unlikely, on its own, to eliminate risk of callous-unemotional traits—although it would likely reduce the severity of these traits, particularly secondary variants. Amygdala volume and functional activation patterns are at least partly heritable (Lewis et al., 2014; Mufford et al., 2024; Quarto et al., 2023), thus, genetically influenced atypical amygdala development from an early age may contribute to the fearless temperament and low social affiliation that are early-emerging signs of callous-unemotional traits (Fanti et al., 2023; Paz et al., 2024). This is consistent with evidence that amygdala plays a dual role in supporting both fear acquisition and learning (Adolphs, 2008; Blair, 2008) and empathic and prosocial responding (Chang et al., 2015; Marsh et al., 2018; Rhoads et al., 2023). In both humans and non-human mammals, the amygdala specifically supports empathic responding to others’ distress, possibly by supporting the coordination of internal representations of fear in response to others’ nonverbal cues, consistent with simulation theories of empathy (Olsson et al., 2007). In other words, increased amygdala activation in response to others’ fear may represent an empathic response, possibly supported by increased volume. This interpretation is supported by the fact that increased amygdala volume and functional activation in response to fear are associated with improved empathic accuracy for these cues and with real-world prosocial motivation and behavior (Marsh et al., 2014).
Why our findings related to amygdala volume were more robust than those related to functional activation is unclear. Amygdala activation may be inherently more heterogeneous in its relationship to callous-unemotional traits, although our moderation analysis as a function of maltreatment did not identify any moderating effect of this variable. It may also reflect measurement differences, with gray matter volume being potentially more robust to measurement error than measures of functional activation due in part to known sources of error in the amygdala BOLD signal (Boubela et al., 2015). This may help explain some reviews of amygdala functional activation finding inconsistent associations with psychopathy (e.g., Deming et al., 2022), although the fact that this review collapsed across classes of evoking stimuli may also be the cause of the putatively null findings, as amygdala activation anomalies in samples with callous-unemotional traits are more likely to emerge in response to fear-evoking stimuli than stimuli related to anger, disgust, or some other emotion categories (e.g., Cardinale et al., 2018; Deming et al., 2020; Lozier et al., 2014).
Observed non-linear effects may help reconcile some inconsistencies in prior findings (Dotterer et al., 2017; Meffert et al., 2018). Prior work comparing extreme samples—for example, typically developing youths versus those recruited for conduct problems and callous-unemotional traits—find reduced amygdala activation and volume in callous-unemotional youths (Dotterer et al., 2020) consistent with either a linear or a non-linear effect. By contrast, samples that also include participants with conduct problems and low callous-unemotional traits (whose scores are nonetheless higher than those of developing children) generally yield results consistent with non-linear effects (Lozier et al., 2014; Viding et al., 2012) as do studies that consider the interaction of callous-unemotional traits and trauma (Meffert et al., 2018), although the specific patterns vary. And at least one sample from the community that was nonetheless very high-risk (drawn from the Fragile Families and Child Well-Being sample, children from which exhibit elevated conduct problems (Osborne, 2007; Waldfogel et al., 2010) examining the linear correspondence between callous-unemotional traits and amygdala responses found no effect. (Another community sample study had such uniformly low average callous-unemotional trait scores (M = 2.1, SD = 1.6, range 0–6 on a 10-point scale) and also used combined fear/anger stimuli such that comparisons may be difficult (Dotterer et al., 2017).
We note two things about these patterns: First, they are overall consistent with our observed non-linear findings in a sample that spans low, moderate, and high callous-unemotional traits, although our findings are the first to indicate that callous-unemotional traits are more strongly associated with amygdala volume and activation at lower levels of these traits, with youths having moderately versus very high levels of these traits appearing more similar. Second, to our knowledge no prior imaging study in callous-unemotional youths has explicitly examined linear and non-linear effects that may help resolve apparent inconsistencies in the existing literature, which we believe increases the value of our approach. Only one prior study to our knowledge has tested for and found non-linear effects of amygdala function or structure as a function of any psychopathy-related measure (PCL-R traits in adult male offenders) (Schiffer et al., 2011). Although we cannot over-extrapolate from their findings given major differences in the samples, their findings support the importance of considering non-linear effects.
These results should be considered in light of certain limitations. We used an index of callous-unemotional traits derived from the parent-report version of the CBCL and its youth-report analogue, the YSL (Frick, 2004), an increasingly common approach for secondary analyses of datasets in which more targeted inventories like the Inventory of Callous-Unemotional Traits (ICU) were not included, such as the Adolescent Brain Cognitive Development dataset (Hawes et al., 2020a, b). This can result in stronger correlations between callous-unemotional traits and externalizing behaviors in part because these items are drawn from the same scale (Willoughby et al., 2011). When rigorously validated, as was the case here, this approach permits the assessment of callous-unemotional traits in larger and more diverse samples of participants, including those not originally recruited for research on callous-unemotional traits. One limitation of this approach is that items related to unemotionality other than guilt-proneness are poorly covered by the CBCL and YSR, and we found items indexing fearfulness did not converge with the remaining items and thus were not included in our scale (similarly, the ICU’s unemotionality subscale shows relatively poor convergence with the callous and uncaring subscales) (Cardinale & Marsh, 2020). However, we were able to leverage this method to consider the joint effects of callous-unemotional traits and maltreatment, a risk factor for which this sample was recruited and screened. Using our measure, we replicated prior findings related to associations between callous-unemotional traits and both amygdala structure and function and extended them by considering longitudinal outcomes and the moderating role of maltreatment (Meffert et al., 2018). This approach, however, precludes precise comparisons of callous-unemotional trait severity between our sample and other recent studies. Without ICU scores we cannot definitively ascertain how our sample would compare to other samples using this or other similar validated measures of callous-unemotional traits, or what proportion of our sample would be classified as having clinically significant callous-unemotional traits. Because callous-unemotional trait scores were log-transformed in order to conduct parametric analyses, the shape of non-linear relationships should be interpreted with caution because log-transformation pulls extreme scores closer to the mean. High co-occurrence of maltreatment types in our sample also precluded analysis of potential differences between them; prior work finds neglect may increase risk, therefore, future work exploring callous-unemotional traits should focus on this variable (Mclaughlin, 2019). Finally, investigating the influence of maltreatment and callous-unemotional traits on other brain regions or in response to other emotional expressions was beyond the scope of this research.
Despite these limitations, our study found new evidence of non-linear and longitudinal relationships between callous-unemotional traits and neurodevelopment of the amygdala, a finding with important implications for risk assessment and treatment. Children with callous-unemotional traits may be at highest risk for increasing symptom severity who have lower amygdala volume at baseline and who have been exposed to maltreatment. These findings illustrate the importance of early intervention particularly in youth exposed to maltreatment who exhibit callous-unemotional traits to prevent further worsening of callous-unemotional traits and externalizing behaviors.

Declarations

Ethical Approval

All procedures were approved by the University of Washington Institutional Review Board.

Conflict of Interest

The authors report no financial relationships with commercial interests.
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by-nc-nd/​4.​0/​.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
share
DELEN

Deel dit onderdeel of sectie (kopieer de link)

  • Optie A:
    Klik op de rechtermuisknop op de link en selecteer de optie “linkadres kopiëren”
  • Optie B:
    Deel de link per e-mail

Onze productaanbevelingen

BSL Psychologie Totaal

Met BSL Psychologie Totaal blijf je als professional steeds op de hoogte van de nieuwste ontwikkelingen binnen jouw vak. Met het online abonnement heb je toegang tot een groot aantal boeken, protocollen, vaktijdschriften en e-learnings op het gebied van psychologie en psychiatrie. Zo kun je op je gemak en wanneer het jou het beste uitkomt verdiepen in jouw vakgebied.

BSL Academy Accare GGZ collective

Bijlagen

Electronic Supplementary Material

Below is the link to the electronic supplementary material.
Literatuur
go back to reference Achenbach, T. M. (1987). Manual for the youth Self-Report and profile. Department of Psychiatry. Achenbach, T. M. (1987). Manual for the youth Self-Report and profile. Department of Psychiatry.
go back to reference Achenbach, T. M., & Edelbrock, C. S. (1983). Manual for the child behavior checklist and revised child behavior profile. University of Vermont, Department of Psychiatry. Achenbach, T. M., & Edelbrock, C. S. (1983). Manual for the child behavior checklist and revised child behavior profile. University of Vermont, Department of Psychiatry.
go back to reference Blair, R. J. (2008). Review. The amygdala and ventromedial prefrontal cortex: Functional contributions and dysfunction in psychopathy. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363, 2557–2565.CrossRefPubMedPubMedCentral Blair, R. J. (2008). Review. The amygdala and ventromedial prefrontal cortex: Functional contributions and dysfunction in psychopathy. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363, 2557–2565.CrossRefPubMedPubMedCentral
go back to reference Cardinale, E. M., Breeden, A. L., Robertson, E. L., Lozier, L. M., Vanmeter, J. W., & Marsh, A. A. (2018). Externalizing behavior severity in youths with callous–unemotional traits corresponds to patterns of amygdala activity and connectivity during judgments of causing fear. Development and Psychopathology, 30(1), 191–201.CrossRefPubMed Cardinale, E. M., Breeden, A. L., Robertson, E. L., Lozier, L. M., Vanmeter, J. W., & Marsh, A. A. (2018). Externalizing behavior severity in youths with callous–unemotional traits corresponds to patterns of amygdala activity and connectivity during judgments of causing fear. Development and Psychopathology, 30(1), 191–201.CrossRefPubMed
go back to reference Cardinale, E. M., Reber, J., O’Connell, K., Turkeltaub, P. E., Tranel, D., Buchanan, T. W., & Marsh, A. A. (2021). Bilateral amygdala damage linked to impaired ability to predict others’ fear but preserved moral judgements about causing others fear. Proceedings of the Royal Society B, 288(1943), 20202651. Cardinale, E. M., Reber, J., O’Connell, K., Turkeltaub, P. E., Tranel, D., Buchanan, T. W., & Marsh, A. A. (2021). Bilateral amygdala damage linked to impaired ability to predict others’ fear but preserved moral judgements about causing others fear. Proceedings of the Royal Society B, 288(1943), 20202651.
go back to reference Craig, S. G., Goulter, N., & Moretti, M. M. (2021). A systematic review of primary and secondary callous-unemotional traits and psychopathy variants in youth. Clinical Child and Family Psychology Review, 24(1), 65–91.CrossRefPubMed Craig, S. G., Goulter, N., & Moretti, M. M. (2021). A systematic review of primary and secondary callous-unemotional traits and psychopathy variants in youth. Clinical Child and Family Psychology Review, 24(1), 65–91.CrossRefPubMed
go back to reference Danielson, M. L., Bitsko, R. H., Holbrook, J. R., Charania, S. N., Claussen, A. H., McKeown, R. E., & the CDC School-Based Surveillance Team. (2021). Community-based prevalence of externalizing and internalizing disorders among school-aged children and adolescents in four geographically dispersed school districts in the united States. Child Psychiatry & Human Development, 52(3), 500–514. https://doi.org/10.1007/s10578-020-01043-0CrossRef Danielson, M. L., Bitsko, R. H., Holbrook, J. R., Charania, S. N., Claussen, A. H., McKeown, R. E., & the CDC School-Based Surveillance Team. (2021). Community-based prevalence of externalizing and internalizing disorders among school-aged children and adolescents in four geographically dispersed school districts in the united States. Child Psychiatry & Human Development, 52(3), 500–514. https://​doi.​org/​10.​1007/​s10578-020-01043-0CrossRef
go back to reference Deming, P., Heilicher, M., & Koenigs, M. (2022). How reliable are amygdala findings in psychopathy? A systematic review of MRI studies. Neuroscience & Biobehavioral Reviews, 142, 104875.CrossRef Deming, P., Heilicher, M., & Koenigs, M. (2022). How reliable are amygdala findings in psychopathy? A systematic review of MRI studies. Neuroscience & Biobehavioral Reviews, 142, 104875.CrossRef
go back to reference Dugré, J. R., & Potvin, S. (2023). Altered functional connectivity of the amygdala across variants of callous-unemotional traits: A resting-state fMRI study in children and adolescents. Journal of Psychiatric Research, 163, 32–42.CrossRefPubMed Dugré, J. R., & Potvin, S. (2023). Altered functional connectivity of the amygdala across variants of callous-unemotional traits: A resting-state fMRI study in children and adolescents. Journal of Psychiatric Research, 163, 32–42.CrossRefPubMed
go back to reference Fanti, K. A., Colins, O. F., Andershed, H., & Sikki, M. (2017). Stability and change in callous-unemotional traits: Longitudinal associations with potential individual and contextual risk and protective factors. American Journal of Orthopsychiatry, 87(1), 62–75. https://doi.org/10.1037/ort0000143CrossRefPubMed Fanti, K. A., Colins, O. F., Andershed, H., & Sikki, M. (2017). Stability and change in callous-unemotional traits: Longitudinal associations with potential individual and contextual risk and protective factors. American Journal of Orthopsychiatry, 87(1), 62–75. https://​doi.​org/​10.​1037/​ort0000143CrossRefPubMed
go back to reference Fanti, K. A., Mavrommatis, I., Colins, O., & Andershed, H. (2023). Fearlessness as an underlying mechanism leading to conduct problems: Testing the intermediate effects of parenting, anxiety, and callous-unemotional traits. Research on child and adolescent psychopathology, 51(8), 1115–1128. https://doi.org/10.1007/s10802-023-01076-7 Fanti, K. A., Mavrommatis, I., Colins, O., & Andershed, H. (2023). Fearlessness as an underlying mechanism leading to conduct problems: Testing the intermediate effects of parenting, anxiety, and callous-unemotional traits. Research on child and adolescent psychopathology, 51(8), 1115–1128. https://​doi.​org/​10.​1007/​s10802-023-01076-7
go back to reference Frick, P. J. (2004). The inventory of Callous-Unemotional traits. University of New Orleans. Frick, P. J. (2004). The inventory of Callous-Unemotional traits. University of New Orleans.
go back to reference Frick, P. J. (2012). Developmental pathways to conduct disorder: Implications for future directions in research, assessment, and treatment. Journal of Clinical Child & Adolescent Psychology, 41(3), 378–389.CrossRef Frick, P. J. (2012). Developmental pathways to conduct disorder: Implications for future directions in research, assessment, and treatment. Journal of Clinical Child & Adolescent Psychology, 41(3), 378–389.CrossRef
go back to reference Herrenkohl, T. I., Hong, S., & Verbrugge, B. (2019). Trauma‐informed programs based in schools: Linking concepts to practices and assessing the evidence. American Journal of Community Psychology, 64(3-4), 373–388. https://doi.org/10.1002/ajcp.12362 Herrenkohl, T. I., Hong, S., & Verbrugge, B. (2019). Trauma‐informed programs based in schools: Linking concepts to practices and assessing the evidence. American Journal of Community Psychology, 64(3-4), 373–388. https://​doi.​org/​10.​1002/​ajcp.​12362
go back to reference Kemp, E. C., Frick, P. J., Matlasz, T. M., Clark, J. E., Robertson, E. L., Ray, J. V., & Cauffman, E. (2023). Developing cutoff scores for the inventory of callous-unemotional traits (ICU) in justice-involved and community samples. Journal of Clinical Child & Adolescent Psychology, 52(4), 519–532.CrossRef Kemp, E. C., Frick, P. J., Matlasz, T. M., Clark, J. E., Robertson, E. L., Ray, J. V., & Cauffman, E. (2023). Developing cutoff scores for the inventory of callous-unemotional traits (ICU) in justice-involved and community samples. Journal of Clinical Child & Adolescent Psychology, 52(4), 519–532.CrossRef
go back to reference Kimonis, E. R. (2023). The emotionally sensitive child-adverse parenting Experiences-Allostatic (Over) load (ESCAPE-AL) model for the development of secondary psychopathic traits. Clinical Child and Family Psychology Review, 26(4), 1097–1114.CrossRefPubMedPubMedCentral Kimonis, E. R. (2023). The emotionally sensitive child-adverse parenting Experiences-Allostatic (Over) load (ESCAPE-AL) model for the development of secondary psychopathic traits. Clinical Child and Family Psychology Review, 26(4), 1097–1114.CrossRefPubMedPubMedCentral
go back to reference Markowitz, A. J., Ryan, R. M., & Marsh, A. A. (2015). Neighborhood income and the expression of callous–unemotional traits. European Child & Adolescent Psychiatry, 24(9), 1103–1118.CrossRef Markowitz, A. J., Ryan, R. M., & Marsh, A. A. (2015). Neighborhood income and the expression of callous–unemotional traits. European Child & Adolescent Psychiatry, 24(9), 1103–1118.CrossRef
go back to reference Marsh, A. A. (2018). The neuroscience of empathy. Curr Opin Behav Sci, 19, 110–115.CrossRef Marsh, A. A. (2018). The neuroscience of empathy. Curr Opin Behav Sci, 19, 110–115.CrossRef
go back to reference Masi, G., Pisano, S., Brovedani, P., Maccaferri, G., Manfredi, A., Milone, A., Nocentini, A., Polidori, L., Ruglioni, L., & Muratori, P. (2018). Trajectories of callous-unemotional traits from childhood to adolescence in referred youth with a disruptive behavior disorder who received intensive multimodal therapy in childhood. Neuropsychiatric Disease and Treatment, 14, 2287–2296. https://doi.org/10.2147/NDT.S164032CrossRefPubMedPubMedCentral Masi, G., Pisano, S., Brovedani, P., Maccaferri, G., Manfredi, A., Milone, A., Nocentini, A., Polidori, L., Ruglioni, L., & Muratori, P. (2018). Trajectories of callous-unemotional traits from childhood to adolescence in referred youth with a disruptive behavior disorder who received intensive multimodal therapy in childhood. Neuropsychiatric Disease and Treatment, 14, 2287–2296. https://​doi.​org/​10.​2147/​NDT.​S164032CrossRefPubMedPubMedCentral
go back to reference McCrory, E. J., Gerin, M. I., & Viding, E. (2017). Annual research review: Childhood maltreatment, latent vulnerability, and the shift to preventative psychiatry– The contribution of functional brain imaging. Journal of Child Psychology and Psychiatry, 58(3), 338–357. https://doi.org/10.1111/jcpp.12607CrossRefPubMed McCrory, E. J., Gerin, M. I., & Viding, E. (2017). Annual research review: Childhood maltreatment, latent vulnerability, and the shift to preventative psychiatry– The contribution of functional brain imaging. Journal of Child Psychology and Psychiatry, 58(3), 338–357. https://​doi.​org/​10.​1111/​jcpp.​12607CrossRefPubMed
go back to reference Osborne, C. (2007). Is marriage protective for all children? Cumulative risks at birth and subsequent child behavior among urban families (Center for Research on Child Wellbeing Working Paper 2007). Center for Research on Child Wellbeing. Osborne, C. (2007). Is marriage protective for all children? Cumulative risks at birth and subsequent child behavior among urban families (Center for Research on Child Wellbeing Working Paper 2007). Center for Research on Child Wellbeing.
go back to reference Paz, Y., Perkins, E. R., Colins, O., Perlstein, S., Wagner, N. J., Hawes, S. W., Byrd, A., Viding, E., & Waller, R. (2024). Evaluating the sensitivity to threat and affiliative reward (STAR) model in relation to the development of conduct problems and callous-unemotional traits across early adolescence. Journal of Child Psychology and Psychiatry, n/a(n/a). https://doi.org/10.1111/jcpp.13976 Paz, Y., Perkins, E. R., Colins, O., Perlstein, S., Wagner, N. J., Hawes, S. W., Byrd, A., Viding, E., & Waller, R. (2024). Evaluating the sensitivity to threat and affiliative reward (STAR) model in relation to the development of conduct problems and callous-unemotional traits across early adolescence. Journal of Child Psychology and Psychiatry, n/a(n/a). https://​doi.​org/​10.​1111/​jcpp.​13976
go back to reference Quarto, T., Lella, A., Di Carlo, P., Rampino, A., Paladini, V., Papalino, M., Romano, R., Fazio, L., Marvulli, D., Popolizio, T., Blasi, G., Pergola, G., & Bertolino, A. (2023). Heritability of amygdala reactivity to angry faces and its replicable association with the schizophrenia risk locus of miR-137. Journal of Psychiatry & Neuroscience: JPN, 48(5), E357–E366. https://doi.org/10.1503/jpn.230013CrossRef Quarto, T., Lella, A., Di Carlo, P., Rampino, A., Paladini, V., Papalino, M., Romano, R., Fazio, L., Marvulli, D., Popolizio, T., Blasi, G., Pergola, G., & Bertolino, A. (2023). Heritability of amygdala reactivity to angry faces and its replicable association with the schizophrenia risk locus of miR-137. Journal of Psychiatry & Neuroscience: JPN, 48(5), E357–E366. https://​doi.​org/​10.​1503/​jpn.​230013CrossRef
go back to reference Schiffer, B., Müller, B. W., Scherbaum, N., Hodgins, S., Forsting, M., Wiltfang, J., & Leygraf, N. (2011). Disentangling structural brain alterations associated with violent behavior from those associated with substance use disorders. Archives of General Psychiatry, 68(10), 1039–1049.CrossRefPubMed Schiffer, B., Müller, B. W., Scherbaum, N., Hodgins, S., Forsting, M., Wiltfang, J., & Leygraf, N. (2011). Disentangling structural brain alterations associated with violent behavior from those associated with substance use disorders. Archives of General Psychiatry, 68(10), 1039–1049.CrossRefPubMed
go back to reference Todorov, J. J., Devine, R. T., & De Brito, S. A. (2023). Association between childhood maltreatment and callous-unemotional traits in youth: A meta-analysis. Neuroscience & Biobehavioral Reviews, 146, 105049.CrossRef Todorov, J. J., Devine, R. T., & De Brito, S. A. (2023). Association between childhood maltreatment and callous-unemotional traits in youth: A meta-analysis. Neuroscience & Biobehavioral Reviews, 146, 105049.CrossRef
go back to reference Viding, E., Sebastian, C. L., Dadds, M. R., Lockwood, P. L., Cecil, C. A., De Brito, S. A., & McCrory, E. J. (2012). Amygdala response to preattentive masked fear in children with conduct problems: the role of callous-unemotional traits. American journal of psychiatry, 169(10), 1109-1116. https://doi.org/10.1176/appi.ajp.2012.12020191 Viding, E., Sebastian, C. L., Dadds, M. R., Lockwood, P. L., Cecil, C. A., De Brito, S. A., & McCrory, E. J. (2012). Amygdala response to preattentive masked fear in children with conduct problems: the role of callous-unemotional traits. American journal of psychiatry, 169(10), 1109-1116. https://​doi.​org/​10.​1176/​appi.​ajp.​2012.​12020191
go back to reference Waldfogel, J., Craigie, T. A., & Brooks-Gunn, J. (2010). Fragile families and child wellbeing. The Future of Children, 20(2), 87–112. Center for the Future of Children, the David and Lucile Packard Foundation.CrossRefPubMedPubMedCentral Waldfogel, J., Craigie, T. A., & Brooks-Gunn, J. (2010). Fragile families and child wellbeing. The Future of Children, 20(2), 87–112. Center for the Future of Children, the David and Lucile Packard Foundation.CrossRefPubMedPubMedCentral
go back to reference Walker, T. M., Robertson, E. L., Frick, P. J., Ray, J. V., Thornton, L. C., Myers, T. D. W., & Howard, A. L. (2020). Relationships among callous-unemotional traits, future orientation, optimism, and self-esteem in justice-involved adolescents. Journal of Child and Family Studies, 29(9), 2434–2442. https://doi.org/10.1007/s10826-020-01770-wCrossRef Walker, T. M., Robertson, E. L., Frick, P. J., Ray, J. V., Thornton, L. C., Myers, T. D. W., & Howard, A. L. (2020). Relationships among callous-unemotional traits, future orientation, optimism, and self-esteem in justice-involved adolescents. Journal of Child and Family Studies, 29(9), 2434–2442. https://​doi.​org/​10.​1007/​s10826-020-01770-wCrossRef
go back to reference Weissman, D. G., Jenness, J. L., Colich, N. L., Miller, A. B., Sambrook, K. A., Sheridan, M. A., & McLaughlin, K. A. (2020). Altered neural processing of threat-related information in children and adolescents exposed to violence: A transdiagnostic mechanism contributing to the emergence of psychopathology. Journal of the American Academy of Child and Adolescent Psychiatry, 59(11), 1274–1284. https://doi.org/10.1016/j.jaac.2020.01.027CrossRefPubMed Weissman, D. G., Jenness, J. L., Colich, N. L., Miller, A. B., Sambrook, K. A., Sheridan, M. A., & McLaughlin, K. A. (2020). Altered neural processing of threat-related information in children and adolescents exposed to violence: A transdiagnostic mechanism contributing to the emergence of psychopathology. Journal of the American Academy of Child and Adolescent Psychiatry, 59(11), 1274–1284. https://​doi.​org/​10.​1016/​j.​jaac.​2020.​01.​027CrossRefPubMed
go back to reference World Health Organization. (2015). Youth violence is a global public health problem. World Health Organization. World Health Organization. (2015). Youth violence is a global public health problem. World Health Organization.
Metagegevens
Titel
Independent Impacts of Maltreatment and Amygdala Volume on Worsening Callous-Unemotional Traits in High-Risk Youths
Auteurs
Kathryn Berluti
Steven W. Kasparek
Joseph S. Venticinque
Katie A. McLaughlin
Abigail A. Marsh
Publicatiedatum
06-05-2025
Uitgeverij
Springer US
Gepubliceerd in
Research on Child and Adolescent Psychopathology
Print ISSN: 2730-7166
Elektronisch ISSN: 2730-7174
DOI
https://doi.org/10.1007/s10802-025-01329-7